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Preface

This book deals with linear programming and a selection of other topics which
can be handled by extending linear programming methods. It arose out of a
course given to undergraduate and postgraduate students from a wide range of
numerate disciplines. The minimal common mathematical background of these
students imposed severe restrictions on the prior knowledge 1 could assume. In
striving to avoid either excessive preliminary material or the trap of the ‘cook-
book’, I have adopted an approach which is rigorous and complete but informal
in presentation. The only mathematizal prerequisites are an ability to handie
equations and inequalities (knowledge of the theory of equations is not
required) and familiarity with summation notation. However, the reader will be
expected to follow arguments running, in some cases. over several chapters.

The text is also written to reflect some of the massive research effort that has
been directed towards linear programming and related areas. In particular,
aspects of linear programming computation, integer programming, network
problems and multiple objective methods have undergone considerable develop-
ment in the last decade. This work has influenced the choice of topics.

Informality of presentation means that, typically examples are solved before
generalities are discussed. The student is strongly advised to study the worked
examples carefully, even better, to try solving them himself — and then to
attempt some or all of the exercises. These are not optional. The only way to
really understand the material is by plenty of practice, both on routine and on
more demanding exercises. Answers or hints are provided for all exercises.

The book emphasises theory and computational methods which are widely
applied in all areas of industry and planning, and it is written with the idea of
computer implementation in mind (the ambitious reader might even try writing
his own code).

Chapters 1, 2, 3, 5 and 6 constitute the basic material on linear programming
most of which is used in most of the subsequent chapters. Chapter 4 is more
demanding, but not referred to again texcept in exercises). Chapter 7 is used in
Section 8.5 and Chapter 10 and the introductor- section of Chapter 9 15 referred
to in Chapters 10 and 12. Apart from this, Chapters 8,9, 10, 11 and 12 and even



10 Preface

certain sections from within them, are independent and can be read or skipped
as desired.

It gives me great pleasure {o acknowledge the stimulation derived from Doug
White, Lyn Thomas, and Simon French of the Department of Decision Theory
at the University of Manchester and to thank Regina Benveniste for discussions
on quadratic programing. My students have offered many helpful and valuable
suggestions over the years. All these have shaped my thoughts on mathematical
programming and how it should be presented. Some of the exercises use parts
(sometimes modified) of exam questions set for stud: nts at the University of
Manchester and permission to use them is gratefully acknowledge. Finally, a
sine qua non, the excellent typing of Jill Weatherall is much appreciated.

April 1984 Roger Hartley
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CHAPTER 1

Introduction

1.1 AN EXAMPLE - RECYCLING WASTE PAPER

The primary impetus for the study of Linear Programming Problems (LPs) is the
wide range of practical problems which can be, or have been, modelled as LPs.
LP modelling constitutes a study in itself (see' Further Reading) and, as our
intention is to concentrate on solution procedures, we will limit the discussion
to a single example. This is a simplified version of a model designed to explore
some of the possible benefits from recycling waste paper.

Let us assumec that the paper-making industry in a certain country makes, say,
twelve different types of paper and that current annual production of type i is
p; tons (i = 1,...,12). Some of the paper produced is lost permanently from
the system — exported, burnt, stored in libraries in the form of books, etc. —
and the remaining waste paper, »; tons of type i, has to be disposed of. One
possible rieans of mitigating the disposal problem is to recycle some of this
waste into secondary pulp, which can then be used as part of the input to the
production process, the other ingredient being virgin pulp. The technology of
“paper-making imposes a lower limit, a; for paper of type i, on.the proportion of
input which must be virgin pulp. The costs of collecting and processing waste
paper into secondary pulp should also be taken into account, but such costs can
be very difficult to measure and so we will seek to determine how miuch paper
should be recycled in order to minimise the total amount of virgin pulp used,
when a proportion X of the total waste paper is available for recycling. Fulfilling
this objective will also minimise the residual amount of waste paper to be
disposed of.

Let us define y(z;) to be the amount of virgin (secondary) pulp used as input
to the production of paper of type i (i = 1,...,12) and w;; to be the amount
of waste paper of type i used in the production of paper of typej in a year
(measured in tons). If a 5 per cent weight loss is involved in the prouuction
process,

095y; +095z; =p;, i=1,...,12 (1.1)
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The minimum virgin pulp requirement can be restated as
095y; =2 a;p;. i=1,...,12. (1.2)

The production process dictates that only certain waste papers can be used in
the production of other papers. So let us put a;; = 1, if waste paper of type i can
be used in secondary pulp for the production of paper of typej, and a;; = 0,
otherwise. Then we must have

12
zj= 2 ajwiy, J=1,...,12, (1.3)
i=1
and, since Av; tons of paper of type i are available for recycling,

12
ail-w,-j<)\v,-, i=1,...,12, . (1.4)
j=1
for the left-hand side of (1.4) is the total amount of waste paper of type i con-
sumed. When a;; = 0, w;; is absent from (1.3)/(1.4).
Our objective is to minimise total virgin pulp used, i.e.

e

Yi (1.5)

1

!
whilst also satisfying y;, z;, w;; 2 O fori, j = 1,...,12 and (1.1. . (1.4). This
example cxhibits the typical features of an LP: a linear objective function (1.5),
to be maximised or minimised subject to linear restrictions, or constraints (1.1)
—(1.4) on the non-negative variables. Any non-negative solution of the con-
straints is called a feasible solution. Any feasible solution maximising or
minimising the objective function is called optimal.

