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CHAPTER 1

THE AXIOMATIC METHOD

§1. GEOMETRY AND AXIOMATIC SYSTEMS

Each scientific theory involves a body of concepts and a collection of
assertions. When questioned of the meaning of a concept, we often explain
it or define it in terms of other concepts. Similarly, when questioned of
the truth or the reason for believing the truth of an assertion, we usually justify
our belief by indicating that it follows from or can be deduced from certain
other assertions which we accept. If somebody, as many children do, con-
tinues indefinitely to ask for definitions or deductions, it is obvious that
sooner or later one of two things will happen. Either we find ourselves
travelling in a circle, making use, in our answers, of concepts and assertions
whose meaning and justification we originally set out to explain; or, at some
stage, we refuse to supply any more definitions and deductions, and reply
bluntly that the concepts and assertions we employ in our answer are already
the most basic which we take for granted. When the problem is to under-
stand the meaning of a concept or to see that a proposition is true, there is
no basic objection to circular procedures, and, indeed, mutual support may
in many cases prove to be the best sort of evidence we can ever obtain. But
when we are able to start merely with a small number of primitive ideas and
propositions, the linear mode of approach does have a special appeal and
fascination in that questions of meaning and truth become concentrated in
these few initial primitives plus certain typical ways of definition and deduc-
tion.

Usually, the primitive propositions are called axioms or postulates. When
the concepts and propositions of a theory are thus arranged according to the
connections of definability and deducibility, we have an axiomatic system for
the theory. ,

The best known axiom system is undoubtedly Euclid’s for geometry. His
Elements is said to have had a wide circulation next only to the Bible. Ad-
miration for its rigour and thoroughness has been expressed frequently.
Spinoza, for example, attempted to attain the same formal perfection in his
Ethics (Ethica more geometrico demcnstrata).

There are in the Elements ten primitive propositions (axioms) of which
five are called common notions, five are called postulates. From these and
a number of definitions, 465 propositions (theorems) are deduced with con-
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siderable logical rigour. The same deductive method was used by Newton
in mechanics, by Lagrange in analytic mechanics, by Clausius in thermo-
dynamics. In recent years, axiom systems for many branches of mathematics
and natural sciences have appeared.

While Euclid’s unification of masses of more or less isolated discoveries
was undoubtedly an impressive success in the program of systematizing mathe-
matics, his actual axiom system is, according to the standard generally accepted
now, far from formally perfect. For example, instecad of taking point and
line as primitive concepts, Euclid defines them respectively as “something
which has no parts” and “length without breadth”. Moreover, investigations
in the latter part of last century have revealed many axioms which are im-
plicitly assumed or inadequately formulated by Euclid.

The development of views on axiomatic systems was closely connected
with the discovery of non-euclidean geometries. On the one hand, Euclid’s
axioms as a whole seemed so natural and obvious that they were regarded as
logically necessary or, according to Kant, synthetic a priori. On the other
hand, since ancient times, many mathematicians have found Euclid’s fifth
postulate (the “parallel axiom™) not sufficiently self-evident and tried to derive
it from the other axioms. This disputed axiom states in effect that through
a given point one and only one straight line can be drawn which is parallel
to a given straight line. Unlike the other axioms, it involves a reference to
infinity through the concept of a parallel. During the Renaissance, con-
troversy over the axiom renewed. In the eighteenth century, Lambert and
Saccheri tried, with no success, to derive contradictions from the negation of
the axiom.

During the first third of the nineteenth century, Lobachevski, Bolyai, and
Gauss independently discovered a consistent geometry in which the parallel
axiom was replaced by the assumption that there exist more than one parallels
through a given point. In 1854, Riemann discussed the possibility of a finite
but unbounded space and invented geometries in which there exist no parallel
lines at all. All these geometries in which Euclid’s fifth postulate is false
are called non-euclidean geometries. :

The realization of different possible geometries led to a desire to separate
abstract mathematics from spatial intuition. For example, Grassmann stressed
in his Ausdehnungslehre (1844) the distinction between a purely mathe-
matical discipline and its application to nature. Since the axioms are no longer
necessarily true in the physical world, deductions must be made independently
of spatial intuition. Reliance on diagrams and meaning of geometrical con-
cepts must, therefore, be avoided.

