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CHAPTER ONE
FUNDAMENTALS

1. DEFINITION OF A FLUID

The defining property of a fluid is that it cannot withstand shearing forces,
however small, without sustained motion. Since both gases and liquids
have this property, they both are fluids and subject to a unified treatment
as far as their macroscopic meotion is concerned. Fluids may, of course,
be in a state of equilibrium under the action of surface forces applied
normal to their boundary. Indeed, the entire subject of hydrostatics
deals with fluids in such a state.

In this book, only fluids which have no privileged directions arc
considered. Such fluids are called isorropic.

2. VELOCITIES

If matter were infinitely divisible, it would be meaningful to define the
velocity of a material point as its time rate of displacement; but matter
in general and fluids in particular are not infinitely divisible. Strictly



2 FUNDAMENTALS

speaking, we can comprehend the velocity only of a molecule, an atom,
a nucleus, or an electron; the “velocity’” of a geometrical point in the
empty space between the electrons and the nucleus in an atom, between
atom and atom in a molecule, or between the molecules themselves is
physically meaningless.

It would be a hopeless situation indeed if in order to study fluid
motion we had to deal with the molecules directly. Fortunately, although
there is much empty space between molecules, the number of molecules
per unit volume of a liquid or of a gas under ordinary conditions is
extremely great. A mole of gas has approximately 6.024 x 10% molecules
(Loschmidt number) and under normal conditions occupies a volume of
22.4 liters, so that 1 cm3 contains 2.687 x 10'® molecules. The number
of molecules in 1 x3 (1 4 = 1/1,000 mm) is about 2.687 x 107. For such
a small volume this is an exceedingly great number. Thus gases under
ordinary conditions—and, a fortiori, liquids—can be considered for all
practical purposes to be continuous. The velocity of a fluid particle of
a very small volume (1 u?, say) can be defined to be the average of the
momenta of the vast number of molecules contained therein divided by
the total mass of the particle. Since the volume of this particle is very
small, the velocity so defined can be considered to be the velocity of the
material point situated at the center of mass of the fluid particle, as if the
fluid were indefinitely divisible. This approach is valid unless a highly
rarefied gas is being studied.

According to this definition, the velocity v of a fluid particle con-
sisting of N; molecules (i = 1,2, ..., n) of the ith substance present in
the particle is

A,

=1

in which m; is the molecular weight of the ith substance and v(/,j) is the
velocity of the jth of the N; molecules of molecular weight m,.
The velocity of a fluid particle can also be defined as

v

S v
— i=1 2
V=5, 2)
in which N=3N,

f=1

and v(j) is the velocity of the jth of the N molecules of the » substances
taken together without regard to the kind of molecules. The particle
velocity defined by (1) is a mean velocity of the molecules weighted by
the molecular weights, whereas that defined by (2) is an unweighted mean

B .

=
s it b B
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velocity. In Sec. 5, when the equation of continuity is discussed, it will
be evident that the two definitions do not correspond to the same form of
the equation of continuity if the fluid is a mixture. In Chap. 8, the
matter will be further discussed in connection with the diffusion equation.
In order to facilitate later discussions, Eq. (1) will be put into a slightly
more convenient form. If for each constituent of a fluid mixture the
mean velocity is defined to be '

o R p
v(i) = El N
Eq. (1) can be written as
- i Nmv(i)
v=_8 (1a)
2 Nm,

i=1

Whatever the volume of the fluid particle, the density ‘p; of the ith con-
stituent must be proportional to N;m;. Thus (1) can be written as

3

. p:¥(i)
V==, (18)
P
in which p is the total density, or
P = Z Pi- 3)

il

The full meaning of the definition of the velocity of a particle must
be understood. The average of the momenta of the molecules contained
in a fluid particle may be zero, even though these molecules are moving
with great speeds individually. In fact, it is zero if the molecules are in
completely random motion. The average of the molecular momenta is
therefore a measure of the ordered part of molecular motion. The
intensity of random molecular motion is manifested in a property called
temperature.

If the fluid is considered as a continuum, the velocity at any point
in the fluid is postulated as a function of time r and the coordinates
x; (=1, 2, 3) of the point. It is evident that without some modification
the continuum concept is incompatible with the concept of diffusion;
this basic incompatibility, however, presents no insurmountable
difficulties.

Other properties, kinematic or dynamic, can also be defined either
from the molecular or the continuum point of view. In this book a
fluid will be considered as a continuum, although wherever mass diffusion
is involved, the appropriateness of the continuum approach must be
judged in the light of molecular considerations.
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3. ACCELERATION

To find the acceleration of a particle, we must see how its velocity changes
with time and therefore must keep track of its identity—at least for a
short interval of time. There are two different descriptions of fluid
motion. In the one, the coordinates of fluid particles are considered to
be a function of time and of their permanent identifications, such as their
initial coordinates. In the other, the velocities and other properties of
fluid particles are considered to be functions of time and fixed spatial
coordinates independent of time. The former is called the material or
Lagrangian description, after Joseph Louis Lagrange (1736-1813), and the
latter the spatial or Eulerian description, after Leonard Euler (1707-1783),
although historians argue that both descriptions should be attributed to
Euler.

With the Lagrangian description, the Cartesian coordinates (¢;,¢5,¢3)
of the position of a fluid particle at the initial time serve to identify the
particle. The subsequent (Cartesian) coordinates of the position of the
same particle will be denoted by (X, X;,X5). These coordinates are
functions of ¢; and time ¢. For a definite particle the identifying coordi-
nates are fixed, and the coordinates X, are functions of time alone. If
the coordinates are Cartesian, the velocity components are

ax;
U, = — , i=1,2,3,
ot
and the acceleration components are simply
X,
(li:—at—z, l:1,2,3.

