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PREFACE

In the fast several decades. impressive progress has been made in vibration analysis,
prompted by advances in technology. On the one hand, the requirement for the
analysis of increasingly gomplex systems has been instrumental in the development
of powerful computational techniques. On the other hand. the development of fast
digital computers has provided the means for the numerical implementation of
these techniques. Indeed, one of the most significant advances in recent years is the
finite element method, a method devele sed originally for the analysis of complex
structures. The method has proved to be much more versatile than conceived
originatly, finding applications in other areas, such as fluid mechnics and heat
transfer. At the same time, significant progress was being made in linear system
theory. permitting efficient derivation of the response of large-order systems.
Elements of Vibration Analysisy was written in recognition of these advances.

The second edition of Elements of Vibration Analysis differs from the first
cdition in several respects. In the first place. the appeal of the first few chapters has
been broadened bv the inclusion of more applied topics. as well as additional
explanations, exampies. and homework problems. Advanced matenal has been
transferred to later chapters. The chapter on the finite element method, Chap. 8,
has been rewritten almost entirely so as to reflect the more current thinking on the
subject, as well as to include moure recent developments. The section on the Routh-
Hurwitz criterion in Chap. 9 has been expanded. On the other hand, some
advanced material in Chap. 10 has been deleted. The chapter on random
vibrations, Chap. 11, has been enlarged by absorbing material on Fourier
transforms from Chap. 2 and by expanding the discussion of narrowband
processes. Chapter 12 represents an entirely new chapter, devoted to techniques for
the computation of the response on digital computers. The chapter includes
material indispensable in a modern course in vibrations. Finally, some of the
material in App. C has been rewriiten by placing the emphasis on physical

64773



vi PREFACE

implications. As a result of these revisions, the first part of the second edition is
mote accessible to juniors and should have broader appeal than the first edition.
Moreover, the material in later chapters makes this second edition an up-to-date
book on vibration analysis.
The bock contains material for several courses on vibrations. The material
covers a broad spectrum of subjects, from the very elementary to the more
advanced, and is arranged in increasing order of difficuity. The first five chapters of
the book are suitable for a beginning course on vibrations, offered at the junior or
.senior level. The material in Chaps. 6-12 can be used selectively for courses on
dynamics of structures, nonlinear oscillations, random vibrations, and advanced
vibrations, either at the senior, or first-year graduate level. To help the instructor in
tailoring the material to his or her needs, the book 1s reviewed briefly:

Chapter | is devoted to the free vibration of single-degree-of-freedom linear
systems. This is standard material for a beginning course on vibrations.
Chapter 2 discusses the response of single-degree-of-freedom linear systems to
external excitation in the form of harmonic, periodic, and nonperiodic forcing
functions. The response is obtained by the classical and Laplace transforma-
tion methods. A large number of applications is presented, If the response by
Laplace transformation is not to be included in a first course on vibrations,

then Secs. 2.17 and 2.18 can be omitted. )

Chapter 3 is concerned with the vibration of two-degree-of-freedom systems. The
material is presented in a way that makes the transiiion to multi-degree-of-
freedom systems relatively easy. The subjects of beat phenomenon and
vibration absorbers are discussed. The material is standard for a first course on
vibrations.

Chapter 4 presents a matrix approach to the vibration of multi-degree-of-freedom
systems, placing heavy emphasis on modal analysis. The methods for obtaining
the system response are ideally suited for automatic computation. The material
is suitable for a junior level course. Sections 4.11 through 4.13 can be omitted
on a first reading.

Chapter 5 is devoted to exact solutions to response problems associated with
continuous systems, such as strings, rods, shafts, and bars. Again the emphasis
is on modal analysis. The intimate connection between discrete and continu-
ous mathematical models receives special attention. The material is suitable
for juniors and seniors.

Chapter 6 provides an introduction to analytical dynamics. Its main purpose is to
present Lagrange’s equations of motion. The material is a prerequisite for later
chapters, where efficient ways of deriving the equations of motion are
necessary. The chapter is suitable for a senior-level course.

Chapter 7 discusses approximate methods for treating the vibration of continua for
which exact solutions are not feasible. Discretization methods based on series
solutions, such as the Rayleigh-Ritz method, and lumped methods are
presented. The material is suitable for seniors.
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Chapter 8 is concerned with the finite element method. The earlier material is
presented in a manner that can be easily understood by seniors. Later naterial
is more suitable for beginning graduate students.

