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PREFACE

THE importance of the flash discharge tube as a light source for
the photographic study of transient events and for application
to night aerial photography was appreciated during the war. As
a result of experience gained during this period and subsequent
developments the modern flash tube is now employed in almost
every branch of physics and engineering, serving as an indispens-
able research tool in government establishments and industrial
organizations the world over.

Deceptively simple in appearance, the electronic flash tube is
the most complex artificial light source known. It is also the
most flexible, Given suitable tubes and circuitry one may illum-
inate several square miles of territory with a single flash, or, on
the other hand, capture a sequence of incidents taking place in
the lifetime of an event which may last for only a few millionths
of a second. Recording the ‘unseen’ in this way provides tech-
nical information which cannot be secured by any other means,
opening up a new and fascinating field with endless possibilities
for original work. Although the apparatus necessary for many
investigations is much too elaborate and costly to be borne by
the individual, certain technical problems do come within the
scope of the private experimenter. Their solution demands in-
genuity together with a knowledge of fundamental processes
rather than elaborate equipment.

This book introduces the many techniques now in use or
being developed in flash photographic and radiographic practice,
giving a condensed survey of the present state of the art, with
selected references for the assistance of those technicians or
engineers who require information on the subject but who
specialize in other directions.

Theoretical outlines of principles involved have been given
briefly m various-sections in the hope that this will, together with
the examples of practical work, present a picture of the technique
as a whole which will be found of value to every reader who
wishes to get the most out of existing equipment or extend the
scope of his work.

A book of this nature necessarilv records the investigations of
many, and grateful thanks are due from the author to his col-
leagues at the Royal Aircraft Establishment, to Dr Haroid E.
Edgerton of the Massachusetts Institute of Technology, U.S.A.,
the Westinghouse Company, U.S.A., Recherches Mdcaniques
et Physiques, Paris, Dr J. N. Aldington of Siemens Ltd,,
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PREFACE

Cuthbert Andrews, the General Electric Company, Cleveland,
U.S.A,, the G.E.C. Research Laboratories, and Mullard Ltd.,
for material so readily provided.

Also, the author’s thanks are due to his wife who, in the carly
days during the war, assisted in taking some of the pictutes re-
produced herein.

Farnborough 1959 RarpH L. ASPDEN
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CHAPTER ONE

THE DEVELOPMENT AND PURPOSE OF
ELECTRONIC FLASH PHOTOGRAPHY

REFERENCES to the electric spark are to be found in the records of
Hawksbee’s experiments on low-pressure phenomena, written in the
early part of the eighteenth century, and from that time until the present
day the study of the electric discharge through gases has continued; a
research extending over two hundred years but accelerated from time to
time as new and important scientific discoveries have been made. These
milestones of progress are not without interest.

The transient nature of the spark in air was recognized in the very early
days. Fox Talbot patented its application to instantaneous photography
in 1851V; the principle was used for taking pictures of bullets in flight by
Professor E. Mack at the University of Prague in 1881; and by Sir Charles
Vernon Boys'? in this country in 1893. Over a hundred years ago Fox
Talbot employed the high-voltage discharge as a light-source to photo-
graph a few square inches of rapidly-rotating newsprint—the first recorded
demonstration of high-speed photography.

Fundamentally the technique has not changed; the light required for
these early experiments was obtained by discharging a Leyden jar—an
early form of high-voltage capacitor. When electric energy stored in this
way is released suddenly across an air gap, the result is a noisy blue-white
spark, rich in actinic radiation: a very short-duration light pulse which has,
and will continue to have, important applications in specialized branches
of scientific photography. The amount of light provided by the spark in
air is inadequate for the illumination of extended objects, but if the open
gap is replaced by a glass or quartz tube containing a suitable gas at the
correct pressure, the capacitor discharge may be made to generate a brief
flash of light of very great intensity.

Experiments with discharge tubes were being conducted at the Royal
Institution in 1821, and the idea of discharging a capacitor through a tube
under reduced pressire is as old as photography. The high-speed flash
tube in a primitive form is therefore a very old device but the production
of the modern tube was delayed for a long period until many problems
associated with the development of gas-filled lamps for general lighting
purposes had been overcome.

