CONTENTS

PREFACE
NOTATION
1. CLASSIFICATION OF NON-NEWTONIAN FLUIDS

I.1

1.2

1.3

1.4
1.5

GENERAL CONSIDERATIONS AND DEFINITIONS
(a) Viscosity of Newtonian fluids
(b) Non-Newtonian fluids

TIME-INDEPENDENT NON-NEWTONIAN FLUIDS
(a) Bingham plastics

(b) Pseudoplastics

(c) Dilatant fluids

TIME-DEPENDENT NON-NEWTONIAN FLUIDS

(a) Thixotropic fluids—Breakdown of structure by shear

(b) Rheopectic fluids—Formation of structure by shear

(c) Relation between time-dependent and time-independent
fluids

VISCOELASTIC FLUIDS

MECHANICAL ANALOGIES TO VISCOELASTIC FLUIDS

(a) Voigt body

(b) Maxwell body

(c) Extensions of the Simple Voigt and Maxwell bodies

(d) The generalized Voigt body

(e) The generalized Maxwell body

(f) Relationships between models and creep and relaxation
functions

(g) Example on the use of models to describe a real fluid

2. EXPERIMENTAL CHARACTERIZATION OF NON-
NEWTONIAN FLUIDS

2.1

METHODS AVAILABLE FOR THE CHARACTERIZATION OF TIME-
INDEPENDENT FLUIDS

2.2 TIME-INDEPENDENT FLUIDS IN ROTATIONAL INSTRUMENTS

2.3

(a) Coaxial cylinder viscometers
(b) Rotating bob in an infinite fluid
(c) The cone and plate viscometer

TIME-INDEPENDENT FLUIDS IN CAPILLARY TUBE VISCOMETERS

v

11521

Page
ix

X1

[0 S IV S B N

OO N

10

11
12
13
14
14

15

17
17

20

21
21
26
26

28



vi

CONTENTS
2.4 ENGINEERING CLASSIFICATION FROM TUBE VISCOMETER DATA

2.5 METHODS AVAILABLE FOR THE CHARACTERIZATION OF TIME-
DEPENDENT FLUIDS
(a) Capillary tube viscometers
(b) Rotational viscometers

2.6 EXPERIMENTAL CHARACTERIZATION OF VISCOELASTIC MATERIALS

2.7 TRANSIENT EXPERIMENTS—STEP RESPONSE
(a) Strain retardation or creep experiments
(b) Stress relaxation function

2.8 DYNAMIC EXPERIMENTS—FREQUENCY RESPONSE
2.9 DYNAMIC RESPONSE OF THE VOIGT AND MAXWELL BODIES

2.10 EXPERIMENTAL TECHNIQUES OF FREQUENCY RESPONSE ANALYSIS
(a) Inertia of sample insignificant
(b) Inertia of sample significant

2.11 ANALYSIS OF EXPERIMENTAL DATA FOR VISCOELASTIC SYSTEMS
(a) Determination of G(A).
(6) Determination of J(A)
(¢) Higher order approximations for G(A) and J(})

2.12 EXPERIMENTAL CHARACTERIZATION OF VISCOELASTIC MATERIALS
BY MEASUREMENT OF NORMAL STRESS

FLOW OF NON-NEWTONIAN FLUIDS IN PIPES AND
CHANNELS

3.1 THROUGHPUT-PRESSURE DROP RELATIONSHIPS FOR LAMINAR FLOW
IN CIRCULAR PIPES
(a) Newtonian fluid
(b) Bingham plastic
(¢) Power law fluid
(d) Other empirical flow curves
(e) General methods applicable to all fluids

3.2 VELOCITY PROFILES IN LAMINAR FLOW

3.3 TURBULENT FLOW OF TIME-INDEPENDENT FLUIDS IN CIRCULAR

PIPES

(a) Review of early work

(b) Theoretical correlation of turbulent friction factors for
smooth pipes

(c) Turbulent velocity profiles in smooth pipes

(d) The velocity profile and resistance formula for turbulent
flow in rough pipes



