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Part One Reading Material

I . Mathematics

] -1 NUMBERS AND LITERAL SYMBOLS

Mathematics has played a mosti*Jimportant role in the development and understanding of the
various fields of technology, and in the endless chain off?] technological and scientific advances of
our timel®), With the mathematics we shall develop™ in this text(®1, mahy kinds of applied prob-
lems can and will be solved. Of course, we cannot solve the more advanced types of problems
which arise, but we can form a foundation for the more advanced mathematics which is used to
solve such problems. Therefore, the development of a real unders;anding of the mathematics pre-
sented in this text will be of(’! great value to you in your future work.

A thorough understanding of algebra is essential to the comprehension of any of the fields of
elementary mathematics. It is important for(*] the reader to learn and understand the basic concepts
and operations presented here, ort*] the development and the applications of later topics will be diffi-
cult to comprehendt'®), Unless the algebraic operations are understood well, the result will be a
weak foundation for further work(' in mathematics and in many of the technical areas where math-
ematics may be applied. ‘ 7

We shall begin our study of mathematics by reviewing some of the basic concepts and opera-
tions that deal with numbers and symbols. Witht!?] these we shall be able to develop the toplcs in
algebra which are necessary for further progress into other fields of mathematxcs, such as tngonom-
etry and calculus.

The way we represent numbers today''*] has been evolving for thousands of years. The first
numbers used'*) were those which stand for whole quantitiest'®), and these!**] we call the positive
integers. The positive integers are represented by the symbols 1, 2, 3, 4, and so forth.

Of course, it is necessary to have numbers to represent parts of certain quantities, and for this
purpose fractional quantities are introduced. The rame positive rational number is given lo any number
that we can represent by the division of one posilive integer by''"} another. Numbers that cannot be designat-
ed by the division of one integer by another are termed irtational.

EXAMPLE A

‘The numbers 5, 18, and 1978 are positive integers. They are also rational numbers, since

% » and —l% Normally we do not write the 1’s in the denominators.
1 5 11 106

7, ik 3 and 17 are positive rational numbers, since both the numerators

they may be written as -*5—,

The numbers

— 1 —



and the denominators are integers.
The numbers v 2, + 3, and n are jrrational. It is not possible to find any two integers

» 22,
which represent these numbers when one of the integers is divided by the other. For example, - is

not an ezact representation of n; it is only an approximation.

In addition to the positive numbers, it is necessary to introduce negative numbers, not only
because we need to have a numerical answer to problems such as 5 — 8, but also because the nega-
tive sign is used to designate direction. Thus, —1, —2, — 3, and so on are the negative integets.
The number zero is an integer, but it is neither positive nor negative. This means that the integers are
the numbers ..., —3, —2, —1, 0,1, 2, 3, ..., and so on.

The integers, the rational numbers, and the irrational numbers, which include all such num-
bers which are zero, positive, or negative, constitute what we call the real number system'®l, We
shall use real numbers throughout this text, with one important exception. In the chapter on the j-
operator, we shall be using!'*! imaginary numbers, whick is the name given to square roots of negative
numbers. The symbol j is used to designate +/—1, which is not part of{2] the real number system.

EXAMPLE B

. 7 .
The number 7 is an integer. It is also a rational number since 7=T’ and it is a real number

since the real numbers include all of the rational numbers.

The number 3n is irrational, and it is real since the real numbers include all of the irrational

numbers.

The numbers +— 10 and 7j are imaginary.

The number % is rational and real. The number + 5 is irrational and real.

The number :7-§ is rational and real. The number — +/ 7 . is irrational and real.

The number +/—7 is imaginary.

The number % is irrational and real. The number 2

A fraction may conlain any number or symbol representing a number in ils numerator or in its denom-

is imaginary.

inator. Thus, a fraction may be rational, irrational, or imaginary.
EXAMPLE C

The numbers —%— and :2—3 are fractions, and they are aiso rational.

JT

6 .
The numbers 9 and = are fractions, but they are not rational numbers. It is not possible

to express eithert?!J ag the ratio of one integer to another(?2],

The number 2_3 is a fraction, and it is also imaginary.

The real numbers may be represented as points on a line. We draw a hotizontal line and desig-
nate some point on it by 03, which we call the origin (see Fig. 1 ~1). The number zero, which
is an integer, is located at this point. Then equal intervals are marked off from this point toward the

— 2 —



right, and the positive integers are placed at these positions. The other rational numbers are located
between the positions of the integers. It'?*) cannot be proved here, but the rational numbers do not
take up all the positions on the line; the remaining points represent irrational numbers.