It is probable that much of the enthusiasm of the early workers in this
field was due to the beauty of the phenomena which mav be produced so
readily by passing a high-voltage discharge through a partial vacuum.

(1]



DEVELOPMENT AND PURPOSE [Ch.1

Geissler made the complex and attractive tubes which bear his name for
Pliicker, who was engaged in investigating the phenomena in 1838, A
typical example, which was photographed in operation, is shown in Fig. 1.
Geissler tubes, often of the most intricate design, at first contained merely
air under reduced pressure. Subsequently various gases and vapours were
used to provide a range of colours which it would be difficult to surpass
today.

Such tubes, operating from a small spark coil, were for many years of
scientific interest only, and long development was necessary before Moore,
towards the end of the last century, succeeded in employing carbon dioxide
and nitrogen for commercial lighting purposes in America. Carbon
dioxide gives a soft white light approximating to daylight; nitrogen a
golden vellow. The large-diameter tubes used were often several hundred
feet in length, the sections actually being joined up by glass blowers
on the site where the lamp was erected. Afterwards the tube was pumped
and filled with gas to the required pressure.

The practical success of the Moore light was due to a very ingenious
valve which automatically admitted fresh gas into the tube to maintain the
pressure at its normal value. All the common gases—and no others were
available at this period—are chemically active and if any combination
with tube or electrode materials is possible the gas pressure may decrease
until the resistance is so high that the tube fails to function.

Moore’s system of replenishing the lost gas was one solution to the
problem. The next step forward followed the investigations on the con-
stituents of air by Raleigh, Ramsay and Travers, and resulted in the dis-
covery and isolation of the five noble gases—helium, neon, argon, krypton,
and xenon. These gases are all inert and will not combine chemically with
any other element; also, they are readily ionized and better conductors in
a discharge tube. The importance of gases with such desirable qualities
was quickly realized and experiments with them marked the beginning of
a new development in discharge-tube techniques.

By 1910, neon-filled tubes were in general use. The employment of
neon, also helium and argon, in lamps, advertising signs, and electronic
valves of various kinds, is now familiar to everyone. Argon is often em-
ployed as the filling in high-speed flash tubes, the other important gases
being krypton and xenon. These gases, which give a purple or blue light
under low currents are of little use for lighting purposes but under the
high current densities present in a flash discharge they become very effi-
cient. The radiation characteristics are changed completely, the pulse of
light being white and of great intensity. Krypton and xenon are the rarest
of the gases, being present in air in very small quantities indeed (krypton
0-000015 per cent. and xenon 0-000003 per cent.).

With increasing knowledge of fundamental discharge-tube processes,
modern high-vacuum techniques, new hard glasses, new glass and quartz

(2]



DEVELOPMENT AND PURPOSE

to metal seals, and the growing need in scientific research for new methods
of highespeed photography, the rebirth of the flash tube was inevitable.
The work of Professor Edgerton in the pre-war years®= led to the
development in America of the first commercial tubes, and 1939 saw the
publication of a magnificent series of high-speed flash pictures'® illus-
trating the possibilities of the new light-source in both single flash and
stroboscopic applications. _

A tube is said to be ‘strobed’ when it is flashed repetitively at short
intervals, the pulsing light being used either for visual observation of

F16. 1. A typical Geissler tube in operation.

(3]



DEVELOPMENT AND PURPOSE [Ch.1

mechanisms or to record photographically a sequence of pictures. With
few exceptions the tube is triggered by a high-voltage pulse initiated either
by contacts in the camera which synchronize the flash to the shutter open
position, or by external circuitry which will synchronize the light-pulse to
any given phase of an event.

The stored energy in a capacitor available for discharge through a flash
tube is proportional to the capacitance and the square of the terminal
voltage, and is given by the equation

E = CV2j2 (1.1)

where £ = the energy in joules (J) (= watt-seconds (W-sec)),
C = the capacitance in farads (F),
V' = the voltage on the capacitor.

