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This is a comprehensive discussion of complexity as it arises in physical, chemical, and
biological systems, as well as in mathematical models of nature. Common features of
these apparently unrelated fields are emphasised and incorporated into a uniform
mathematical description, with the support of a large number of detailed examples and
illustrations.

The quantitative study of complexity is a rapidly developing subject with special
impact in the fields of physics, mathematics, information science, and biology. Because
of the variety of the approaches, no comprehensive discussion has previously been
attempted. The aim of this book is to illustrate the ways in which complexity manifests
itself and to introduce a sequence of increasingly sharp mathematical methods for the
classification of complex behaviour. The authors offer a systematic, critical, ordering of
traditional and novel complexity measures, relating them to well-established physical
theories, such as statistical mechanics and ergodic theory, and to mathematical models,
such as measure-preserving transformations and discrete automata. A large number of
fully worked-out examples with new, unpublished results is presented. This study
provides a classification of patterns of different origin and spccifies the conditions under
which various forms of complexity can arise and evolve. An ¢cven more important result
than the definition of explicit complexity indicators is, however, the establishment of
general criteria for the identification of anologies among seemingly unrelated fields and
for the inference of effective mathematical models.

This book will be of interest to graduate students and rescarchers in physics
(nonlinear dynamics, fluid dynamics, solid-state, cellular automata, stochastic processes,
statistical mechanics and thermodynamics), mathematics (dynamical systems, ergodic
and probability theory), information and computer science (coding, information theory
and algorithmic complexity), electrical engineering and theorctical biology.




Preface

The intuitive notion of complexity is well expressed by the usual dictionary
definition: “a complex object is an arrangement of parts, so intricate as to be
hard to understand or deal with” (Webster, 1986). A scientist, when confronted
with a complex problem, feels a sensation of distress that is often not attributable
to a definite cause: it is commonly associated with the inability to discriminate
the fundamental constituents of the system or to describe their interrelations in
a concise way. The behaviour is so involved that any specifically designed finite
model eventually departs from the observation, either when time proceeds or
when the spatial resolution is sharpened. This elusiveness is the main hindrance
to the formulation of a “theory of complexity”, in spite of the generality of the
phenomenon.

The problem of characterizing complexity in a quantitative way is a vast
and rapidly developing subject. Although various interpretations of the term
have been advanced in different disciplines, no comprehensive discussion has
vet been attempted. The fields in which most efforts have been originally
concentrated are automata and information theories and computer science.
More recently, research in this topic has received considerable impulse in the
physics community, especially in connection with the study of phase transitions
and chaotic dynamics. Further interest has been raised by the discovery of
“glassy” behaviour and by the construction of the first mathematical models in
evolutionary biology and neuroscience.

The aim of this book is to illustrate the ways in which complexity manifests
itself in nature and to guide the reader through a sequence of increasingly sharp
mathematical methods for the classification of complex behaviour. We propose a
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Preface

systematic, critical, ordering of the available complexity measures, relating them
to well-established physical theories, such as statistical mechanics and ergodic
theory, and to mathematical models, such as measure-preserving transforma-
tions and discrete automata. The object (usually a pattern generated by some
unknown rule) is investigated in the infinite-time or in the infinite-resolution
limit, or in both, as appropriate. The difficulty of describing or reproducing its
scaling properties shall be interpreted as an evidence of complexity.