Now we can give the direction interpretation to negative numbers. By starting at the origin and
proceeding to the left, in the negative direction, we locate all the negative numbers. As shown in
Fig. 1 -1, the positive numbers are to the right of the origin and the negative numbers to the left.
Representing numbers in this way{®*] will be especially useful when we study graphical methods.

_2 == 4 13
5 —v11 2 9 S - 4
N N 1 L | l
~% -5 —1 -3 —2 1 | 3 4 6
Origin
—- il ——
Negative direction I Positive direction
Figure 1-1

Another important mathematical concept we use in dealing with numberst?®) is the absolute
value of a number. By definition?"], the absolute value of a positive number is the number itself, and
the absolute value of a megaiive number is the corresponding positive number (obtained by changing its
sign). We may interpret the absolute value as{?!] being the number of units a given number is from
the origin'*®), regardless of direction. The absolute value is designated by | | placed around the

number.
1 -2 FUNDAMENTAL LAWS OF ALGEBRA

In performing the basic operations with numberst®], we know that certain basic laws are
valid. These basic statements are called the fundamental laws of algebra.

For example, we know that if two numbers are to be added(®, jt does not matter in which
order they are added®). Thus 5+3=38, as well as 3+5=8. For this case we can say that 54-3=
3+5. This statement, generalized and assumed correct for all possible combinations of numbers to
be added™, is called the commutative law for addition. The law states that the sum of two numbers
is the same, regardless of the order in which they are added. We make no attempt to"J prove this in
general, but accept its validity.

In the same way we have the associative law for addition, which states that the sum of three or

more numbers is the same , regardless of the manner in which they are grouped for addition. For example,

3+(5+6>=(3+5)+6

The laws which we have just stated for addition are also true for multiplication. Therefore, the
product of two numbers is the same, regardless of the order in whick they are multiplied, and the product
of three or more numbers is the same, regardless of the manner in which they are grouped for multiplica-
tion. For example, 2X5=5X2 and 5X (4 X2)=(5X4) X 2.



There is one more®] important law, catled the distributive law. It states that the product of one
number and the sum of two or more other numbers is equal lo the sum of the products of the first number
and each of the other numbers of ther sum. For example,

4(3+5)=4X3+4X5

In practice these laws are used intuitively. However, it is necessary to state them and to accept
their validity , so that we may(*! build our later results with them.

Not all operations are associative and commutative. For example, division is not commutative,
6 , 5 .
since the indicated order of division of two numbers does matter(®}, For example, -g-#-é-(;é is

read “does not equal”).

Using literal symbolst®J, the fundamental laws of algebra are as follows;

Commutative law of addition. a+b=b-}+a
Associative law of addition; a-+ (b-+¢)= (a+b) +c¢
Commutative law of multiplication ; ab=ba
Associative law of multiplication; a(bc) = (ab)c
Distributive law; a(b+c) =ab-+ac

Having identified the fundamental laws of algebral®?, we shall state the laws which govern the
operations of addition, subtraction, multiplication, and division of signed-numbers. These laws will
be of primary and direct :.se in all of our work.

1. To add'* two real numbers with like signs, add their absolute values and affiz their common sign
to the result.

EXAMPLE A

(+2)4+(+6)=+(2+6)=+38
(—=2)+(—86)=—(24+6)=—38

2. To add two real numbers with unlike signs, sublract the smaller absolute value from the larger and .
affix the sign of the number with the larger absolute value to the result.
EXAMPLE B

(+2)+(—6)=—(6—2)=—4
(+6)+(—2)=+(6—2)=-+1

3. To subtract one real number from another, change the sign of the number to be subtracted, and
then proceed as in addition.
EXAMPLE C

(+2)—(+6)=+24(—B)=—(6—2)=—4
(—a)—(—a)=—a+a=0

The second part of Example C shows that subtracting a negative number from itself results{*]
in zero. Subtracting the negative number is equivalent to adding a positive number of the same absolute
p— 4 [



value. This reasoning is the basis of the rule which states, “the negative of a negative number is a
positive number. ”[42] ]

4. The product (or quotient) of two real numbers of like signs is the product (or quotient) of their
absolute values. The product (or quotient) of two real numbers of unlike signs is the negative of the prod-

uct (or quotient) of their absolute values.