Flash tubes are rated in joules for single discharges at intervals long
enough to prevent overheating. For strobing they are rated in watts mean
dissipation (the product of capacitor energy and flashing frequency) o1

W = En (1.2)

where W = power in watts (W),
E = the capacitor energy in joules (J),
n = the flashing frequency in cycles/second (c/sec).

Neglecting circuit losses the capacitor energy is discharged through the
tube to appear in the form of heat and light. Thermal losses are high. The
radiation component, which is useful, depends upon the gas content and
other factors. Spectral quality may closely resemble daylight, being ideal
for colour photography. On the other hand, the light may be rich in blue:
photographically very efficient but unsuitable for colour. Again, the light
quality depends upon the time taken to dissipate the stored energy. A
hundred watt-seconds (an average capacitor storage for a portable flash
unit) discharging at the rate of a hundred watts for one second would be
quite useless as a light-source. The flash tube, however, has a very low
impedance and 100 J of energy may readily be dissipated in one five-
thousandth of a second. For this short period the power level 1s 100 /0 -0002
or 500,000 W. Both peak current and light intensity during a flash dis-
charge are therefore extremely high.

Krypton was largely used as a filling in the early days because xenon,
which has a higher luminous efficiency, was difficult to procure. An in-
creased supply of this gas was made available during the war, however,
and in this period British lamp manufacturers and government establish-
ments developed a great variety of specialized tubes for research purposes.
One of the most important of these was the ‘Arditron’, an argon-filled
ultra-high-speed tube capable of producing flashes with an effective dura-
tion of one or two millionths of a second. This. the first of the micro-

[4]



DEVELOPMENT AND PURPOSE

second region tubes, was developed at the Armament Research Establish-
ment for ballistic photography. An early model is seen at (6) in Fig. 10
(page 24).

While experiments in this direction were taking place the United Stares
Air Force demanded an extremely high-power flash tube for night aerial
photographic reconnaissance, providing an amount of light sufficient to
take pictures from an altitude of at least 5,000 ft. At this period it was not
known whether the requirement could be met. Such a tube was produced,
however, together with the associated electrical gear, by Dr Edgerton and
his associates at the Massachusetts Institute of Technology, in the United:
States of America.

In the United Kingdom an equally powerful tube was developed for
the same purpose by Dr J. N. Aldington at the Siemens Lamp Research
Laboratory, to be followed by many special forms to meet specific techni-
cal requirements’-®. As a matter of interest, the first Siemens high-
power quartz tube produced is illustrated at (1) in Fig. 10. The develop-
ment of powerful aircraft installations presented many problems,1® a
very considerable amount of research and extznded night-flying tests being
necessary before the technique could be applied to operational use, but
before the end of hostilities electronic flash had been used successfully
on nearly all fronts.

The largest airborne unit produced, the American D.5, is shown in Fig.
2. The total weight is 3,700 Ib. Two flash tubes are employed in this
installation, each mounted in a farge reflector assembly shown at (4). The
tubes consist of 30 in. of 4 in. diameter quartz tubing coiled into a helix
and filled with xenon at a pressure of one-sixth of an atmosphere. The
6,000 microfarad (uF) capacitor bank (3) operates at 4,000 V, storing
48,000 J, and weighs one and a half tons. This is charged by the inverters
and rectifier unit shown at (1) and (2) and flashes may be repeated at inter-
vals of 15 sec. The tubes are fired by synchronizing contacts in the aerial
camera (5), the whole installation being operated from the remote control
box (6). _—

Under fivourable atmospheric conditions this big unit has taken
excellent pictures from altitudes in excess of 10,000 ft, using a lens
aperture of £ 2-5. A typical night air photograph is reproduced on page 7.

Such powerful equipment is not required in photographic aircraft
operating at lower altitudes and high speeds. These conditions require a
shorter flash and a smaller capacitor. A considerable amount of operational
work on anti-submarine missions was undertaken at a height of a few
hundred feet with single-lamp units very much smaller than the D 5.

The high-energy flash tube has numerous applications in the scientific
and commercial field. Powerful installations have been used in public
buildings for the recording, especially in colour, of important events.
Smaller units are manufactured to give a wide range of light energies and

(5]