CONTENTS

3.4 CRITERIA FOR THE ONSET OF TURBULENCE FOR NON-NEWTONIAN
FLUID SYSTEMS

3.5 ENTRANCE LENGTHS AND EXPANSION AND CONTRACTION LOSSES
(a) Entrance lengths in laminar flow
(b) Expansion losses in laminar flow
(¢) Contraction losses

3.6 LAMINAR AXIAL FLOW OF A NON-NEWTONIAN FLUID IN AN
ANNULUS
(a) Basic equations
(b) Solution for a Bingham plastic fluid
(c) Solution for a power law fluid

3.7 EXTRUSION OF POLYMER MELTS
(a) Newtonian fluids
(b) Fluids obeying the Rabinowitsch equation
(¢) Power law fluid
(d) Arbitrary fluid properties

3.8 ROLLING OF PLASTICS

4, HEAT TRANSFER CHARACTERISTICS OF NON-
NEWTONIAN FLUIDS

4.1 HEAT TRANSFER IN LAMINAR FLOW IN A PIPE

(a) Solution for piston flow

(b) Solution for fully developed velocity profile for Newtonian
fluids

(c) Solution for fully developed velocity profile for a power
law fluid

(d) Extension of the Leveque approximation to non-Newtonian
systems

(e) Temperature and velocity profiles in non-isothermal flow

4.2 HEAT TRANSFER WITH TURBULENT FLOW IN A PIPE
(a) Review of Newtonian correlations
(b) Heat transfer to non-Newtonian fluids

4.3 HEAT TRANSFER AND SKIN FRICTION
(a) Reynolds analogy
(b) Taylor-Prandt! analogy
(¢) Analogies at high Prandtl numbers and extensions to non-
Newtonian systems

vii

71

72
72
74
76

77
78
78

86
87
89
91
91

92

96
98

100
101

102
104

105
105
105

108
108
110

110

5. MIXING CHARACTERISTICS OF NON-NEWTONIAN FLUIDS

5.1 REVIEW OF MIXING OF NEWTONIAN FLUIDS
(a) Power requirements for mixing of Newtonian fluids
(b) Extrapolation of mixer performance for Newtonian fluids

5.2 POWER REQUIREMENTS FOR MIXING OF NON-NEWTONIAN FLUIDS

113
113
114

116



viii CONTENTS
6. VISCOMETRIC MEASUREMENTS AND APPARATUS
6.1 CAPILLARY TUBE VISCOMETERS

6.2 ROTATIONAL INSTRUMENTS
(a) The Brookfield Synchro-lectric viscometer
(b) The Ferranti-Shirley cone and plate viscometer
(c) The Roberts-Weissenberg Rheogoniometer

APPENDIX
REFERENCES
INDEX

._.
(3]
<

et it
ST NI NS )
O\ o 1N 1

Ined
[oe}

134
137



CHAPTER 1

CLASSIFICATION OF NON-NEWTONIAN FLUIDS

1.1 GENERAL CONSIDERATIONS AND DEFINITIONS

(a) Viscosity of Newtonian Fluids
Consider a thin layer of fluid between two parallel planes a distance dy
apart as in Fig. 1.
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FiG. 1.

One plate is fixed and a shearing force F is applied to the other. When
conditions are steady the force F will be balanced by an internal force in the
fluid due to its viscosity. For a Newtonian fluid in laminar flow the shear
stress is proportional to the velocity gradient, i.e.

F/A = 7 o du/dy
This equation may be written as
7 =pdu/dy = py [1.1.1]

where the constant of proportionality, ., is called the Newtonian viscosity.
It will be seen that u is the tangential force per unit area exerted on layers of
fluid a unit distance apart and having 2 unit velocity difference between them.