Chapter 9 is the first of two chapters on nonlinear systems. It is devoted to such
qualitative questions as stability of equilibrium. The emphasis is on geometric
description of the motion by means of phase plane techniques. The material is
suitable for seniors or first-year graduate students, but Secs. 9.6 and 9.7 can be
omitted on a first reading. .

Chapter 10 uses perturbation techniques to obtain quantitive solutions to response
problems of nonlinear systems. Several methods are presented, and pheno-
mena typical of nonlinear systems are discussed. The material can be taught in
a senior or a first-year graduate course.

Chapter 11 is devoted to random vibrations. Various statistical tools are
introduced, with no prior knowledge of statistics assumed. The material in
Secs. 11.1 through 11.12 can be included in a senior-level course. In fact, its only
prerequisites are Chaps. 1 and 2, as it considers only the response of single-
degree-of-freedom linear systems to random excitation. On the other hand,
Secs. 11.13 through 11.18 consider multi-degree-of-freedom and continuous
systems and are recommended only for more advanced students.

Chapter 12 is concerned witff techniques for the determination of the response on a
digitai computer. Sections 12.2 through 12.5 discuss the response of linear
systems in continuous time by the transition matrix and Sec. 12.6 presents dis-
crete-time techniques. Section 12.7 is concerned with the response of nonlinear
systems. All this material is intended for a senior, or first-ycar graduate course.
Sections 12.8 through 12.12 are concerned with frequency-domain techniques
and in particular with aspects of implementation on a dlglldl computer. The
material is suitable for a graduate course.

Appendix A presents basic concepts involved in Fourier serics expansions, App. B
is devoted to elements of Laplace transformation, and App. C presents certain
concepts of linear algebra, with emphasis on matrix algebra. The appendixes
can beused for &Cqﬁi:’lﬁb afn Cluu\,.udx_y wokag l\ﬂ\)WlLUEu of the 5&0};\.(5 Qr
for review if the material was studied previously. :

It is expected that the material in Chaps. 1 through 3 and some of that in Chap. 4
will be used for a one-quarter, elementary cou:se. whether at the junior or senior
level. For a course lasting one semester, additional material from Chap. 4 and most
of Chap. 5 can be included. A second-level course on vibrations has many options.
Independent of these options, however, Chap. 6 must be regarded as a prerequisite
for further study. The choice among the remaining chapters depends on the natiire
of the intended course. In particular, Chaps. 7 and 8 are suitable far a course whose
main emphasis is on deterministic structural dynamics. Chapters 9 and 10 can form
the core for a course on nonlinear oscillations. Chapter {1 can be used for a course
on random vibrations. Finally, Chap. 12 is intended for an advanced, modern
course on vibration analysis, with emphasis on numerical results obtained on a
digital computer.



vili PRLFACE

The author wishes to thunk Jelirey & Beonighoi, v :oa Polytechnic
Institute and State University: Andrew 1 f dmondson, Univer-iiv of Tennessee:
Henryk Flachner, University of Southern California; Carl H. Gerhold, Texa:
A & M University; Charles M. Krousgrili, Purdue University: Donald L Margolis,
University of California. Davis; Kenneth G. McCornell, lowa State University
David A. Peters, Georgia Institute of Technology: Roger D. Quinn, Virginie
Polytechnic Institute and State University: Robert Fo Stedel. University .ol
California. Berkeley: Benson Tongue, Georgia Institute of Technology; and Wayne
W. Walter, Rochester Institute of Technology; who made valuable suggestions.
Thanks are due also to Mark A. Norris, Virginia Polytechnic Institute and State
University, for producing some of the plots. Last but not least. the author wishes to
thank Norma B. Guynn for her excelient job in typing the manuscript.

. : o3
LU s iVl CiF Uediii



CONTENTS

Chapter 1

11
1.2
1.3

1.4
1.5
1.6
1.7
1.8
1.9

Chapter 2

[N
ro —

24
25
26
2.7
238
29
210

Preface
Introduction

Free Response of Single-Degree- of—Freedom
Linear Systems

General Considerations

Characteristics of Discrete System Components
Differential Equations of Motion for First-Order and Second-
Order Linear Systems ’
Small Motions about Equilibrium Positions
Force-Free Response of First-Order Systems
Harmonic Oscillator

Free Vibration of Damped Second-Order Syslema
Logarithmic Decrement

Coulomb Damping. Dry Friction

Problems

Forced Response of SinglezDegree-of-Freedom
Linear Systems

General Considerations

Response of First-Order Systems to Harmonic Excitation.
Frequency Response

Response of Second-Order Systems to Harmoric Excitation
Rotating Unbalanced Masses

Whirling of Rotating Shafts

Harmonic Motion of the Support

Complex Vector Representation of Harmonic Motion
Vibration Isolation

Vibration Measuring Instruments .