In his book on geometry (1882), Pasch adhered to this changed view-
pomt and found out many shortcomings in Euclid’s axiomatization. He dis-
closed the most hidden axioms, those of order. For example, he noted the
need of the following axiom: a straight line that intersects one side of a
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triangle in any point other than a vertex must also intersect another side of
the triangle.

Hilbert’s famous work on the foundations of geometry appeared in 1899.
It further emphasized the point that strict axiomatization involves total
abstraction from the meaning of the concepts. Apart from Hilbert’s axioms
for geometry, alternative systems have been proposed by Peano, Veblen,
Huntington, and others. Hilbert arranged the axioms in five groups: The
axioms of incidence, of order (betweenness), of congruence, of parallels, and
of continuity.

In these systems it is customary to take for granted a basic logic of infer-
ence (the theory of quantification or the predicate calculus) which deals with
the logical constants “if-then”, “not”, “all”, “some”, “or”, “and”, “if and
only if”. There are, as we know, standard axiom systems for quantification
theory. If we adjoin one such system to an axiom system for geometry, we
get a more thoroughly formalized system.

In general, there are different degrees of formalization. 1f Euchd
thought wrongly that his axiom system was completely formal, how do we
know that a system considered formal now will not turn out to be imperfectly
formalized?

In the evolution of axiom systems, there has emerged a sharp criterion
of formalization in terms, not of meaning and concepts, but of notational
features of terms and formulae.

Before stating the criterion, let us recapitulate the process of formalization.
In a given mathematical discipline, there is a body of asserted and unasserted
propositions. Out of the asserted propositions, choose some as axioms from
which others can be deduced. In order that the axioms be adequate, they
must express all the relevant properties of the undefined technical terms so
that it should be possible to perform the deductions even if we treat the
technical terms as meaningless words or symbols. Then we turn our atten-
tion to the logical particles or nontechnical words and make explicit the
principles which determine their meaning or, in other words, govern their
use. As a result, we should be able to recognize, merely by looking at the
notational pattern, axioms and proofs.

From now on we shall speak of formal or axiomatic systems only when
the systems satisfy the following criterion: there is a mechanical procedure
to determine whether a given notational pattern is a symbol occurring in
the system, whether a combination of these symbols is a well-formed formula
(meamngful sentence) or an axiom or a proof of the system. Thus the
formation rules, ie. rules for specifying well-formed formulae, are entirely
explicit in the sense that theoretically a machine can be constructed to pick
out all well-formed formulac of the system if we use suitable physical repre-
sentation of the basic symbols. The axioms and rules of inference are also
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entirely explicit. Every proof in each of these systems, when written out
completely, consists of a finite sequence of lines such that each line is cither
an axiom or follows from some previous lines in the sequence by a definite
rule of inference. Therefore, given any proposed proof, presented in con-
formity with the formal requirements for proofs in these systems, we can
check its correctness mechanically. ‘Theoretically, for each such formal
system, we can also construct a machine which continues to print all the
different proofs of the system from the simpler ones to the more complex,
until the machine finally breaks down through wear and tear. If we suppose
that the machine will never break down, then every proof of the system can
be printed by the machine. Moreover, since a formula is a theorem if and
only if it is the last line of a proof, thc machine will also, sooner or later,
print every theorem of the system. (Following a nearly established usage,
we shall always count the axioms of a system among its theorems.)

Mathematical objects such as numbers and functions are studied in
ordinary mathematical disciplines. Metamathematics, which constitutes nowa-
days an important part of mathematical logic, takes, on the other hand, mathe-
matical theories as its objects of study. This is made possible by formalizing
mathematical theories into axiomatic systems, which, unlike, for instance, the
psychology of invention, are suitable objects of exact mathematical study.
Indeed, if the powerful method of representing symbols by positive integers
is employed many problems in metamathematics become problems about
positive integers, and the difference in subject matter between metamathe-
matics and mathematics becomes even less conspicuous.

Apart from formal systems we shall also have occasion to study quasi-
formal systems in the following sense. A quasiformal system is obtained
from a formal system by adding “nonconstructive rules of proof”, which
superficially provide definite methods of proof but really leave open the
methods of proof. The best known is the rule of infinite induction according
to which if F(#) is a theorem for every positive integer n, then “(#)F(z)”
is also a thecrem. This leaves open the methods by which it is established
that F(n) is a theorem for every 7.

Concerning each formal system, we can ask a number of different ques-
tions which are usually divided into two categories: the syntactical questions
which deal with the system taken as a pure formalism or a machine for manu-
facturing formulae, and the semantical questions which are concerned with
interpreting the system.