EXAMPLE D
43 (8} .3
ﬁ“+(5)“+5
(—3)(+5)=—(3X5)=—15
—3_ (3} .3
?§‘+(€)‘+5

When we have an expression in which there is a combination of the basic operations, we must
be careful to perform them in the proper order. Generally it'*® is clear by the grouping of numbers
as to the proper order of performing these operations. However, if the order of operations is not indi-
caled by specific grouping, mulliplications and divisions are performed first, and then the addilions and
sublractions are performed.

EXAMPLE E

The expression 20-- (2 3) is evaluated by first adding 2+ 3 and then dividing 20 by 5 to
obtaini**) the result 4. Here, the grouping of 243 is clearly shown by the parentheses.

The expression 202+ 3 is evaluated by first dividing 20 by 2 and adding this quotient of 10
to 3 in order to obtain the result of 13. Here no specific grouping is shown, and therefore the divi-
sion is performed before the addition.

EXAMPLE F

(=6 —2(—)+E = (~6)~ (~B)+ (—5) = —6+8—5=—3

40 ___ 40 _ 40 _40_ .
+D+(=3)(+5) +7+(—15) 7—15 —8
-(—_—%(—‘f—sl—<——5><+2)(+3>=—”2l‘3—<—10)(+3)

=(—12)—(—30)=—12+30=18

In the first illustration, we see that the multiplication and division were performed first, and
then the addition and subtraction were performed. Also, it can be seen that{**] the addition and sub-
traction were changed to operations on{*®! unsigned (equivalent to positive) numbers. This is
generally more convenient, especially when more than one addition or subtraction is involved. In
the second illustration, the multiplication in the denominator was performed first, and then the ad-
dition was performed. It was necessary to evaluate the denominator beforef”] the division could be
performed. In the third illustration, the left expression can be evaluated by performing either the
mulitiplication or division first. Also, the order of multiplication in the right expression does not

matter. However, these multiplications and divisions must be performed before the subtraction.



I -3 OPERATIONS WITH ZERO

Since the basic operations with zero tend to cause some difficulty, we shall demonstrate them
separately in this section.

If a represents any real number, the various operations with zero are defined as follows,

a1 0=a (the symbol 4 means “plus or minus”)
axX 0=0

£=0 if a0
a

Note that there is no answer defined™ for division by zero. To understand the reason for this,
consider the problem of 4/0. If there were an answer tol**! this expression, it would mean that the
answer, which we shall cail b, should give 4 when multiplied by 0. That is, 0 Xb=4. However,
no such number b exists, since we already know that 0Xb5=0 . Also, the expression (/0 has no
meaning, since 0 X 5=10 for any value of 4 which may be chosen. Thus division by zero is not
defined. All other operations with zeo are the same as for any other number.

EXAMPLE A

5+0=5y 7—0=7, 0_-4='—'4’
0 0 5X0

=0 3= =0,

8 . . 7X0, .

) is undefined , 0% 6 is undefined

There is no need™ for confusion in the operations with zero. They will not cause any difficul-

ty if we remember that division by zero is undefined and that this is the only undefined operation.
1-4 EXPONENTS

We have introduced numbers and the fundamental laws which are used with them in the funda-
mental operations. Also, we have shown the use of literal numbers to represent numberst®3, In this
section we shall introduce some basic terminology and notation which are important to the basic
algebraic operations developed in the following sections.

In multiplication we often encounter ‘a number which is to be multiplied by itself several
times®?), Rather than®) writing this number over and over repeatedly , we use the notation a*,
where a is the number being considered®!) and » is the numbet of times it appears in the product(s,
The number a is called the base, the number n is called the exponent, and, in words'®, the expression is
read as the “nth power of a”.