The Newtonian viscosity, x, depends only on temperature and pressure and
is independent of the rate of shear. The diagram relating shear stress and rate
of shear for Newtonian fluids, the so-called ‘low curve’, is therefore a straight
line of slope u as in Fig. 2, and the single constant, , completely characterizes
the fluid.
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NON-NEWTONIAN FLUIDS

Newtonian behaviour is exhibited by fluids in which the dissipation of
viscous energy is due to the collision of comparatively small molecular species.
All gases and liquids and solutions of low molecular weight come into this
category. Notable exceptions are colloidal suspensions and polymeric solutions
where the molecular species are large. These fluids show marked deviations
from Newtonian behaviour.

r

ton” s

I

FiG. 2. Flow curve of a Newtonian fluid.

(b) Non-Newtonian fluids

Non-Newtonian fluids are those for which the flow curve is not linear, i.e.
the “viscosity’ of a non-Newtonian fluid is not constant at a given temperature
and pressure but depends on other factors such as the rate of shear in the
fluid, the apparatus in which the fluid is contained or even on the previous
history of the fluid.

These real fluids for which the flow curve is not linear may be classified

into three broad types:

(1) fluids for which the rate of shear at any point is some function of the
shearing stress at that point and depends on nothing else;

(2) more complex systems for which the relation between shear stress and
shear rate depends on the time the fluid has been sheared or on its
previous history;

(3) systems which have characteristics or both solids and fluids and exhibit
partial elastic recovery after deformation, the so-called viscoelastic
fluids.

These three classes of fluids will now be treated in order.

1.2 TIME-INDEPENDENT NON-NEWTONIAN FLUIDS

Fluids of the first type whose properties are independent of time may be
described by a rheological equation of the form

y = f(7) [1.2.1]

This equation implies that the rate of shear at any point in the fluid is a
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simple function of the shear stress at that point. Such fluids may be termed
non-Newtonian viscous fluids.
These fluids may conveniently be subdivided into three distinct types
depending on the nature of the function in Eqn. [1.2.1]. These types are
(1) Bingham plastics
(2) pseudoplastic fluids
(3) dilatant fluids

and typical flow curves for these three fluids are shown in Fig. 3 and compared
with the linear relation typical of Newtonian fluids.

T

Shear stress,

Shear rote, 3

F16. 3. Flow curves for various types of time-independent non-Newtonian fluids.

(a) Bingham plastics

A Bingham plastic®) is characterized by a flow curve which is a straight
line having an intercept 7, on the shear-stress axis. The yield stress, 7,. is the
stress which must be exceeded before flow starts. The rheological equation for
a Bingham plastic may be written

T T, =y T > T, [1.2.2]

where u,, the plastic viscosity or coefficient of rigidity, is the slope of the
flow curve.

The concept of an idealized Bingham plastic is very convenient in practice
because many real fluids closely approximate this type of behaviour. Common
examples are slurries, drilling muds, oil paints, toothpaste and sewage sludges.
The explanation of Bingham plastic behaviour is that the fluid at rest contains
a three-dimensional structure of sufficient rigidity to resist any stress less than
the yield stess, 7,. If this stress is exceeded the structure completely disinte-
grates and the system behaves as a Newtonian fluid under a shear stress
7 — 7,. When the shear stress falls below r, the structure is reformed.

B
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(b) Pseudoplastic fluids

Pseudoplastic fluids show no yield value and the typical flow curve for
these materials indicates that the ratio of shear stress to the rate of shear,
which may be termed the apparent viscosity, p,, falls progressively with shear
rate and the flow curve becomes linear only at very high rates of shear. This
limiting slope is known as the viscosity at infinite shear and is designated jx.

The logarithmic plot of shear stress and rate of shear for these materials is
often found to be linear with a slope between zero and unity. As a result, an
empirical functional relation known as the power law is widely used to
characterize fluids of this type. This relation, which was originally proposed
by Ostwald @ and has since been fully described by Reiner, ) may be written
as

7=k y" [1.2.3]

where k and n are constants (n < 1) for the particular fluid: k& is a measure of
the consistency of the fluid, the higher & the more viscous the fluid: 7 is a
measure of the degree of non-Newtonian bchaviour, and the greater the
departure from unity the more pronounced are the non-Newtonian properties
of the fluid. Tt is important to remember that although 7 is nearly constant in
many cases over wide ranges of shear rate it is not a true constant for real
fluids over all possible ranges of shear. This is not a serious drawback in
engineering applications because all that is needed is a rheological equation
which describes the fluid over the particular range of shear rate encountered
in the particular problem. Over such a range n may often be regarded as
constant.