For example, with regard to a formal system, it is natural to ask whether
it might not happen that not only proofs but also provability can be mechani-
cally checked. If this is true for a system, then there is a definite method
such that given any sentence of the system, the method enables us to decide
whether it is a theorem. Such systems are called decidable systems.  Other
questions are: whether a given formal system is satisfiable, ie. admits an -
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interpretation; whether a system is consistent, i.e. contains no contradictory
theorems.

Quantification theory occupies a special place with regard to formal
systems. It can be viewed either as a subsidiary part of each axiom system
which has its own special sub]ect matter, or as a basic common framework
such that each special system is but one of its applications. The latter view-
point leads to an inclination to treat all important problems about formal
systems as problems about quantificational formulae. For instance, both the
consistency and the decidability of formal systems are reduced to the “decision
problem”, ie., the problem of deciding the satisfiability or validity of quanti-
ficationai formulae.

§2. THe ProbLeM or ADEQUACY

One is led to an interest in mathematical logic through diverse paths.
The approach determines the posing of questions which in turn determines
the replies. It is not so much that different approaches yield different answers
to the same problems. Rather logicians of different backgrounds tend to
ask different questions. They hold, therefore, different views on what the
business of logic is. To settle these differences impartially is beyond the
capability of an individual logician qua logician. For a settlement inevitably
depends on judgments as to whether one type of question is more interesting
than another: a highly partial and subjective matter.

What can be profitably done is to make a declaration of interest in certain
problems, coupled with an enunciation of reasons for considering such ques-
tions interesting. If there is an attractive unifying principle among these
problems, the chances of the declaration being accepted as a definition of
logic will increase.

Consider the body of all mathematical disciplines, with their concepts
and theorems, as it is formulated in a crystallized form (say, as in textbooks).
Onc main problem of mathematical logic is to organize and systematize each
discipline separately and the whole bedy altogether more or less in the manner
of Euclid or, if possible, even more thoroughly. The scale of the program
of systematizing the whole mathematics ought to satisfy everyone whose
instinctive urge toward system building is reasonably modest. Yet there is
no program of comparable scale, with the possible exception of that of unify-
ing physical theory, which enjoys with it the unusual advantages of objectivity
of results and proximity to vital human endeavours.

The organization of each discipline separately is not only a necessary
preliminary step to the construction of a “grand logic”, but important on
its own account. In general, if two disciplines are equivalent, we need only
study one of them. On the other hand, if an important discipline A4 is re-
ducible to but substantially weaker than a discipline B, we cannot legitimately
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conclude that since A4 is a part of B, 4 need not be studied separately. For
example, number theory and analysis are both reducible to set theory, analysis
includes number theory as a proper part; we nonetheless make separate inves-
tigations of the three disciplines because each of them presents its own peculiar
problems. Indeed, the business of mathematical logic is primarily the
systematic study of these three regions and the underlying more clementary
discipline of quantification theory. More explicitly, number theory deals with
non-ncgative integers, analysis deals with non-negative integers and recal
numbers (or sets of integers), set theory deals with arbitrary sets or classes
or functions. It is natural to choose to treat these branches because their
concepts and methods are familiar and basic. On the one hand, masses of
rather objective facts in them have to be accounted for, so that there is little
room for capricious preferences. On the other hand, because of the central
position of these branches, a clarification of their principles will bring the
foundations of other branches of mathematics under control.

For cach of the three ficlds, the first problem is to find a formal system
which formalizes the intuitive theory. Given such a formal system, since
it is intended as the formalization of an intuitive theory, the natural question
is its adequacy. This question may take different forms. One form is, can
all known proofs in the intuitive theory be formalized in the system? In
many cases, the answer is usually yes: we believe that all known theorems
and their proofs in the intuitive theory get close replicas in those formal systems
of it which are now generally accepted. The actual derivation of mathe-
matics from any such system is, however, long and tedious; it is practically
impossible to verify conclusively that the intuitive theory, with all its details,
1s derivable in the system. On the other hand, it is also hard to refute such
a claim for that would require the discovery of some premise or principle
of inference, which has so far been tacitly assumed but unrecognized.