EXAMPLE A

4X4X4X4X4=4° (the fifth power of 4)
(=2)(—=2)(=2)(—2)=(—2)* (the fourth power of —2)
aXa=a® (the second power of a, called “a squared”)

— 8 —



\ 3
(%) (%) (%) = ( %) (the third power of —é—, called “% Cubed”)

8X8X8X8X8X8X8X8X8=8" (the ninth power of 8)

The basic operations with exponents will now be stated symbolically. We first state them for
positive integers as exponentst®; and then show how zero and negative integers are used as expo-

nents. Therefore, if m and n are positive integers, we have the following important operations for

exponents.
a” s aq = gt v | (1-1
Z—:=a"'" (m>n, a7 0) 2—:=a,1_.. (m <n, a#0) a-2
(a-)u ____alll (1"3)
(ab)* = o', (%)=‘;— (b 0) (1-40

In applying Egs. (1 - 1) and (1 - 2), the base a must be the same for the exponents to be
added or subtracted'®*). When a problem involves a product of different bases, only ezponents of the
same base may be combined. In the following three examples, Egs. (1 -=1) to (1 —4) are verified and

illustrated.
I -5 APPLICATIONS OF EQUATIONS

Equations and their solutions are of great importance in most fields of technology énd science.
They are used to attain, study, and confirm information of all kinds. One of the most important
applications occurs in the use of formulas in mathematics, physics, engineering , and other fields. A
formula is an algebraic statement that®") two expressions stand for the same number. For example,
the formula for the area of a circle is A==nr?. The symbol 4 stands for the area, as does'®"] the
expression nr?, but nr? expresses the area in terms of another quantity, the radius®!l.

Often it is necessary to solve a formula for!®2J a particular letter or symbol which appears in it.
We so this in the same manner ast®! we solve any equation; we isolate the letter or symbol
desired!® by use of the basic algebraic operations.

EXAMPLE A

Solve A=mr? for 7.

A -
Z=n both sides divided by »*
=< since each side equals the other, it makes no differencel®*Jwhich expression ap-

pears on the left

EXAMPLE B

A formula relating acceleration a, velocity v, initial velocity v,, and time £, is v = v+ at.

Solve for .

—_ 7 —



v — v = at vy subtracted from both sides

=2 both sides divided by a and then sides are switched!®®]
a

Asf®*! we can see from Examples A and B, we can solve for the indicated literal number just
ast®® we solved for the unknown in the previous section. That is, we perform the basic algebraic
operations on the various literal numbers which appear in the same way'**! we perform them on
explicit numberst’®), Another illustration appears in the following example.

EXAMPLE C

The effect of temperature is important when accurate instrumentation is required. The volume
V of a precision container at temperature 7' in terms of the volume V, at temperature T, is given
by[”]

V= Vo[l + b(T — To)]

where b depends on the material of which the container is made. Solve for 7.
Since we are to solve for 717, we must isolate the term containing T. This can be done by

first removing the grouping symbols, and then isolating the term with 7'.

V=Vo[14+5(T—Ts)] (original equation)
V=Vo[14bT—bT,] (remove parentheses)
V=V+bTV,—bTV, (remove brackets)
VeV o BTV o =51V, (subtract Vy and add bT4V, to both sides)
V—V,+bT,V
T=—~—°b—vtﬂ——° (divide both sides by bV, and switch sides)
0

In practice it is often necessary to set up equations to be solved!’*) by using known formulas
and given conditions. The most difficult part in solving such a stated’*! problem is identifying the
information’’*! which leads to the equation. Often this is due to the fact that some of the information
is inferred, but not explicitly stated, in the problem.

Since a careful teading and ahalysis are important to the solution of stated problems, it is possi-
ble only 1o give a general guideline to follow("™), Thus, (1) read the statement of the problem careful-
ly; (2) clearly identify the unknown quantities, assign an appropriate letter to represent ont of them, and
specify the others in terms of this unknown; (3) analyze the statement clearly to establish the necessary
equation; and (4) sulve the equation, checking the solution in the original statement of the problem. Care-
fully read the following examples.

EXAMPLE D

Two machine parts together have a mass of 17 kg. If one has a mass of 3 kg more than the
other, what is the mass of each?

Since the mass of each part is required, we write
let m==the mass of the lighter part

as a way of establishing the unknown for the equation. Any appropriate letter could be used, and
we could have let!’”7 it represent the heavier part.

— 8 —



Also, since “one has a mass of 3 kg more than the othér,” we can write
let m—+3=the mass of the heavier part

Since the two parts together have a mass of 17 kg, we have the equation
m+(m+3)=17

This can now be solved.

2m~+3=17
2m=14

m=7

Thus, the lighter part has a mass of 7 kg and the heavier part has a mass of 10 kg. This checks
with{78] the original statement of the problem.