It should be noted here that the dimensions of k¥ depend on the index »
and this fact has led to many objections to the use of the power law, e.g. by
Reiner ®). In most engineering applications these objections are not serious.

The apparent viscosity, p,, for a power law fluid may be expressed in terms
of n since

Pa =% T/y
e, — kit [1.2.4]

and since n < 1 for pseudoplastics the apparent viscosity decreases as the
rate of shear increases. This type of behaviour is characteristic of suspensions
of asymmetric particles or solutions of high polymers such as cellulose
derivatives. This suggests that the physical interpretation of this phenomenon
is probably that with increasing rates of shear the asymmetric particles or
molecules are progressively aligned. Instead of the random intermingled
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state which exists when the fluid is at rest the major axes are brought into
line with the direction of flow. The apparent viscosity continues to decrease
with increasing rate of shear until no further alignment along the streamlines
is possible and the flow curve then becomes linear.

Pseudoplastic fluids have been defined as time-independent fluids and this
implies that the alignment of molecules suggested above takes place in-
stantaneously as the rate of shear is increased or, at any rate, so quickly that
the time effect cannot be detected using ordinary viscometric techniques.

Other empirical equations which have been used to describe pseudo-
plastic behaviour are '

Prandtl T = A sin~Yy/C)
Eyring T = y/B -+ Csin (7/A)

Powell-Eyring Ay + Bsinh= (Cy)

9
[

Williamson 7= Ap/(B + 9) + poy [1.2.5]

In these equations 4, B and C are constants which are typical of the
particular fluid. These equations are considerably more difficult to use than
the power law and usually do not offer any compensating advantages.

(c) Dilatant fluids

Dilatant fluids are similar to pseudoplastics in that they show no yield
stress but the apparent viscosity for these materials increases with increasing
rates of shear. The power law equation is again often applicable but in this
case the index n is greater than unity.

This type of behaviour was originally found in suspensions of solids at
high solids content by Osborne Reynolds. He suggested that when these
concentrated suspensions are at rest the voidage is at a minimum and the
liquid is only sufficient to fill these voids. When these materials are sheared
at Jow rates the liquid lubricates the motion of one particle past another and
the stresses are consequently small. At higher rates of shear the dense packing
of the particles is broken up and the material expands or ‘dilates’ slightly and
the voidage increases. There is now insufficient liquid in the new structure to
lubricate the flow of the particles past each other and the applied stresses
have to be much greater. The formation of this structure causes the apparent
viscosity to increase rapidly with increasing rates of shear.

The term ‘dilatant’ has since come to be used for all fluids which exhibit the
property of increasing apparent viscosity with increasing rates of shear.
Many of these, such as starch pastes, are not true suspensions and do not
dilate on shearing in the normal sense of the word. The above explanation
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therefore does not apply but nevertheless they are commonly referred to as
‘dilatant’ fluids.

In the process industries dilatant fluids are much less common than pscudo-
plastic fluids but when the power law is applicable the trcatment of both
types is much the same,

1.3 TIME-DEPENDENT NON-NEWTONIAN FLUIDS

Many real fluids cannot be described by a simple rheological equation such
as Eqn. [1.2.1] which applies to fluids for which the relation between shear
stress and shear rate is independent of time. The apparent viscosity of more
complex fluids depends not only on the rate of shear but also on the time the
shear has been applied. These fluids may be subdivided into two classes:

(a) thixotropic fluids

(b) rheopectic fluids
according as the shear stress decreases or increases with time when the fluid
is sheared at a constant rate.

(a) Thixotropic fluids—breakdown of structure by shear

Thixotropic materials are those whose consistency depends on the duration
of shear as well as on the rate of shear.

