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Foreword

The present book is meant as a text for a course in linear algebra, at the
undergraduate level. Enough material has been included for a one-year
- course, but by suitable omissions, it-will “also be easy to use the book for
one term.
" During the past decade, the cumculum for algebn courses at the under-
graduate level has shifted its emphasis towards linear algebra. The shift '
is partly due to the recognition that this part of algebra is easier to under-
stand than some other paris (being less abstract, and in any case being
directly motivated by spatial geometry), and partly because of the wide’
applications which exist for linear algebra. Consequently, I have started
the book with the basic notion of vector in real Euclidean space, which
sets the general pattem for much that follows. - The chapters on groups
and rings are included because of their important relation to the linear
algebra, the group of invertible linear maps (or matrices) and the ring of
linear maps of a vector space being perhaps the most striking examples of
groups and rings. The fact that a vector space over a field can be viewed
fruitfully as a module over its ring of endomorphisms is worth emphasizing
a8 part of a linear algebra course. However, because of the general intent
of the book, these chapters are not treated with quite the same degree of
completeness which they might otherwise receive, and a short text on basie
algebraic structures (groups, rings, fields, sets, ete.) will accompany this
one to offer the opportunity of teaching a separate one-term course on
these matters, principally intended for mathematics majors.

The tensor produét, ahd especially the alternating product, are so im-
portant in courses in advanced calculus that it was imperative to insert a
chapper on them, keeping the applications in mind. The limited purpose
of the chapter here allows for concreteness and simplicity.

The appendix on convex sets pursues some of the geometric ideas of
Chspter I, taking for granted some standard facts about continuous func-
tions on compact sets, closures of sets, etc. It can essentially-be read after
Chapter I, and after knowing the definition of a linear map. Various 6dds
and ends are given in a second appendix (including a proof of the algebraic
closure of the complex numbers), which can be covered a.cco?dmg to the ~

.Judgement of the instructor.
61159



vi ‘ , ) FOREWORD

The basic portion of this book, on vector spaces, matrices, linear maps,
and determinants is now published separately as Introduction to Linear
Algebra, wjth additional simplifications of language and text. For instance,
we take vector spaces over the reals, we consider only the positive definite
scalar product, we omit the dual space, etc., which are less worthy of
emphasis for a first introduction, needed in immediate applications, e.g.
in calculus. In the more complete text of a full course in linear algebra,
these topics are of course included, as are many others, especially the
structure theorems which form Part Two: spectral theorem, for symmetric,
hermitian, unita.ry operators; triangulation theorems (including the Jordan
normal form); primary decomposition; Schur’s lemma; the Wedderburn-
Rieffel theorem (with Rieffel’s beautifully simple proof); ete. Of course,
better students can handle the more complete book at once, but I hope that
the separation will be pedagogically useful for others. :

In this second edition, I have rewritten a few sections, and inserted a
few new topics’ I have also added many new exercises.

New York, 1970 : . SERrGE LANG



PART ONE
BASIC THEORY

CHAPTER 1

Vectors

The concept of a vector is basic for the whole course. It provides
geometric motivation for everything that follows. Hence the properties
' of vectors, both algebraic and geometric, will be discussed in full.

The cross product is ineluded for the sake of completeness. It is almost
never used in the rest of the book. It is the only aspect of the theory of
¢ vectors which is valid only in 3-dimensional space (not 2, nor 4, nor
n-dimensional space). One significant feature of almost all the statements
and proofs of this book (except for those concerning the ¢ross product
and determinants), is that they are neither easier nor harder to prove in
3 or n-space than they are in 2-space.

§1. Déﬁiu'tion of poin.ts in n-space

We know that a number can be used to represent a pomt on a line,
once a unit length is selected.

A pair of numbers (i.e. a couple of numbers) (z, %) can be used to
represent a point in the plane.

- These representations can be represented in a picture as follows.

ypo—— 1@ )
i
i
P ' H
" | 2
(a) Point on a line (b) Point in a plane

Figure 1

We now obeerve that a triple of numbers (z, ¥, z) can be used to repre-’v
sent a point in space, that is 3-dimeasional space, or 3-space. We simply
introduce one more axis. ‘The following picture illustrates this.

3



4 - VECTORS ‘ i, §11

(z,u,z) :

X!

/ .

z-axis . Figure 2

Instead of usmg z, y, z we could a.lso use (z;, z3, z3). - The line could .
be called 1-space, and the plane could be ealled 2-space.’