Even where a formal system is said to be adequate to an intuitive theory,
it is often possible to construct, in terms of the whole formal system, argu-
ments which can no longer be formalized in the system but are nonetheless
of the same general type as arguments formalizable in the system. Next,
in the intuitive theory, we are often less hesitant to use methods from other
disciplines; for example, the use of analytic methods in number theory. The
boundaries between formal systems are generally sharper so that, for example,
usual formal systems of number theory do not include the analytic methods.
Last but not least, there is always the question of faithful representation:
although all known theorems and proofs of the intuitive theory have images
in a formal system, we can still query how close these images resemble the
originals, whether they are natural or rather distorted pictures. Indeed, if
we merely attempt to embed actually recorded arguments but disregard in-
tentions to admit gencral patterns, diverse artificial formal systems can be
constructed for a given theory.

The domain of an intuitive theory is quite indeterminate, and the domain
of its known theorems is more so. It is, therefore, desirable to introduce,
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besides the demonstrability of known theorems, other criteria for the adequacy
of a formalization. Since the formal system is constructed to approximate
the intuitive theory, the theory is the intended interpretation of the system.
One criterion of adequacy is that the system do admit its intended inter-
pretation. A separate and independent criterion is that the system be cate-
gorical, i.c., admit essentially only one interpretation, any two interpretations
of it are isomorphic or, in other words, essentially equivalent. The most ideal
formalization should be adequate by both criteria. Actually, most interesting
formal systems are not categorical. It is not even clear that they always admit
the intended interpretations: sometimes the intuitive theory to be formalized
is so complex that we are unable to specify unambiguously the intended inter-
pretation.

The reference to intuitive interpretations of a formal system inevitably
brings in elements which are less precise and exact than the formal system.
To avoid this, one is led to the introduction of a criterion of adequacy which
refers only to the formal system: a formal system is complete if and only if
for every unambiguous sentence in the system, either it or its negation is a
theorem. This makes no reference to the intuitive theory and can therefore
scrve as a criterion of adequacy only after we have been independently con-
vinced that all thoughts in the intuitive theory can be expressed in the formal
system and that ordinary theorems can be proved. Once we agree on these
matters the criterion of completeness is sufficient since we obviously do not
wish to have both a sentence and its negation demonstrable in any theory.
On the other hand, it is not clear that a formalization, to be adequate, must
be complete in this sense. It is quite possible that an incomplete system re-
produces faithfully our incomplete intuitive theory because it may happen
that our intuitive procedure of proof is not capable of settling certain questions
in the theory.

However that may be, the sharp question of completeness has led to.
sharp answers. Godel’s famous theorem establishes the conclusion that the
usual formal systems for number theory, analysis and set theory are incom-
plete unless they contain contradictions. Moreover, given any consistent
formal system for one of these theories, a sentence of the system can be con-
structed which is demonstrably indemonstrable. This result and its proof
have also as a corollary the impossibility of finding a categorical formal system
for any of the disciplines. In other words, in the process of answering the
sharper problem of completeness one is led to significant conclusions on the
original less precise question of adequacy. This illustrates a rather general
phenomenon of studying a vaguer original problem through a related, though
apparently different, one which is capable of exact treatment. Another ex-
ample is the study of the problem of evidence by way of an attack on ques-
tions of consistency. The determination of completeness or consistency of a
formal system required so much information: in the process of answering such
questions one cannot help getting significant conclusions on the more basic
problems of adequacy and comprehensibility of the formal system.
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Tabelle 3
IR-Spektren der Komplexe 3LFe(CO)(NO)2D (v in cm-").
Nr. 3L-Ligand *D-Ligand  v(CO) v(NO) und Lésungs- Lit.
v(GOR) mittel
1 CiHg " P(CsHge-n); 1926 1692 Toluol [3]
2 CyHq P(CsHs), 1935 1700 Toluol [3]
3 CyH, P(CsHs),Cl 1960 1725 Toluol (3]
5 CyHq P(OCH;); 1944 1710 Toluol [3]
6 CyHg P(OC,Hz); 1939 1703 Toluol [3]
7 CsHsg P(OC,Hg); 1939 1703 Toluol [3]
8 CiHg P(OCgHs), ‘1958 1723 Toluol [3]
9 C;Hq P{OCH- 1936 1702 Toluol [3]
(CH3)2)5
10 C,H, P(OCH,),~ 1960 1722 Toluol [3]
CCH,
11 CiHs As(CeHs); 1929 1704 Toluol 3]
12 1-CH;-C3H, P(CsHs)s 1930, 1685, CCl, [2]
1926 1690 Toluol [5]
13 1-CH;COCH,-C;H, P(CesHs)s 1925 1690, 1680 Film (2]
14 1-CH,COCH,-C,H, P(OC¢Hs)s 1957 1689 - [2]
15 1-C(CH3),0HCH,-C,H, P(CgHs)zs 1915 1685 KCl- [2]
Prelling
16 1-C(CyHs5),0HCH,-C,3H, P(CeHs)s 1927 1681 - [2]
17 2-CH,-C4H, ' P(CgH5)3 1924 1688 Toluol [6]
18 2-CH,-CsH, : P(OC,Hs); 1930 1691 Toluol [5]
19 1-CH;(1-CH3COCH,)C,H, P(CeH5s)3 1923 1681 Film [2]
20 1-CH;(1-CH3;COCH,)C4H, P(OCgHs)s 1908 1669 Film [2]
21 1-CH3(1-C(CH;),0HCH,)C3H; P(CeHy)s 1923 1678 Fim = [2]
23 1-CH;3COCH,(1,2-(CH5),)C3H, P(CeHs)s 1920, 1710, 1688, - [2]
1910 1662 '
24 @ P(CgHg)4 1942 1669 KCI- [2]
PreRling