If a thixotropic material is sheared at a constant rate after a period of rest.
the structure will be progressively broken down and the apparent viscosity
will decrease with time. The rate of breakdown of structure during shearing
at a given rate will depend on the number of linkages available for breaking
and must therefore decrease with time. (This could be compared with the
rate of a first-order chemical reaction.) The simultaneous rate of reformation
of structure will increase with time as the number of possible new structural
linkages increases. Eventually a state of dynamic equilibrium is reached when
the rate of build-up of structure equals the rate of breakdown. This equilibrium
position depends on the rate of shear and moves towards greater breakdown
at increasing rates of shear.

As an example we could consider the material confined in a cylindrical
viscometer (see Chapter 6). After the material has been resting for a long time
one of the cylinders is rotated at a constant speed. The torque on the other
cylinder would then decrease with time as shown in Fig. 4. The rate of de-
crease and the final torque would both depend on the speed, i.e. on the rate of
shear,

Thixotropy is a reversible process and after resting the structure of the
material builds up again gradually. If the flow curve of a thixotropic material
is determined immediately after shearing and after it has rested for varying
times after shearing the result is as in Fig. 5.
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This type of behaviour leads to a kind of hysteresis loop on the curve of
shear-stress plotted against rate of shear if the curve is plotted first for the
rate of shear increasing at a constant rate and then for the rate of shear
decreasing at a constant rate. This is illustrated in Fig. 6, where the curves
A and B are drawn for fluids of the Newtonian and pseudoplastic types which
exhibit thixotropy.

Start after standing for a long time

Speed increasing

@
5 pre—et—
g
L2 N
4
Time
Fic. 4.
Structure building up after standing
& | for an increasing length of time
4
L
“
<]
[
£
(2]
Immediately after shearing
( Newfonian inthis case)

Shear rate, »

FiG. 5.
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&g ()

L

» 4
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L

£

w

Shear rate, >~

FiG. 6. Hysteresis loops for thixotropic fluids.

Flow curves of increasing height can be obtained by applying shear for
increasing lengths of time before making the return path. A single curve can
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be obtained by continuing the shearing process to equilibrium before return-
ing.

The term ‘false-body’ is frequently encountered in discussions on
thixotropy. This was introduced by Pryce-Jones® to distinguish types of
thixotropic behaviour of Bingham plastics. True thixotropic materials break
down completely under the influence of high stresses and behave like true
liquids even after the stress has been removed, until such time as the structure
has reformed. False-bodicd materials, on the other hand, do not lose their
solid properties entirely and can still exhibit a yield value even though this
might be diminished. The original yield value is only regained after resting
for a long time.

The hysteresis loop on the flow curve would take the form of Fig. 7 for
these two materials.

7

3

Shear stress, 7
Shear stress,

Thixotropic False-body

Shear rate, »~ Shear rate, »~

FiG. 7.

This behaviour can be illustrated by the following experiment. Consider a
liquid in a vessel with a cylinder on a torsion wire immersed in it. The cylinder
is deflected and the liquid stirred. Stirring is then stopped and the cylinder

released. The torsion in the wire would then vary with time as in Fig. 8 for
the two types of material.

Thixotropic

Torsion

Time

Fic. 8.

With the false-bodied materials there would be a residual torsion in the
wire indicating that the material can offer permanent resistance to shear
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immediately after stirring, i.e. it retains a finite yield value. A true thixotropic
material would show a residual torsion only if somc time elapsed after
stirring had ceased before the cylinder was released, to allow structure to
build-up.

In a like fashion, false-bodied materials can retain elasticity (see Section
1.4). This would result in a recoil of the cylinder in the above experiment.

(b) Rheopectic fluids—formation of structure by shear

This is a case of gradual formation of structure by shear, whereas so far
the properties of structured materials have been explained on the basis that
shearing tends to destroy structure.