Thus we can say that a single nember represents a'point in lque A
couple represents a point in 2-space. A triple represents a point in 3-space,’

Although we cannot draw a picture to go further, there is nothmg to
prevent us from considering a quadmph of numbers

@1, %3, X3, T4)

and decreemg that. this is a point in 4-apwce A quintuple would be 8
point in 5-space, then' would come a sextuple, septuple, octuple, R ]

We let ourselves be carried away a.nd define a point in n-space to be
an n-tuple of numbers ' ,

(111 3, "-. y 3,.),

if n is a positive integer. We shall denote such an n-tuple by a capltsl .
letter X, and try to keep small letters for numbers and capital letters for
points. We call the numbers z,, .. ., z, "the coordinates of the point X.
For example, in 3-space, 2 is the first coordinate of the point (2, 3, —4),
and —4 is its third coordinate.

Most of our examplm will take plaoe when n = 2orn=3. Thus the

er may visualize either of these two cases throughout the book. How-
ever, two comments must be made: First, practically no formula or
theorem is snmpler by making such assumptions on n. Second, the case
n = 4 does occur in physics, and the ease n = n occurs often enough in
practice or theory to warrant its treatment here. Furthermore, part of
our purpose is in fact to shew that the general case is always mmllar to the
case whenn = 2orn = 3. .

Examples One classieal example of 3—space is of course the space we
live in. After we' have selected an origin and a coordinate system, we can
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describe the position of a point (body, pa.rticle etc.) by 3 coordinates.
Furthermore, as was known long ago, it is convenient to extend this space
‘to a 4-dimensional space, with the fourth coordinate as time, the time
* origin being selected, say, as the birth of Chnst—although this is purely
arbitrary (it might be more convenient to select the birth of the solar
system, or the birth of the earth as the origin, if we could determine these
accurately). Then a point with negative time coordinate is a BC point,
and a point with positive time coordinate is an AD point.

Don’t get the idea that “time is the fourth dimension”, however. The.
above 4-dimensional space is only one possible example. In economiics,
for instance, one uses a very different space, taking for coordinates, say,
the number of dollars expended in an industry. For instance, we could
deal with a 7-dimensional space w1th coordinates corresponding to the
following industries:

1. Steel . 2°Auto . 3. Farmprodwets 4. Fish
5. Chemicals ~ 6. Clothing 7. Transportation

We agree that a megabuck per yearis, the uhit of measurement. Then a point
Q1 000 800 550, 300, 700, 200, 900)

in this 7-space would mean that. the steel mdustry spent one billion dollars
‘in the given year, and that the chemwo.l industry spent 700 million dollars
in that year '

We shall now define how to add points. If A, B are .twoipoints, say'
| A=(ay...,a), B~(byie.,b),
then we define A + B to be the poin'tdwhos'e coordinates are
a1+ by, .., 8 + b,
’ ‘For example, in ‘t.he plane, if A = (1,'2) and B = (-3, 5), then
. _A+B=(-27.
In 3-space, if A = (—1, , 3) and B =f\/§,_7, —2), then
A+B— (\/-'—-é) r+7' 1).

Furt.hermore, if ¢ is any number, we deﬁm cA to be the pomt whose
‘coordinates are

. (mlv - ,oa.)
A= (2 —1, 5) a.ndc— 7 then cA = (14, —~7, 35).
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We observe that the follawing rules are satu-.ﬁed
() (A+B)+C= A+ (B + 0).
(2) A+B=B+ A.
(3) c(A+B)=cA+cB.
(4) I ¢y, ¢3 are numbers, then .
(Cr+c)A = A+ 634 mi' (c109)4 = ex(cad).
(5) If wélet O = (0,.:.,0) be the point alk of whose coordinates
are(,thenO0+ A = A4+ 0 = A for all 4;
(6) 1-,4 = A, and if we denote by — A4 the a-tuple (—-l)A., then

A+ (—4)=

[Instead of writing A -+ (—B), we shall frequently write A — B)]
All these properties are very simple to prove, and we suggest that you
verify them on some examples. We shall give in detail the proof of prop-
, erty (3) Let A = (ah sy an) md B= (bh aiery bn) Then

A + B = (4 +bh:a’l+b")

.and

(A +B) = (clay +by), .. ., clan + b))
= (cal +Cblr;"lwn+°bfl|)
= ¢A + ¢B,

this Iast step being true by definition of addition of n-tuplw
The other proofs are left as exercises.

Note. Do not confuse the number 0 and the n-tuple (0 .,0). We
usually denote this n-tuple by O, and also call it zero, because no dlfﬁculty
can octur in practice.

We shall now interpret addition and multiplication by numbers geo-
metncally in the plane (you can vnsuahze simultaneously what happens
in 3-space). (1,4)

Take an example. Let 4 = (2, 3) and B = :
(=1,1). Then 7

A+B= (1, 4).