Enecrgy Dissipation, Structural Damping

Xiv

10
13
17
18
24
30
31
34

45
45

46
50
56
58
63
66
67
67
71



X CONTENTY

Chapter 3

RN
32
33
34
35
36

Chapter 4

4.1
42
4.3
4.4
45
4.7
48
4.9
4.10

411

412
4.13
4.14

Chapter §
51
5.2

The Superposition Principle

L sponse to, Periodic Excitation. Fourier Series

The Unit Impulse. Impulse Response

The Unit Step Function. Step Response

Response to Arbitrary Excitation. The Convolution Integral
Shock Spectrum

System Response by the Laplace Transformation Method.
Transfer Function

General System Response

Problems

Two-Degree-of-Freedom Systems

Introduction

Equations of Motion for a Two-Degree-of-Freedom System
Free Vibration of Undamped Systems. Natural Modes
Coordinate Transformations, Coupling

Orthogonality of Modes. Natural Coordinates

Response of a Two-Degree-of-Freedom System to [Initial
Excitation

Beat Phenomenon

Response of a Two-Degree-of-Freedom System to Harmonic
Excitation

Undamped Vibration Absorbers:

Problems

Multi-Degree-of-Freedom Systems

Introduction

Newton’s Equations of Motion. Generalized Coordinates
Equations of Motion for Linear Systems. Matrix Formulation
Influence Coefhicients

Properties of the § 1ﬂ"ness and Inertia Coefficients

Tincar Transformrminne f‘nvmlmo

Undamped Free Vibration. Elgenvalue Problem
Orthogonality of Modal Vectors. Expansion Theorem
Response of Systems to Initial Excitation. Modal Analysis
Solution of the Eigenvalue Problem by the Characteristic
Determinant

Solution of the Eigenvalue Problem by the Matrix lteration.
Power Method Using Matrix Deflation

Systems Admitting Rigid-Body Motions

Rayleigh’s Quotient

General Response of Discrete Linear Systems. Modal Analysis
Problems

Continuous Systems. Exact Solutions

General Discussion
Relation between Discrete and Continuous Systems. Boundary-
Value Problem

73
75
83
85
89
92

95
99
101

107

107
108
110
116
119

123
125

129
131
134

140

140
142
145
148
153
157
161
167
170

174

178
185
181
194
200

204
204

205



53
54

55
5.6
5.7
58
59
510
5.1

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6

Chapter 7

71
7.2
7.3
74
7.5
1.6
7.7
78

Chapter 8

8.1
8.2

83
84
8.5

8.6
8.7

8.8
89

CONTENTS Xi

Free Vibration. The Eigenvalue Problem

Continuous versus Discrete Models for the Axial Vibration of
Rods

Bending Vibration of Bars. Boundary Conditions
Natural Modes of a Bar in Bending Vibration
Orthogonality of Natural Modes. Expansion Theorem
Rayleigh’s Quotient

Response of Systems by Modal Analysis

The Wave Equation

Kinetic and Potential Energy for Continuous Systems
Problems

Elements of Analytical Dynamics

General Discussion

Work and Energy

The Principle of Virtual Work

D’Alembert’s Principle

Lagrange’s Equations of Motion

Lagrange’s Equations of Motion for Lmear Systems
Problems

Continuous Systems. Approximate Methods

General Considerations

Rayleigh’s Energy Metnod

The Rayleigh-Ritz Method. The Inclusion Pnncxple
Assumed-Modes Method

Symmetrie and Antisymmetric Modes

Response of Systems by the Assumed-Modes Method
Holzer’s Method for Torsional Vibration

Lumped-Parameter Method Employing Influence Coefficients
Problems

The Finite Element Method

General Considerations.
Derivation of the Element Stiffness Matrix by the Direct
Approach

Element Equations of Motion. A Consistent Approach
Reference Systems

The Eguations of Motion for the Complete System. The
Assembling Process .