With the Eulerian description, the velocity and the acceleration of
a fluid in motion are considered to be functions of time and position.
The Cartesian coordinates (x;,x,,¥;) describing the position are now
independent of time. However. to find the velocity or the acceleration
we still have to follow the particle for a short interval of time /. During
this interval, the coordinates of the particle followed have changed by
the amounts dX,. The corresponding change of the velocity consists of
two parts: the first part is a local change with time, and the second part
is a change due to the change of position of the particle. If the velocity
component in the direction of x, is again denoted by u,, then since u, is
a function of 7 and x,

) ou.
du; = ?—u—l dr + —”’ dy;

or ox

J
for all increments df and dx;. The physical process of following the
particles corresponds to the identification of dx; with the particle

PR Ty B



ACCELERATION 5

displacements dX;. Thus, when a particle is followed,

au, Ou, .
du; ad—}-a dXx;, i=1,2,3,

in which,”4s in the preceding equation, the last term stands for the sum
of three terms, with j ranging over 1, 2, and 3. This summation conven-
tion will always be used unless otherwise stated. If the coordinates are
Cartesian, the displacement components are

dX,-=u,-dt, i= 1, 2, 3.
Dividing (3) by dt and taking the limit, we have

du, ou,

; = = - i=1,2,3. 4
a: at + u} axl ? L H ( )
The operator
D 0o d
YT “ Bx, ()

stands for what is commonly called the substantial differentiation, which
means differentiation with respect to time by following the substance.
From (5) it follows that
Du;

-, i=1,2,3. 4a
Dt (4a)

A ﬂow is steady if all dependent variables, such as velocity, accelera-
tion, density, temperature, and pressure, are independent of time at any
fixed point.

a, =

3.1, The Proper Definition of Acceleration When Diffusion Is Present

In employing the continuum approach special care must be taken when
diffusion is present, as can be illustrated by considering the force acting
on a fluid particle of volume V. Suppose that there are two gases, one
of molecular weight m; and the other of molecular weight m,, and that
there are N, molecules of the first gas and N, of the second gas in AV.
The density in the cgs system is

CNM, 4 NoM,
AV

in which M, and M, are the molecular masses of the gases, which are
related to m, and m, by

in glem?, (6)

_my
- L ’ 2 L >
L being the Loschmidt number, i.e., the number of molecules in m g of a

gas of molecular weight m. Now, because of diffusion, the two gases
in the particle do not have the same mean velocity or acceleration,
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If the acceleration of the particle is defined by a formula similar to
(2), i.e., as the unweighted mean of the accelerations of all the molecules
in the particle of volume AV, again a;p AV will not give the components
of the net force acting on the particle. Only if a (or g;) is defined by a
formula like (14), i.e., as a mean acceleration weighted by the density,
will it be obvious that ap AV is the net force acting on the particle.
Fortunately, the differences in accelerations (or velocities) of the various
gas components in a mixture are usually small compared with the accelera-
tion of any one gas or with the force acting on the entire fluid particle.
Hence the error caused by using an inadequately defined acceleration to
compute the net force on a particle of a gas mixture is small. The same
is true of liquids. But even the conceptual difficulty disappears if there
is only one substance or if the mixture is homogeneous and the flow is
steady, so that there is no net diffusion.

4. PATH LINES AND STREAMLINES

The coordinates X; used in the Lagrangian description are functions of
the identifying coordinates ¢, and ¢. For fixed c;, we have

Xle‘z(t)s l:1, 2’3,

as the parametric equations describing the locus of the particle under
consideration. This locus is called a path line.

Although the Eulerian description is less convenient for describing
path lines, it is superior to the Lagrangian method for describing stream-
lines, or lines to which the velocity vectors of the fluid are tangent at a
particular instant. The differential equations for such lines are, in Car-
tesian coordinates,

dx; dx,

) Uy uy

dx,

()

As mentioned before. a flow is called steady if at any fixed point in the
fluid the velocity does not change with time. For steady flows path
lines are coincident with streamlines, for when a particle reaches the
position of its predecessor on a streamline, by dint of the steadiness of
the motion it has the same velocity as its predecessor and therefore goes
the way its predecessor went, and so on. But if the flow is unsteady, path
lines and streamlines may (though not necessarily) differ. A simple case
of unsteady flow in which path lines and streamlines are coincident is
rectilinear paraliel flow with a velocity varying with time.

The streamlines passing through a closed curve which does not lie
on a surface generated by streamlines form a tubular surface. The fluid
contained in such a surface is called a stream tube.
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FIGURE |. DEFINITION SKETCH FOR GREEN’S
THEOREM.

5. CONTINUITY
]

Since the principle of mass conservation must not be violated, the velocity
distribution in a fluid in motion must satisfy a certain condition.
Obviously, since mass is involved, the density (mass per unit volume) of
the fluid p must be considered. If S is an arbitrary fixed surface enclos-
ing a fluid volume ¥ and u, is the velocity along the normal to S drawn
into V, the net amount of mass flowing into ¥ per unit time is

f pu, ds.

s

This must be equal to the rate at which the mass in ¥ is increasing. Thus
0
= | pdV =] pu,ds. (8)
at Jy S

Equation (8) is an integral equation of continuity and can be reduced
to a differential form. Green’s theorem states that for any three singie-
valued and differentiable functions (U,,U,,U,) in Cartesian coordinates,

oU,;
f LU dS — — | iy, 9)
s v Ox,

in which the /’s are the direction cosines of the normal to S drawn into
V (Fig. 1). Taking U; — pu;, we have

~

J pu, dS :f Lpu, dS = —
s 8

From (8) and (10) it follows that

dp a(P”-‘):l .

9(puy)
Vv ax;

dv. (10)