25 P(CeHs)3 1920 1663 KCi- [2]
Q PreRBling
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§ 3. THE PROBLEM OF EVIDENCE

are different ways of doing this. Hence, we get different axiomatic systems.
Each system is constructed with a view to yield, short of contradictions, as
much set theory as possible, and as naturally as possible. The systems are
only such that we do not know how to get contradictions in them. We do
not know that contradictions will never arise in them.

If it is agreed that reality cannot be contradictory, then this ignorance
indicates either that sets are not real or at least that we do not have a clear
concept of set. This leads to the broad questions of mathematical reality and
mathematical evidence. If our intuition is not able to assure us that the
theorems in an axiomatic set theory are true, what mathematical propositions
can be seen to be true by our intuition? What kind of evidence distinguishes
these intuitive mathematical truths from other mathematical propositions?

There seems to be a relative character in the nature of evidence. What
is viewed as evident at one stage of the intellectual process may lose its intuitive
evidence at a more advanced stage. For example, the information about
physical things which sense experiences supply 1s no longer regarded as evident
when a distinction between real and apparent qualities is introduced. Or,
Euclidean axioms are no longer regarded as evident after the discovery of
non-Euclidean geometries, Similarly, the discovery of paradoxes seems to
deprive axioms of set theory of evidence. One is led to the search for some
primitive or absolute evidence which will not be discredited at a higher stage
of intellectual development.

Poincaré and Russell blamed the use of impredicative definitions. Russell
introduced his vicious circle principle to rationalize the exclusion of these
definitions, and constructed a formal system, commonly known as the ramified
theory of types, according to the principle. There are certain shortcomings
in the formal system which led Russell to introduce an axiom of reducibility
which violates the vicious circle principle and nullifies completely the initial
efforts to exclude impredicative definitions. It now scems possible to con-
struct formal and quasi formal systems which yield most of the fruits of the
axiom of reducibility but which still conform to the vicious circle principle.
All these will be referred to as systems of predicative set theory.

There is much in common between Brouwer’s intuitionism and what
Hilbert considered to be finitist methods. A most striking coincidence in
the two somewhat different approaches is the denial of the general validity
of the law of excluded middle. In other words, even though tertium non
datur holds for many sentences, there are others such that neither they nor
their negations are true according to the intuitionist or the finitist interpreta-
tion.

This position can be made to appear less strange if we accept the follow-
ing plausible propositions. In the first place, there are more arbitrary functions
of integers than computable functions; or, in other words, there are certain
functions of integers which are not computable. This can be established
rigorously if we get a sharp and reasonable concept of computable functions.
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In any case it seems reasonable to believe this to be the case. In the second
place, as is commonly asserted, existence means constructibility according to
the intuitionistic and the finitist recading of “there exists”. It follows in
particular that a sentence “for every m, there exists an », such that R(m,n)”
1s true only if there is a constructive procedure which yields, for each m,
its corresponding 7, or, in other words, there is a computable function of
such that “for every m, R(m, f(m))” is true. In the third place, negating
an assertion about an infinite collection does not merely mean that the asser-
tion 1s false, because to know that would require going through infinitely
many cases to decide whether there is a counter example, and it is not effec-
tively possible to do so. Hence, from the effective approach, the negation
of an assertion about infinitely many things can only be taken as an assertion
of impossibility or absurdity: the assumption that the original assertion is
true leads to a contradiction. According to this interpretation, the negation
of “for all m, there exists an #, such that R(7, #)” means not the nonexistence
of a computable function but rather that of an arbitrary function f such that
“for every m, R(m,f(m))” is true. Hence, there is an asymmetry between
a sentence and its negation. Thus, if a general assertion is satisfied only by
a noncomputable function, then it is neither absurd nor effectively true.
Hence, the law of excluded middle no longer holds for such an assertion.