The Eigenvalue Problem. The Finite Element Method as a
Rayleigh-Ritz Method

Higher-Degree Interpolation Functions. Internal Nodes
The Hierarchical Finite Element Method

The Inclusion Principle Revisited

Problems ’y

209

216
220
223
227
232
235
238
240
242

245
245
246
248
252
253
260
264

266
266

267

270
282
28§ .
288
290
296
298

300
300

301
305
3n

318

328
331
339
342
344



Xil CONTENTS

Chapter 9

9.1
9.2
9.3

94
9.5
9.6
9.7

Chapter 10

10.1
10.2
103
104
10.5

10.6
10.7

Chapter 11

F1t
11.2
113
11.4
1.5
1.6

1.7
11.8
11.9
1110
RN
112

H13
t114
CUiS
1 16
117

1118

Nonlincar Systems. Geometric Theory

Introduction

Fundamental Concepts in Stability

Single-Degree-of-Freedom Autonomous Systems. Phase Plane
Plots

Routh-Hurwitz Criterion

Conservative Systems. Motion in the Large

Limit Cycles

Liapunov's Direct Method

Problems

Nonlinear Systems. Perturbatlon Methods

General Considerations -

The Fundamental Perturbation Technique

Secular Terms

Lindstedt’s Method

Forced Oscillation of Quasi-Harmonic Systems. Jump
Phenomenon

Subharmonics and Combination Harmonics

Systems with Time-Dependent Coefficients. Mathieu's Equation
Problems

Random Vibrations

General Considerations
Ensemble Averages. Stationary Random Processes

Time Averages. Ergodic Random Processes

Mean Square Values

Probuability Density Functions

Description of Random Data in Terms of Probability Denvty
Functions

Properties of Autocorrelation Functions

Response to Random Excitation. Fourier Transforms

Power Spectral Density Functions

Narrowband and Wideband Random Processes

Response of Lincar Systems to Stationary Random Excitation
Response of Single-Degree-of-Freedom Systems to Random
Excttation

Joint Probability Distoibutton of Two Random Vartables
Joint Properties of Stationary Random Processes

Joint Properties of Ergodic Rundom Processes

Response Cross-Correlation Functions for Linear Systems
Response of Multi-Degree-of-Freedom Systems to Random
Excitation

Response of Continuous Systems to Random Excitation
Problems

K

347

347
348

355
363
369
371
374
380

382
382
383
385
388

392
398
402
407

408

408
409
412
414
416

422
424
426
430
433
442

447
451
458
4538
460

463
471
474



Chapter 12

12.1
12.2
123
124
12.5

12,6
12.7
12.8
12.9
£2.10
12.11
12.12

Al
A2
Al
A4

B.1
B.2
B.3
B.4
B.5
B.6

C.1
C2
C3
C4

CONTENTS Xiii

Computational Techniques

Introduction N
Response of Linear Systems by the Transition Matrix
Computation of the Transition Matrix

Alternative Computation of the Transition Matrix
Response of General Damped Systems by the Transition
Matrix

Discrete-Time Systems

The Runge-Kutta Methods

The Frequency-Domain Convolution Theorem

Fourier Series as a Special Case of the Fourier Integral
Sampled Functions

The Discrete Fourier Transform

The Fast Fourier Transform

Problems

Appendixes

A Fourier Series

Introduction

Orthogonal Sets of Functions
Trigonometric Series

Complex Form of Fourier Series

B Elements of Laplace Transformation

General Definitions

Transformation of Derivatives

Transformation of Ordinary Differential Equations
The Inverse Laplace Transformation