Some of the constraints are inequalities, such as (1.2) and (1.4); the
remainder are equalities. Inequality constraints can always be converted to
equalities by adding or subtracting a non-negative variable. Thus (1.2) can be
rewritten

0.95y; —s; = ajpi, i=1,...,12,
where 5; 2 0, and (1 .4) can be rewritten

12
2 a,'}‘WiI'+I,'=)\v,', i=1,...,12,

J=1

where #; 2 0. The variables introduced into the constraints are called slack
variables and often have a natural interpretation in the model. For example, t;
above is the amount of waste paper of type i, potentially available for recycling,
that is not actually used. Another useful trick for standardising problems is
based on the observation that minimising a function gives the same optimal



.

— S e

Sec. 1.2] A graphical method 15

solution(s) as maximising its negative, so that, in our waste paper problem, we
could have chosen to maximise

' 12
- X i
=1

We can now write the LP as

12

Pi: maximise 2 —v;
i=1

subject to  0.95y; +095z; = pi, i=1,....(12)

0.95y; =i = iPi, i=1,...,(12)
12
Z a,-jw,-j—z,-=0, j=1,...,(12)
i=1
12
T w1 = i=1,...,(12)
j=1 o
Vi, Ziy St Wijs 2y 11 = 0, ij=1,....(2).

Any LP, such as P1, which is written so that its objective function must be
maximised and with only equality constraints (in non-negative variables) is said
to be in standard equality form and this form will prove particularly valuable
when we come to the development of computational procedures.

Occasionally, problems arise in which not all the variables are required to be
pon-negative. Such unrestricted variables are called free variables and it is
straightforward to modify computational procedures to accommodate them (see
Exercise 2 of Chapter 3). Alternatively, if x; is a free variable we can write
x; =y; —z; (ie. substitute y; — z; throughout the problem for x;) where pj,
z; =20.In this way, at the expense of introducing extra variables, we can convert
the problem to standard equality form. In some problems there may be both
free variables and equality constraints and one can adopt the strategy of using
the equality constraint to express a free variable in terms of other variables and
thereby eliminating it from the other constraints and the objective function (see
Exercise 3). This has the advantage that the numbers of contraints and variables
are both reduced by one.

»

1.2 A GRAPHICAL METHODP

For the rest of this chapter we will concentrate on LPs with two variables and
describe a graphical procedure for solving them. Since such problems are
unlikely to arise in realistic models, the procedure is offered, not as a serious
competitor to more sophisticated methods but, rather, to illuminate some
essential features of linear optimis?tion. This geometrical approach can be



16 Introduction [Ch.1

developed into a systematic methodology of linear programming, but the
mathematical level involved would exceed the limits set for this book. In any
case, such a development is probably better employed in the elucidation of non-
linear (especially convex) programming. Instead, we will adopt an algebraic and
computational approach, but geometric ideas will sometimes be used to provide
an alternative viewpoint on important concepts.

To start, we shail examine the problem P2.

P2: maximise —2x; + 3x, (=2)
subject to 2x; —x, < 4 {O
X, — 22— 2 (1)
2+ x, 22 1y
X1, %2 20

In which we have labelled the constraints for future use. We will ignore the
objective function .for the moment. The constraints are represented in Fig. 1.1

X,
2 .
Feasible
1 Region (FR)
oY, 7 4 % /2 % 3 4

Figure 1.1 Feasible region of P2.

The equality corresponding to constraint [:2x; — x, = 4, gives the line
marked I in the figure. The points (x,, x, ) satisfying the first constraint lie on,
or to one side of, this line. To decide which side, we need only substitute a point
obviously on one side of the line and see if the constraint is satisfied. The origin
(0, 0) is usually the obvious choice and in the present case shows that points to
the left of the line I satisfy the constraint. This is indicated in the figure by
hatching the side of the line not satisfying the constraint, that is those points
(x;, x;) for which 2x; — x; > 4. The same has been done for the second and



Sec. 1.2} A graphical method 17

third constraints, In addition, the x, -axis has been hatched below to indicate the
constraint x, => 0 and the left-hand side of the x, -axis hatched to indicate x; >
0. The set of feasible points or solutions, called the feasible region, is the quadri-
lateral ABCD (including its interior).

The feasible region is redrawn in Fig. 1.2, with the hatching omitted. Also
included in this figure is a series of lines on which we have set the objective
function equal to various constants. Since the coefficients in the objective

"2

3L

; Increasing z z=0

X

U 3
Figure 1.2 Graphical solution of P2.

function do not change, the lines are all parallel. The line z = 0 includes points
which are feasible and the same is true of z = 2, improving the objective
function. However, we cannot improve the objective function as far as z = 4,
since this line includes no feasible points. The best we can achieve is the line
indicated with asterisks. This clearly includes the feasible point A, but no
feasible points can be found above this line. The optimal solution inust be A,
which lies on the lines I and III, and must, therefore, satisfy

xl— =“2
2.x1 +x2 =2

which has the solution (x, , xz) ( T 5) The maximal objective function value
isz=—2X$++3X+=2%
As another example, we shall examine

P3: minimise  2x, + 6x;
subjectto  x; +3x, 23 1))
le - X3 =2 (H)

X1, %20