[ -8 APPLICATIONS OF THE INDEFINITE INTEGRAL

The applications of integration in engineering and technology are numerous. In this section we
shall present two basic applications of the indefinite integral, with other applications being indicated
in the exercises!™). The sections which follow!*®) deal with many of the basic applications of the
definite integral.

The first of these applications deals with velocity and acceleration. The concepts of velocity as
a first derivative(®!? and acceleration as a second derivative were introduced in Chapters 22 and 23.
Here we shall apply integration to the problem of finding the distance as a function of time, when
we know the relationship between acceleration and time, as well as certain speciff® values of dis-
tance and velocity. These latter values!®?] are necessary for determining the values of the constants
of integration which are introduced™®!. Recallingt® now that the acceleration a of an object is given
by a==dv/dt, we can find the exéression for the velocity in terms of a, ¢, and the constant of inte-

gration. We write

dv = a dt or

v =J- a dt (25-1)
If the acceleration is constant, we have

v=at+4C, (25-2)

Of course, Eq. (25 - 1) can be used in general to find the velocity as a function of time so
long as we know the acceleration as a function of time. However, since the case of constant acceler-

ation is often encountered, Eq. (25 - 2) is often encountered. If the velocity is known for some
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specified time, the constant C; may be evaluated.
EXAMPLE A '
Find the expression for the velocity if a=12¢, given that(®] p=8 when f=1.
Using Eq. (25 ~1), we have

v =J' (12¢) dt = 62 + C,
Substituting the known values, we obtain
8=64+C, or (=2

Thus, v=06£+2.

EXAMPLE B

For an object falling under the influence of gravity, the acceleration due to gravity[®¢] js essen-
tially constant. Its value is —9. 8 m/s% (The minus sign is chosen so that all quantities directed up
are positive, and all quantities directed down are negative. ) Find the expression for the velocity of
an object under the influence of gravity if »=uv, when {==0.

We write
v=f(-9.8)dt=—9.8t+6'1 vo=04+C, v=19p,—9. 8

The velocity vy is called the initial velocity. If the object is given an initial upward velocity'®?
of 40 m/s, vy=40 m/s(**). If the object is dropped, #,=0. If the object is given an initial down-
ward velocity of 40 m/s, vo=—40 m/s.

Once we abtain the expression for velocity, we can integrate to find the ?xpression for

displacement in terms of the time. Since v=dt/d!, we can write ds=v di, or

s=Jvdt (25-3)

EXAMPLE C
Find the expression for displacement in terms of time, if a=6¢, v==0 when ¢t=2, and s=4

when t=0.

v=f6z2dz=2e3+c,; 0=2(2+¢, € =—16
v =20 — 16
S=J(2t3“lﬁ)dl=%*t‘—-l6l+cz; 4=0—04+0Cy Cp=4

s =t — 160+ 4
2

EXAMPLE D

Find the expression for the distance above the ground of an object, given a vertical velocity of
vy from the ground(®®),



From Example B, we know that v==v,—9. 8¢. In this problem we know that s=0( when =0

(given velocity v, from the ground) if distances are measured from ground level. Therefote,

s=j.(vo'—9.8t)dt=vot¥—4.9t’+6’z; 0=0—0+C:y, C:=20

s = vt — 4. 9¢

EXAMPLE E

An object is thrown vertically from the top of a building 24. 5 m high{®J, and hits the ground
5 s later. What initial velocity'®'} was the object given? ]

Measuring vertical distances from the ground, we know that s=24. 5 m when t=0. Also, we
know that v=v,—9. 8¢. Thus, » ‘

s=f(vo—9.8t)dt=vot—4.9t’+0

24.5=19(0) — 4.9(0)+C, C=24.5
s= vl — 4.9 + 24.5

We also know that s=0 when £=5 s. Thus,

0 = 1,(5) — 4. 9(5%) 4 24.5
S5v, = 98. 0
vo = 19.6 m/s

This means that the initial velocity was 19. 6 m/s upward.

The second basic application of the indefinite integral which we shall discuss comes from the
field of electricity. By definition, the current i in ar electric circuit equals the time rate of change of the
charge q (in coulombs) which passes a given point in the circuit, or

¢
= _ (25 -4)

Rewriting this expression in differential notation ast®?l dg=1i d¢ and integrating both sides of the

equation we hdve
¢ .—.J idt (25-5)

Now, the voltage V¢ across a capacitor C is given by V.=¢/C. By combining equations, the voltage
Veis glven by

Ve = —é—jzdt | (25 - 6)