In Chapter 1, we introduce the scientific background in which the concept of
complexity arises, mentioning physical systems and models which will be more
thoroughly iliustrated in the fol]owing two chapters. Our survey is intended
to discriminate those phenomena that are actually relevant to complexity. In
Chapter 4, we review the fundamentals of symbolic dynamics, the most con-
venient framework to achieve a common treatment of otherwise heterogeneous
systems. Chapters 5,6, and 7 deal with probability, ergodic theory, informa-
tion, thermodynamics, and automata theory. These fields form the basis for
the discussion of complexity. Although the concepts and quantities they deal
with may not all look modern or fashionable, they do provide, in a broad
sense, a classification of complexity. We stress the complementarity of different
indicators (power spectrum, degree of mixing, entropy, thermodynamic func-
tions, automaton representation of a language) in the specification of a complex
system. Physical and mathematical aspects of this analysis are illustrated with
several paradigmatic examples, used throughout the book to compare various
complexity measures with each other. Chapters 5,6, and 7 are therefore es-
sential for the understanding of Chapter 8, where we introduce the principal
“classical” definitions of complexity and some of the most recent ones. We show
that only a few of them actually bring a novel and useful contribution to the
characterization of complexity. It will also appear that these definitions cannot
be ordered by elementary inclusion relations, in such a way that simplicity of an
object according to the most “liberal” measure implies simplicity according to
the strictest one and vice versa for a complex object. In many cases, the results
will take the form of existence or non-existence statements rather than being
expressed by numbers or functions.

Chapter 9 deals with complexity measures that explicitly refer to a hierarchical
organization of the dynamical rules underlying symbolic patterns produced by
unknown systems. In this context, complexity is related to a particularly
strong condition: namely, the lack of convergence of a hierarchical approach.
In Chapter 10, the main results presented in this book are summarized and
directions for future research are pointed out.

The study of complexity is a new subject in so far as it is just beginning to
encompass different fields of research. Therefore, we have necessarily neglected
a great number of interesting topics and mentioned others only in passing (for
all these, we refer the reader to the suggested bibliography).
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We have tried to give all necessary definitions in as rigorous a way as allowed,
without sacrificing clarity and readability. In the effort to be concise, we have
concentrated on providing a guide through the areas of research that are essential
for the understanding of the novel subjects treated in this book. We hope that the
uniformity of notation and the relegation of technical mathematical notions to
the appendices will help the reader follow the main course of the discussion with-
out much need for consulting standard textbooks or the original research papers.

Our primary concern has been to stimulate the reader to explore the rich and
beautiful world of complexity, to create and work out examples and, perhaps,
to propose his/her own complexity measure.

We apologize for any errors and passages of weak or unclear exposition, as
well as for misjudgment about the importance of experiments or mathematical
tools for the characterization of complexity. We shall be happy to receive
comments from all who care to note them.

This book has been written on the invitation of Simon Capelin, of Cam-
bridge University Press, whose patience and constant encouragement we wish to
acknowledge in a particular way. We received help in various forms from sev-
eral colleagues. Suggestions for the improvement of the manuscript have been
made by F. T. Arecchi, S. Ciliberto, P. Grassberger, P. Lio, R. Livi, S. Ruffo,
and P. Talkner. Articles on subjects related to the arguments treated in the
book have been provided by A. Arneodo, H. Atlan, M. Casartelli, G. Chaitin,
A. De Luca, B. Derrida, J. D. Farmer, H. Fujisaka, J. P. Gollub, B. Goodwin,
C. Grebogi, S. GroBmann, H. A. Gutowitz, B. A. Huberman, R. Landauer,
P. Meakin, S. C. Miiller, A. S. Pikovsky, D. Ruelle, K. R. Sreenivasan, V. Stein-
berg, H. L. Swinney, T. Tél, and D. A. Weitz. Pictures contributed by G. Broggi,
J. P. Gollub, S. C. Miiller, E. Pampaloni, S. Residori, K. R. Sreenivasan, and
D. A. Weitz have been included; others, although equally interesting, could
not be accommodated in the available space. We have greatly benefitted from
a long-time collaboration with F. T. Arecchi (R. B. and A. P.) and E. Brun
(R. B.), as well as from discussions with D. Auerbach, C. Beck, G. Broggi,
J. P. Crutchfield, P. Cvitanovic, M. Droz, G. Eilenberger, M. J. Feigenbaum,
M. Finardi, Z. Kovacs, G. Mantica, G. Parisi, C. Perez-Garcia, A. S. Pikovsky,
L. Procaccia, G. P. Puccioni, M. Rasetti, P. Talkner, and C. Tresser. During
the preparation of the manuscript, we enjoyed full support from our home
institutions, the Paul Scherrer Institute (Villigen) and the Istituto Nazionale di
Ottica (Florence). Part of the work has been carried out at the Institute for
Scientific Interchange in Turin, where we have been invited by M. Rasetti. A. P.
is grateful to I. Becchi for the access to the facilities of the PIN Center of the
Engineering Department in Prato; R. B. wishes to thank the warm hospitality
of A. and G. Pardi during his visits to Florence and acknowledges support
by the Laboratorio FORUM-INFM within its research program on Nonlinear
Physics.
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Phenomenology and models