The figure looks like a parallelogram (Fig. 3).
Take another example. Let 4 = (3,1) and
B = (1,2). Then

A+B=(43. . ' Figure 3
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We see again that the geometric representation of our addition looks like
a parallelogram (Fig. 4).

A+B

o . Fi‘IIN 4

L 34=(36)

34

+ + +—+ ' —34

® ®) Figure 5

‘What is the representation of multiplication by a number? Let
A = (1,2) and ¢ = 3. Then cA = (3, 6) as in Fig. 5(a). ,

Multiplication by 3 amounts to stretching A by 3. Similarly, 34
amounts to stretching A by 3, i.e. shrinking 4 to half its size. In general,
if ¢ is & number, ¢ > 0, we interpret t4 as a point in the same direction
as A from the origin, but ¢ times the distance. _ _

Multiplication by a negatwe number reverses the direction. Thus
—3A4 would be represented as in Fig. 5(b). o

EXERCISES
Find A + B, A — B, 34, —2B in each of the following cases.
1. A= {2') —1)) B = (—lv 1) 2. A= (_]) 3)1 B = (01 4)

3. A=(2,-1,5),B=(—1,11 4 A=(—-1,-23),B=(-13,—-49)
5.4 = ,('7 3,—1),B={(2r,—37 6. 4 = (15, —2,4), B = (x,3,—1)
7. Draw the points of Exercises 1 through 4 on a sheet of graph paper.

. 8. Let A, B be as in Exercise 1. Draw the points A + 2B, A+ 3B, A — 2B,
A — 3B, A + 3B on a sheet of graph papen
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2. Located vectors . C

We define a located vector to be an ordered pair of points which we
write AB. (This is not a product.) We visualize this as an arrow between
A and B. We call A the beginning point and B the end point of the
located vector (Flg 6).

by—ap {

Figure 6

aq b

r-‘b,-ul—-fd

How are the coordinates of B obtained from those, of A? We observe
that in the plane,

by = ay + (b1 — @y).
Similarly, ‘
_ by = ay + (b — ay).
This means that _
B= A+ (B— A).

~ Let 4B and CD be two located vectors. We shall say that they a.rq
equivalent if B — A = D — C. Every located vector AB is equivalent
to one whose beginning point is the origin, because AB is equivalent to
O(B — A). Clearly this is the only located vector whose beginning point
is the origin and which is equivalent to AB. If you visualize the parallelo-
gram law in the plane, then it is clear that equivalence of two located
vectors can be interpreted geometrically by saying that the lengths of the
line segments determined by the pair of points are equa.l and that the
“directions” in which they point are the same. '
In the next ﬁgures, we have drawn the located vectors OB — 4), 4B,
~and (4 — B), BA.

| A/é .4/8

B—A

Figure 7 - ' Figure 8
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Given a located vector OC whose beginning point is the origin, we shall
“say that it is located at the origin. Given any located vector AR, we
shall say that it is located at A.

A located vector at the origin is entirely determlned by its end point.
In view of this, we shall call an n-tuple either a point or a vecter, depend-
ing on the mterpretatlon which we have in mind.

Two located vectors AB and PQ are said to be parallel if there is a
number ¢ > 0 such that B — A = ¢(Q — P). They are said to have the
same direction if there is a numberc > Osuch that B — 4 = ¢(Q — P), .
and to have opposite diréction if there is a number ¢ < 0 such that
B — A = c(@ — P). In the next pictures, we illustrate parallel located
vectors,

‘ B P
R ’ B
Q \\
/ . . A
b A R :
. Q
(a) Same direction ’ (b) Opposite direction
‘ Flgure 9

In a, sumlar manner, any deﬁmtlon made concerning n-tuples can be
carried over to located vectors. For instance, in the next section, we shall
define what it means for n-tuples to be perpendicular. Then we can say
that two located vectors AB and PQ are perpendicular if B — 4 is per-
pendicular to @ — P. In the next figure, we have drawn a picture of such
vectors in the plane. :

Figure 10

0

E:cample 1. Let P=(1,—1,3) and Q = (2,4, 1). Then PQis equiva~
lent to 0C, where C =@ — P = (1,5, —-2) H A= (4 —25) and
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(533) thenPsteqmvalenttouﬁbecause
Q P= B—A=(,5— 2.

Emmpk? Let P= (3, 7) and Q@ = (—4 2). Let A= (51) and
B = (—16, —14). Then ‘ .

Q—-P=(-7,—5 sod B—A= (=21 —15).

Hence PQ is parallel to 4B, becsuse B — A = 3(Q — P). Since 3 > 0,
we even see that PQ and AB have the same direction.