Some examples may serve to clarify the matter a little more. According
to widely accepted rigorous concepts of computable functions, it is possible
to find a definite formula T'(m, ) such that there is no computable function
but one noncomputable function f such that “for every m, T'(m, f(m))” is
true.

Consider now the following three sentences:

(1) For every positive integer m, there exists a positive integer », n is
greater than m and » is a prime (viz., one of the numbers such as
2, 3, 5, 7, etc,, which are greater than 1 and cannot be resolved into
smaller factors).

(2) For every positive integer m, there exists a positive integer # such
that T(m, n).

(3) For every positive integer 7m, there exists a positive integer 7, n i
greater than m, » 1s a prime, and 7+ 2 is also a prime.

They are all of the form
(4)  (m)(En)R(m,n),

where R(m, n) is, for (1) and (3), a formula such that, for any given values
of m and #, the truth o falsity of R(m, n) can be checked by elementary
calculations.

Let us now consider, with regard to the three examples, the law of
excluded middle:
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(5)  (m)(En)R(m, 1)V ~(m)(En)R(m, »).

In the first place, if (2) is taken as the sentence “(m)(En)R(m, )", (5)
is false according to the effective interpretation of (m), (En) (quantifiers)
and ~ (negation). This is clear from the discussions given above.

The sentence (1) is known to be true and the familiar proof goes as
follows. Given any positive integer m. Consider the number m!+1 (m!
being the factorial of m, i.e. the product of all positive integers from 1 to m).
Clearly m!+1 is not divisible by any of 2, 3, +--, m. Either m! +1 is a
prime, or, if not itself a prime, it is divisible by some prime. In either case,
there must be some prime greater than 2, but not greater than m!+ L.

From this proof it follows that for every m, there exists an » such that
n < m!=+1 and R(m,n) (ie. m <»n and » is prime). Hence, given any
m, theoretically we can go through the sentences R(m,m +1), +--,
R(m, m! +1) and find, by elementary calculations, the smallest integer
k,m+1<k<m!-1, such that R(m, k). In this way, we get a computable
function f such that (m)R(m, f(m)). In this way, the proof of (1) establishes
that (1) is true by the effective interpretation. It follows that the law of
excluded middle (5) is true if (1) is taken as “(m)(En)R(m,n)”.

It is not known whether (3) is classically true or false. It follows that
the truth or falsity of (3) is also not known according to the effective inter-
pretation. There is an ambiguity in the notion of effective methods. If we
understand this in the classical sense, then (3) can be true only if it is true
in the effective interpretation of existence because p,R(m,n) would be
general recursive and effective. On the other hand, the intuitionists would
require that a constructive proof be given for the effectiveness of a given
function before it can be accepted as effective. Hence, the problem is reduced
to a more subtle question of determining what a constructive proof is. Ac-
cording to a classical effective interpretation, if (3) is true in the effective
sense, it is also true in the classical sense; if (3) is false in the effective sense,
it is also false in the classical sense. On the other hand, if we adopt the
doubly effective interpretation of the intuitionists, there are altogether three
possibilities: (1) the sentence (3) is effectively true; (ii) it is not cffectively
true but classically true; (i1) it is false. If either (i) or (iil) is the case, then
the law of excluded middle (5) is true for (3). If, on the other hand, (ii)
is the case, then it no longer holds for (3). Of course, the intuitionists reject
the notion of classical truth and say simply we do not know whether (5) is

true for (3).

The account thus far attempts to make it reasonably plausible that some-
times tertium non datur may fail, if an effective or constructive interpretation
of logical particles in arithmetic formulae is adopted. There is, however, no
ambition to give here a full explanation of either intuitionism or finitist
methods. For example, the above account does not even touch on the