Freundlich and Juliusberger, ®) using a 42 per cent gypsum paste (I — 10u)
in water, found that after shaking, this material re-solidified in 40 min
if at rest, but in 20 sec if the vessel was gently rolled in the palms of the
hands. This seems to indicate that small shearing motions facilitate structure
build-up but large shearing (shaking) destroys it. There is a critical amount of
shear beyond which reformation of structure is not induced but breakdown
occurs. This behaviour is also observed with dilute aqueous solutions of
vanadium pentoxide and bentonite.

There are other materials, however, in which structure only forms under
shear and gradually disintegrates when at rest. This is usually termed
‘rheopexy’ but it is quite distinct from the definition of this term given by
Freundlich to the behaviour of gypsum pastes. Even so this behaviour is
only found at moderate rates of shear, for if shearing is rapid the structure
does not form. A 0-005 N suspension of ammonium oleate behaves in this
way. Consider the flow of this material through a capillary tube. At a
moderate pressure difference the flow is rapid at first and then decreases as
the structure builds up. At a high pressure difference the flow is always rapid
and does not fall off because the structure does not build up at high rates of
shear.

() Relation between time-dependent and time-independent fluids

Thixotropy is rather like pseudoplasticity in which the time required for the
alignment of particles is not negligible. This time effect for ‘pseudoplastic
materials’ is not observable in the apparatus normally used for the testing of
these fluids. The difference then is only a matter of degree.

In the same way rheopectic fluids (e.g. ammonium oleate) are superficially
similar to their time-independent counterparts (dilatant fluids) in which the
time for structure build-up is insignificantly small. Here, however, the analogy
is not so close because rheopexy is a case where build-up is brought about by
small shearing rates only. There is an upper limit to the shear rate beyond
which the analogy breaks down.
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1.4 VISCOELASTIC FLUIDS

A viscoelastic material is one which possesses both elastic and viscous
nropertics, i.e. although the material might be viscous, it exhibits a certain
elasticity of shape. This concept is perhaps most easily visualized in the case
of a very viscous liquid such as pitch. Suppose initially we consider the sim-
plest case wherc we assume Newton’s law for the viscous component and
Hooke’s law for the elastic component. In steady state flow under a shear
stress 7 the rate of shear will be 7/u, Where 4 is a constant Newtonian viscosity
coefficient, Suppose now that the shear stress is increased to 7 - 87 very
rapidly. The material will now be sheared through an additional angle 67/G
where G is a rigidity modulus. There is therefore an additional rate of shear
proportional to the rate of change of stress at any instant and the total rate of
shear is given by

y = 1/uy, + /G [1.4.1]
or we can write this as
7 4+ A 7 = py y Where A, = p/G {1.4.2]

This equation was first proposed by Maxwell,® and liquids which are
described by it are usually referred to as ‘Maxwell liquids’.

The parameter A, has dimensions of time and it is seen from Eqn. [1.4.2]
that it is the time constant of the exponential decay of stress at a constant
strain, i.e. if the motion is stopped the stress will relax as exp (—1/A).
Consequently 2, is known as the relaxation time. Schofield and Scott-Blair
have successfully applied the Maxwell equation to flour doughs.

Oldroyd ® investigated the elastic and viscous properties of emulsions and
suspensions of one Newtonian liquid in another and derived theoretically the
differential equation relating the shear stress = and the rate of shear y in the
form

T4+ M= p(y 4 AY) [1.4.3]

where the constants z,, A;, and A, can be determined in terms of the physical
properties of the mixture. In this system the elastic strain energy is stored
during flow by virtue of the fact that interfacial tension provides the restoring
force which makes the individual drops resist changes of shape. The same
equation was also derived by Frélich and Sack (® for a dilute suspension of
solid particles in a viscous liquid. Elastic strain energy is stored because the
solid clastic particles are deformed by the flow of the surrounding liquid.

In this equation the constant u, can be identified as the viscosity at low



CLASSIFICATION OF NON-NEWTONIAN FLUIDS i1

rates of shear in the steady state, i.e. when + = % = 0. The constant }, is a
relaxation time and the physical significance of this is that if the motion is
suddenly stopped the shear stress will decay as exp (—1/A)); A, is called a
‘retardation time’ and has the significance that if all stresses are removed the
rate of strain decays as exp (— #/A,).