The Convolution Integral. Borel’s Theorem

Table of Laplace Transform Pairs

C Elements of Linear Algebra

General Considerations
Matrices

Vector Spaces

Linear Transformations

Bibliography
Index

477
477
478
482
484

487
489
497
502
503
506
509
513
517

519

519

519
519
521
524

526

526
527
527
528
530
532

533

533
533
42
544

548
549 -



CHAPTER

ONE

FREE RESPONSE OF
SINGLE-DEGREE-OF-FREEDOM
LINEAR SYSTEMS

1.1 GENERAL CONSIDERATIONS

As mentioned in the Introduction, systems can be classified according to two
distinct types of mathematical models, namely, discrete and continuous. Discrete
models possess a finite number of degrees of freedom, whereas continuous models
possess an infinite number of degrees of freedom. The number of degrees of freedom
of a system is defined as the number of independent coordinates required to
describe its motion completely (see also Sec. 4.2). Of the discrete mathematical
models, the simplest ones are those described by a first-order or a second-order
ordinary differential equation with constant coefficients. A system described by a
single second-order differential equation is commonly referred to as a single-
degree-of-freedom system. Such a model is often used as a very crude approximation
for a generally more complex system, so that one may be tempted to regard its
importance as being only marginal. This would be a premature judgment, however,
because in cases in which a technique known as modal analysis can be employed,
the mathematical formulation associated with many hnear multi-degree-of-
freedom discrete systems and continuous systems can be reduced to sets of
independent second-order differential equations, each similar to the equation of a
single-degree-of-freedom system. Hence, a thorough study of single-degree-of-
freedom linear systems is amply justified. Unfortunately, the same technique
cannot be used for nonlinear multi-degree-of-freedom discrete and continuous
systems, The reason is that the above reduction is based on the principle of

1



2 ELEMENTS OF VIBRATION ANALYSIS

superposition, which applies only to linear systems (see Sec. 2.11). Nonlinear
systems are treated in Chaps. 9 and 10 of this text and require different methods of
analysis than do lirear systems.

The primary objective of this text is to study the behavior of systems subjected
to given excitations. The behavior of a system is characterized by the motion
caused by these excitations and is commonly referred to as the system response. The
motion is generally described by displacements, and less frequently by velocities or
accelerations. The excitations can be in the form of initial displacements and
velocities, or in the form of externally applied forces. The response of systems to
initial excitations is generally known as free response, whereas the response to
externally applied forces is known as forced response.

In this chapter we discuss the free response of single-degree-of-freedom linear
systems, whereas in Chap. 2 we present a relatively extensive treatment of forced
response. No particular distinction is made in this text between damped and
undamped systems, because the fatter can be regarded merely as an idealized
limiting case of the first. The response of both undamped and damped systems to
initial excitations is presented.

1.2 CHARACTERISTICS OF
DISCRETE SYSTEM COMPONENTS

The elements constituting a discrete mechanical system are of three types, namely,
those relating forces to displacements, velncities, and accelerations, respectively.

The most common example of a component relating forces to displacements is
the spring shown in Fig. 1.14. Springs are generally assumed to be massless, so that
a force F, acting at one end must be balanced by a force F; acting at the other e~d,
where the latter force is equal in magnitude but opposite in direction. Due to the
force F,, the spring undergoes an elongation equal to the difference between the
displacements x, and x; of the end points. A typical curve depicting F, as a function
.

X7 X

\y

| Linear range

. {characterized
by slope k)

(a) - (b)

Figure 1.1



FREE RESPONSE OF SINGLE-DEGREE-OF-FREEDOM LINEAR SYSTEMS 3

of the elongation x, — x, is shown in Fig. 1.1b; it corresponds to a so-called
“softening spring,” because for increasing elongations x, - x, the force F, tends to
increase at a diminishing rate. If the force F, tends to increase at a growing rate for
increasing elongations x; — x, the spring is referred to as a “stiffening spring.” The
force-elongation relation corresponding to Fig. 1.1b is clearly nonlinear. For small
values of x; — x;, however, the force can be regarded as being proportional to the
elongation, where the proportionality constant is the slope k. Hence, in the range in
which the force is proportional to the elongation the relation between the spring
force and the elongation can be written in the form

F, = k(xz — x,) (1.1

A spring operating in that range is said to be linear, and the constant k is referred to
as the spring constant, or the spring stiffness) It is customary to label the spring,
when it operates in the linear range, by its stiffness k. Note that the units of k are
pounds per inch (Ib/in) or newtons per meter (N/m). The force F, is an elastic force
known as the restoring force because, for a stretched spring, F, is ihe force that
tends to return the spring to the unstretched configuration. In many cases the
unstretched configuration coincides with the static equilibrium configuration (see
Sec. 1.4).