Introduction

The scientific basis of the discussion about complexity is first exposed in general
terms, with emphasis on the physical motivation for rcsearch on this topic.
The genesis of the “classical” notion of complexity, born in the context of the
early computer science, is then briefly reviewed with reference to the physical
point of view. Finally, different methodological questions arising in the practical
realization of effective complexity indicators are illustrated.

11 Statement of the problem

The success of modern science is the success of the experimental method.
Measurements have reached an extreme accuracy and reproducibility, especially
in some fields, thanks to the possibility of conducting experiments under well
controlled conditions. Accordingly, the inferred physical laws have been designed
so as to yield nonambiguous predictions. Whenever substantial disagreement
is found between theory and experiment, this is attributed either to unforeseen
external forces or to an incomplete knowledge of the state of the system. In the
latter case, the procedure so far has followed a reductionist approach: the system
has been observed with an increased resolution in the search for its “elementary”
constituents. Matter has been split into molecules, atoms, nucleons, quarks, thus
reducing reality to the assembly of a huge number of bricks, mediated by only"
three fundamental forces: nuclear, electro-weak and gravitational interactions.
The discovery that everything can be traced back to such a small number of
different types of particles and dynamical laws is certainly gratifying. Can one
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thereby say, however, that one understands the origin of earthquakes, weather
variations, the growing of trees, the evolution of life? Well, in principle, yes.
One has just to fix the appropriate initial conditions for each of the elementary
particles and insert them into the dynamical equations to determine the solution!.
Without the need of giving realistic numbers, this undertaking evidently appears
utterly vain, at least because of the immense size of the problem. An even more
fundamental objection to this attitude is that a real understanding implies the
achievement of a synthesis from the observed data, with the elimination of
information about variables that are irrelevant for the “sufficient” description
of the phenomenon. For example, the equilibrium state of a gas is accurately
specified by the values of only three macroscopic observables (pressure, volume
and temperature), linked by a closed equation. The gas is viewed as a collection
of essentially independent subregions, where the “internal” degrees of freedom
can be safely neglected. The change of descriptive level, from the microscopic
to the macroscopic, allows recognition of the inherent simplicity of this system.

This extreme synthesis is no longer possible when it is necessary to study
motion at a mesoscopic scale as determined, e.g., by an impurity. In fact, the
trajectory of a Brownian particle (e.g., a pollen grain) in a fluid can be exactly
accounted for only with the knowledge of the forces exerted by the surrounding
molecules. Although the problem is once more intractable, in the sense men-
tioned above, a partial resolution in this case has been found in the passing
from the description of single items to that of ensembles: instead of tracing an
individual orbit, one evaluates the probability for the Brownian particle to be in
a given state, which is equivalent to considering a family of orbits with the same
initial conditions but experiencing different microscopic configurations of the
fluid. Although less detailed, this new level of description in principle involves
evaluation and manipulation of a much larger amount of information: namely,
the time evolution of a continuous set of initial conditions. This difficulty has
been overcome in equilibrium statistical mechanics by postulating the equiprob-
ability of the microscopic states. This constitutes a powerful short-cut towards
a compact model for Brownian motion in which knowledge of the macroscopic
variables again suffices. The fluid is still at equilibrium but the Brownian parti-
cle constitutes an open subsystem that evolves in an erratic way, being subject
to random fluctuations on one side and undergoing frictional damping on the
other. In addition to this, deterministic drift may be present.