ExeRcises

In each case, determine which located vectors IT‘Q and A5 are equivalent.
P=(1,~1),Q=(43), 4= (—1,5),B = (52
P=(1,4),Q=(—325),A=(517),B=(1,8).. :
P=(,-1,5,0Q=(—23—4), A = 3,1,1), B = (0, 5, 10).
P=(23—4,Q=(-135), 4 = (-2,3,—-1),B= (-5,3,8).

In each case, determine which located veetors PQ and AF are parallel.

5. P=(1,~1),Q= (4,3), 4 = (—1,5),B = (7,1).

8. P=(1,4,Q=1(-35),4=(7,B8=(586).

7.P = (1,—1,5),Q = (—2,3,—4), A = (3,1,1), B = (—3,9, —17).
P=(2,3—4,¢=(—1,35), A = (—2,3,—1), B = (—1I,3, —28).

9. Draw the located vectors of Exercises 1, 2, 5, and 6 on a sheet of paper to

illustrate these exercises. Also draw the located vectors QP and BA. Draw the
pointsQ — P, B — A, P — Q,andA — B. '

§3. Scalar product

It is understood that throughout a discussion we select vectors always
in the same n-dimensional space.

Let A= (ay,...,a,) and B = (by,...,bs) be two vectors. We
(Zeﬁne their scalar or dot product A-Btobe :

g1by + i <+ aba.
This product is .ﬁ number. For instance, if
A=(1,3,—-2 and | B = (~1,4,-3),
then . | ] ) p
) A-B=-1+12+6=17.
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For the moment; we do not give a geometnc interpretation to this scalar‘
product. We shall do this Iater. We derive first some 1mportant prop-
erties. The basic ones are:

SPL Wehaw A-B="B"A.

-SP 2. If A, B, C are three veclors, then

| A-B+C)=A-B+A4-C=(B+0)- 4.

SP 3. If:'cisanumber,’thm '
(zA)-B=z(A-B) and A-(zB) = z(A-B).

SP4. If A= 0 is the zero veclor, then .+ A =0, and otherwise
A-A>0 , ' '
We shall now prove these properties.
Concerning the first, we have
a3b; +“'+a1;ba = bia; + -+ + bata,

. because for any two numbers @, b, we have ab = ba. This proves the
first property.
ForSP2,let C = (cy, ..., ca). Then
B C=(+cy,..., 00+
and -

A-(B+C)=arbi+c1)+ -+ anlba +cn)
= a1b) + 8161 + + + + Gubu + Anca.

Reordering the terms yields
G1by + v -+ Guba + 410+ -+ anca,

which is none other than A - B + A -C. This proves what we wanted.
We leave property SP 3 as an exercise.
Finally, for SP 4, we observe that if one coordinate a; of A is not equal
to 0, then there is a term a? s 0 and a?+> 0 in the scalar product

A-A=al4etal

Since every term is 2 0, it follows that the sum is > 0, as was to be shown.
In much of the work which we shall do concerning vectors, we shall use
only the ordinary properties of addition, multiplication by’ numbers, and
the four properties of the scalar product. We ghall give a Zormal discussion
of phese later. For the-moment, observe that there are other objects with
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which you are familiar and which ean be 'added subtracted, and multi-
plied by numbers, for instance the continuous functions on an mterval
[a, b] (cf. Exercise 5)..

Instead of writing A - A for the sealar product pf 8 vector with melf
it will be convenient to write also A2. (This is the only instance when we
allow ‘ourselves such a notation. Thus A® has no meaning.)’ As an exer-
cise, verify the following identities:

(A+B)*= A%+ 24 B + B?,
(A= B)?=A*—24-B+B"

A dot product A - B may very well be equal to 0 without either ‘AorB
- being the zero vector. For instance, let A = (1,2, 3) and B = (2, 1, —%).
~Then 4 -B=0. .'

We define two vectors A, B to be perpendicular (or as we shall also
say, orthogonal) if A - B = 0. For the moment, it is not clear that in
the plane, this definition coincides with our intuitive gebmetric notion of
perpendicularity. We shall convince you that it doés in the next sectlon
Here we merely note an example. Say i in R3, let

E;=(1,0,6), E;=(0,1,0), E;=(0,0,1)
be the three unit vectors, as shown on the diagram (Fig. 11).

» |
_Then we see that E; - E, = 0, and similarly E;- E; =0 if ¢ = j. .
And these vectors look perpendicular. If A = (g,, a2, a3), then we observe
that the /-th component of A, namely

a.-=A-E,-

- is the dot produet of A with the i-th unit vector. We see that A is per-
pendicular to E; (according to our definition of perpendicularity w1th the
dot produeét) if and only if its i-th component is equal to 0.