Toms and Strawbridge 09 found that the behaviour of dilute solutions of
poly-methylmethacrylate in pyridine can be described by means of an equation
of this sort. It also describes the behaviour of some bitumens.

It is apparent, then, that a viscoelastic fluid cannot be characterized by a
simple rheological equation of the form of y = f (7). The essential difference
is that the rheological equation contains the time derivatives of both = and
y in general. The general case may be written

Hi(D) 7 =/f,(D)y [1.4.4]

or alternatively as a polynomial in D

N M
Za,D* 7 =28, D"y
=0 m=0

n

where D is the differential operator, d/d:.

1.5 MECHANICAL ANALOGIES TO VISCOELASTIC FLUIDS

The rheological equation for a viscoelastic fluid

D)7 =/f(D)y

is general and if solved subject to the correct boundary conditions will give
the response of the material to any imposed stress or strain. However for
real fluids the equations are very difficult to solve, even assuming that the
values of the relevant parameters can be derived from experiment; but a great
deal of qualitative information can be derived from a study of idealized
mechanical models or analogies which are designed to duplicate, more or
less closely, the observed time-dependence of a real fluid. Their behaviour is
more easily visualized than that of a fluid, perhaps especially by engineers. A
study of models also suggests a valuable method of characterizing a fluid by
a single parameter. This is discussed later in this section.

These models are made up of combinations of springs and dash-pots. The
force on a spring is proportional to strain and the force on a dash-pot is
proportional to rate of strain. Consequently the springs and dash-pots in a
model represent the elastic and viscous properties of the fluid respectively.
The basic elements in any mechanical model are a parallel combination of
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spring and dash-pot, known as a Voigt element, and a series combination.
known as a Maxwell element (since its equation is the same as that of a
Maxwell body discussed previously). These elements represent the behaviour
of idealized materials. Real fluids will consist of a more or less complicated
combination of these basic elements. The models for complex materials will
be derived by first considering the two basic elements and then generalizing
them.

(a) Voigt body
The mechanical analogy of a Hookean solid is a spring, and that of a
Newtonian liquid is a dash-pot. If we combine these in parallel we have what

is known as a Voigt body.

F1G. 9. Voigt body.
The equation of motion of this body is
F = kx -+ kox

where , is the spring constant and 4, is the damping constant of the dash-pot.

If we regard the force as analogous to stress and the extension as analogous
to strain we could say that this body is a mechanical analogy for a fluid whose
behaviour in shear is described by the equation

T = G‘}’+H'7 “5l]

where u is a viscosity and G is a rigidity modulus.
Integrating Eqn. [1.5.1] we get in general

y = exp (— g t) [70 + ;IIJT exp (g t)dt] [1.5.2]

where v, is the strain at 7 = Q.
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If the stress is constant at 7, and the initial strain is zero we have the
simplified case

¥ (1) =1G°[1 — exp (~t/,\)] [1.5.3]

where A = u/G is the retardation time. If the stress is removed the strain
vanishes exponentially with time constant A, (This means that the strain falls
to 1/e of its initial value in time A.)

It should be noted here that a Voigt body is really a viscoelastic ‘solid’
since it can be seen that it does not exhibit unlimited non-recoverable viscous
flow. It will come to rest in fact when the spring has taken up the load.

(b) Maxwell body
The Maxwell body consists of a spring and dash-pot in series. The equation
of this body in rheological terms is

7 = #G + 7p

and this is seen to be the same as the Maxwell body considered previously.

|

Fic. 10. Maxwell body.

Integrating we get

T = CXp (——g t) [70 + G j y exXp (g t)dt} [1.5.4]

where 7, is the stress at time zero.
If a Maxwell body is subjected at 7 = 0 to a constant strain, y, the stress
will decay as

(1) = 7G exp (—tly) [1.5.5]

where y = /G is the relaxation time.