The element reiating forces to velocities is generally known as a damper; it
consists of a piston fitting loosely in a cylinder filled with oil or water so that the
viscous fluid can flow around the piston inside the cylinder. Such a damper is
known as a viscous damper or a dashpot and is depicted in Fig. 1.2a. The damper is
also assumed to be massless, so that a force F,; at one end must be balanced by a
corresponding force at the other end. If the forces F,; cause smooth shear in viscous
fluid, the curve F, versus X, — X, is likely to be linear, as shown in Fig. 1.2b, where
dots designate time derivatives. Hence, the relation between the damper force and
the velocity of one end of the damper relative to the other is

Fy=c(x; — %) (12)

Slope = ¢

Xy T Xy

@ (b)

Figuce 1.2
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The constant of proportionality ¢, which is merely the slope of the curve F; versus
X, — Xy, is called the coefficient of viscous damping. We shall refer to such dampers
by their viscous damping coeflicients c. The units of ¢ are pound - second per inch
(Ib-s/in) or newton-second per meter (N-s/m). The force F; is’a damping force
because it resists an increase in the relative velocity %, — %;.

The element relating forces to accelerations is clearly the discrete mass (Fig.
1.3a). This relation has the form

Fp = mx (1.3)

Equation (1.3) is a statement of Newton’s second law of motion, according to
which the force F,, is proportional to the acceleration X, measured with respect to
an inertial reference frame, where the proportionality constant is simply the mass m
(see Fig. 1.3b). The units of m are pound - second? per inch (Ib-s?/in) or kilograms
(kg). Note that in SI units the kilogram is a basic unit and the newton is a derived
unit.

The physical properties of the components are recognized as being described in
Figs. 1.1b, 1.2b, and 1.3b with the constants k, ¢, and m playing the role of
parameters. It should be reiterated that, unless otherwise stated, springs and
dampers possess no mass. On the other hand, masses are assumed to behave like
rigid bodies.

The preceding discussion is concerned exclusively with translational motion,
although there are systems, such as those in torsional vibration, that undergo
rotational motion. There is complete analogy between systems in axial and
torsional vibration, with the counterparts of springs, viscous dampers, and masses
being torsional springs, torsional viscous dampers, and disks possessing mass.
moments of inertia. Indeed, denoting the angular displacements at the two end
points of a torsional spring by 8, and 6,, and the restoring torque in the spring k by
M, the curve M versus 6, — @, is similar to that given in Fig. 1.1b. Moreover,
denotmg the damping torque by M, and the dampmg coeflicient of the torsional
SO damper by 2, the ourve M, vercus A. — A, is similar to that of Fig. 1.2b.

YIOLOWE LAt el

Siope = m

(@) (h)

Figure 1.3
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Finally, if the torsional system contains a disk of polar mass moment of inertia 1,
and the disk undergoes the angular displacement ), then the curve M, versus 0 is
similar to that of Fig. 1.3b, where M| is the incrtia torque. Of course, the moment of
inertia [ 1s simply the slope of that curve. Note that the units of the torsional spring
k are pound-inch per radian (Ib-in/rad) or newton meter per radian (N-mirad).
etc.

On occasions, certain dynamical systems counsisting of distributed clastic
members and lumped rigid masses can be approximated by strictly jumped
systems. The approximation is based on the assumption that the mass of the
distributed elastic member is sufficiently small, relative to the lumped masses, that
it can be ignored. In this case, the fact that the elastic member is distributed loses ali
meaning. so that the elastic member can be replaced by an equivalent spring. The
equivalent spring constant is determined by imagining a spring yielding the same
displacement as the elastic member when subjected to the same force, or torque.
1 he procedure is lliustrated in Exampie 1.1 for a member in torsion and in kxampie
1.2 for a member in bending.

At times several springs are used in various combinations. Of particular
interest are springs connected in parallel and springs connected in series, as shown in
Figs. 1.4u and b, respectively. We shall be concerned here with linear springs. For
the springs in paratlel of Fig. 1.44, the force F; divides itself into the forces F;, and
F, in the corresponding springs k, and k,. Because the springs are linear, we have
the relations

Fop = ki(x; — xy) Foo = ka(x; — xy) Z1-4)

But the forces Fy, and F,; must add up to the total force F,, or F, = F,; + F;;, from
which it follows that

Fy = keg(xz — xy) keq = ky + k3 (1.5)

where k., denotes the stiffness of an equivalent spring representing the combined

effect of k| and k,. If a number n of springs of stiffnesses k; (i =1, 2,..., n) are
arranged in parallel, then it is not difficult to show that

keg = :i k; (16)

For springs in series, as shown in Fig. 1.4b, we can write the relations

Fs:kl(xo_xl) Fs:kz(.Yz—Xo) (17)

X 1 RY o 2 § 2
B e ek A A e b A A et s SEEESY
E K, k) F

5 s

Figure 1.4