These examples introduce two fundamental problems concerning physical
modelling: the practical feasibility of predictions, given the dynamical rules,
and the relevance of a minute compilation of the system’s features. The former
question entails both the inanity of the effort of following the motion of a
huge number of particles and the impossibility of keeping the errors under

1. Excluding the possible existence of other unknown forces.
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control. In fact, as the study of nonlinear systems has revealed, arbitrarily
small uncertainties about the initial conditions are exponentially amplified in
time in the presence of deterministic chaos (as in the case of a fluid). This
phenomenon may already occur in a system specified by three variables only.
The resulting limitation on the power of predictions is not to be attributed to the
inability of the observer but arises from an intrinsic property of the system. The
second observation points out that the elimination of the particles’ coordinates
in favour of a few macroscopic variables does not imply, in many cases, a
reduced ability to perform predictions for quantities of interest. The success
of statistical mechanics in explaining, e.g., specific heats, electric conductivity,
and magnetic susceptibility demonstrates the significance of this approach. As
long as it affects just irrelevant degrees of freedom, chaotic motion does not
downgrade coarse representations of the dynamics but may even accelerate their
convergence.

Nature provides plenty of patterns in which coherent macroscopic structures
develop at various scales and do not exhibit elementary interconnections: for
instance, the often cited biological organisms or, more simply, vortices in the
atmosphere or geological formations (sand dunes, rocks of volcanic origin).
They immediately suggest seeking a compact description of the spatio-temporal
dynamics based on the relationships among macroscopic elements rather than

lingering on their inner structure. In a word, it is useful and possible to condense’

information. This is not a mere technical stratagem to cope with a plethora of
distinct unrelated patterns. On the contrary, similar structures evidently arise
in different contexts, which indicates that universal rules are possibly hidden
behind the evolution of the diverse systems that one tries to comprehend.
Hexagonal patterns are found in fluid dynamics, as well as in the spatial profile
of the electric field of laser sources. Vortices naturally arise in turbulent fluids,
chemically interacting systems, and toy models such as cellular automata.
Systems with a few levels of coherent formation, while interesting and worth
studying, are incomparably simpler than systems characterized by a hierar-
chy of structures over a range of scales. The most striking evidence of this
phenomenon comes from the ubiquity of fractals (Mandelbrot, 1982), objects
exhibiting nearly scale-invariant geometrical features which may be nowhere
differentiable. A pictorial representation of this can be obtained by zooming in
on, e.g., a piece of a rugged coastline: tinier and tinier bays and peninsulae are
revealed when the resolution is increased, while gross features are progressively
smeared out. Nonetheless, one perceives an almost invariant structure during
the magnification process. Among the several examples of fractals discussed in
Mandelbrot (1982), we recall cauliflowers, clouds, foams, galaxies, lungs, pumice-
stone, sponges, trees. If the coarse-graining is interpreted as a change in the level
of description, an exact scale-invariance, whenever it is observed, testifies to the
simplicity of the system. Although such self-similar objects can be assimilated
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to translationally invariant patterns, by interchanging the operations of shift
and magnification, there is a fundamental difference. The dynamical rules that
support a given pattern are, in general, invariant under some symmetry group
(e.g., translation). Hence, it is not surprising that the pattern exhibits the same
symmetry (e.g., periodicity, as in a crystal). This is not the case of fractals, the
“symmetry” of which is not built in the generation mechanism. The puzzling
issue is that the same physical laws account for both types of behaviour as well
as for the astounding variety of forms that we habitually experience.

A hierarchical organization in nested subdomains is particularly evident in
the vicinity of a (continuous) phase transition, as occurring, e.g., in magnetic
materials or superconductors. The coarse-graining procedure (Kadanoff, 1966)
has led to the formulation of the renormalization-group theory (Wilson, 1971)
which, in spite of its conceptual simplicity, has explained the observed phe-
nomenology with high precision. Phase transitions, however, occur at special
parameter values (e.g., melting points) whereas hierarchical structures appear
to be a much more general characteristic of nature. As an example, we cite
1/f noise, which is the result of signals showing self-similar properties upon
rescaling of the time axis. This phenomenon, although one of the commonest
in nature, has so far withstood any global theoretical approach. Many other
systems exhibit various levels of organization which are neither too strict, as
in a crystal, nor too loose, as in a gas, nor are they amenable to any known
theoretical modelling. The difficulty of obtaining a concise description may arise
from “fuzziness” of the subsystems, which prevents a univocal separation of
scales, or from substantial differences in the interactions at different levels of
modelling,

Summarizing this introductory section, we remark that the concept of com-
plexity is closely related to that of understanding, in so far as the latter is based
upon the accuracy of model descriptions of the system obtained using a con-
densed information about it. Hence, a “theory of complexity” could be viewed
as a theory of modelling, encompassing various reduction schemes (elimination
or aggregation of variables, separation of weak from strong couplings, averag-
ing over subsystems), evaluating their efficiency and, possibly, suggesting novel
representations of natural phenomena. It must provide, at the same time, a def-
inition of complexity and a set of tools for analysing it: that is, a system is not
complex by some abstract criterion but because it is intrinsically hard to model,
no matter which mathematical means are used. When defining complexity, three
fundamental points ought to be considered (Badii, 1992):

1. Understanding implies the presence of a subject having the task of
describing the object, usually by means of model predictions. Hence,
complexity is a “function” of both the subject and the object.

2. The object, or a suitable representation of it, must be conveniently
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divided into parts which, in turn, may be further split into subelements,
thus yielding a hierarchy. Notice that the hierarchy need not be manifest
in the object but may arise in the construction of a1 model. Hence, the
presence of an actual hierarchical structure is not in infallible indicator
of complexity.

3. Having individuated a hierarchical encoding of the object, the subject is
faced with the problem of studying the interactions among the subsystems
and of incorporating them into a model. Consideration of the
interactions at different levels of resolution brings in the concept of
scaling. Does the increased resolution eventually lead to a stable picture
of the interactions or do they escape any recognizable plan? And if so,
can a different model reveal a simpler underlying scheme?

12 Historical perspective

Although the inference of concise models is the primary aim of all science, the
first formalization of this problem is found in discrete mathematics. The object
is represented as a sequence of integers which the investigator tries to reproduce
exactly by detecting its internal rules and incorporating them into the model,
also a sequence of integers. The procedure is successful if a size reduction is
obtained. For example, a periodic sequence, such as 011011011..., is readily
specified by the “unit cell” (011 in this case) and by the number of repetitions.

This approach has given rise to two disciplines: computer science and math-
ematical logic. In the former, the model is a computer program and the object
sequence is its output. In the latter, the model consists of the set of rules of a
formal system (e.g., the procedure to extract square roots) and the object is any
valid statement within that system (as, e.g,, \/4 = 2). Compression means that
knowledge of the whole formal system permits the deduction of all theorems
automatically, without any external information. In this view, the complexity
of symbol strings is called algorithmic and is defined as the size of the minimal
program which is able to reproduce the input string (Solomonoff, 1964; Kol-
mogorov 1965; Chaitin 1966). As a consequence, completely random objects
have maximal complexity because no compression is possible for them. This
characterization of clearly structureless patterns makes the definition unsuitable
in a physical context. Actually, algorithmic complexity coincides, in most cases,
with entropy and is therefore a measure of disorder.

A detailed analysis allowed the models to be regrouped in computational
classes with qualitatively and quantitatively different ability in the manipula-
tion of symbolic objects. The main four classes form a hierarchy, named after
Chomsky (1956, 1959), which culminates in the Turing machine (Turing, 1936),
the prototype of a universal computer: that is, of an automaton which is able
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