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Preface and Introduction

Due to the fundamental role of differential equations in science and
enginecring it has long been a basic task of numerical analysts to generate
numerical values of solutions to differential equations. Nearly all
approaches to this task involve a “finitization™ of the original differential
cquation problem, usually by a projection into a finite-dimensional space.
By far the most popular of these finitization processes consists of a
reduction to a difference equation problem for functions which take
values only on a grid of argument points. Although some of these finite-
difference methods have been known for a long time, their wide applica-
bility and great efficiency came to light only with the spread of electronic
computers, This in turn strongly stimulated research on the properties
and practical use of finite-difference methods.

While the theory oi partial differentiod cquations and their discrete
analogues is a very hard subject, and progress is consequently slow, the
initial value problem for a system of first order ordinary differential
equations lends tiseli’ so naturally to discretization that hundreds of
numerical analvsts have felt mspired to invent an ever-increasig number
of finite-difierence methods for its sotution. For about 15 years. there
has hardly been an issuc of o numcrical journal without new results
ol this kind: but clearlv the vast maitority of these methods have okt been
variations of a few basic themes. In this situation. the clussical text-
book by P. Henrici has served as a lighthouse: it has established a clear
framework of concepts and many fundamental resuits. However. it
appears that now - 10 years later - a further analysis of those basic
themes is due, considering the immense productivity during this period.

It is the aim of this monograph 1o give such an analysis. This text
is not an introduction to the use of finite-difference methods: rather it
assumes that the reader has a knowledge of the field. preferably including
practical experience in the computational solution of differential equa-
tions. It has been my intention to make such a reader aware of the
structure of the methods which he has used so often and to help him
understand their properties. I really wanted —-as the title of the book
indicates -to analvze discretization methods in general, and particular
classes of such methods, oy muthernatical objects. This point of view
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forced me to neglect to a considerable extent the practical aspects of
solving differential equations numerically. (Fortunately, a few recent
textbooks—noteably Gear [6] and Lambert [3]--help to fill that gap.)

Another restriction--which is not clear from the title— is the strong
emphasis on initial value problems for ordinary differeatial equations.
Only i the first chapter have [ skeiched a general theory of the mathe-
matical objects which I have called “discretization methods™. This part
is applicabie to a wide variety of procedures which replace an infinitesimal
problem by a sequence of finite-dimensional problems. The remainder
of the text refers to systems of first order ditterential equations only.
Originally, I had intended to consider both initial and boundary value
problems and to develop parallel theories as far as possible (using the
concept of stability also in the boundury vaiuc probicm context); buit
the manuscript grew too long and [ had to restrict myself to initial value
problems.

Within these severe restrictions [ hope 1o have covered a good deal
of material. The presentation attempts to make the book largely self-
contained. More important, [ have used a consistent notation and
terminology throughout the entire volume, as far as feasibie. At a few
places, this has perhaps led to a “twist” in presentation; but I felt it
worthwhile to adhere to a common frame of reference, since the exposi-
tion of such a frame has been one of the main motivations for writing
this book. Thz numerous examples are never meant as suggestions for
practical computation but as illustrations for the theoretical develop-
ment.

As mentioned above, Chapter 1 deals with the general structure of

discretization methods. Particular emphasis has been placed on the theory

of asymptotic expansions and their application. 1t appears that they may
also be used with various other approximation procedures for infinitesi-
mal problems, procedures which are normally not considered as dis-
creiization methods but which may be fitted into our theory. (To facilitate
such ihterpretations I have used a sequence of integers as discretization
parameters in place of the stepsizes.) A section on “error analysis”
attempts to outline several important aspects of error evaluations in a
general manner.

Chapter 2 is devoted to special features of discretization methods for
initial value problems for ordinary differential equations. The first two
sections present mainly background material for an analysis which in-
volves the well-known iimit process h—+0: a fixed finite interval of in-
tegration is subdivided by grids with finer and finer steps. The last section
of Chapter 2, however, deals with a different limit process: the interval
of integration is extended farther and farther while the stepsize remains
fixed. It is to be expected that a theory of this limit process “T— 0"
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may serve as a basis for an understanding of the behavior of discretization
methods on long intervals, with relatively large steps, in the same way
that the #—0 theory has proved to be a good model far the case of small
steps on relatively short intervals.

" The remainder of the treatise analyzes particular classes of methods.
The two most distinctive features of such  methods, the “muitistage”
and the “multistep” features, are treated separately at first. Thus, in
Chapter 3, we consider one-step methods which “remember” only the
value of the approximate solution at the previous gridpeint but use this
value in a computational process which runs through a number of stages,
with re-substitutions in each stage (this process may also be sirongly
implicit). Butcher’s abstract algebraic theory of such processes permits
a rather elegant approach to various structural investigations, such as
guestions of equivalence, symmetry, etc. The theory of asymptotic ex- |
pansions provides a firm basis for the analysis of both the locai und the
global discretization error. The last section of Chapter 3 is devoted to
the T-» o0 limit process; here a number of results are derived and direc-
tions for further research are outlined. A number of intuitive wonjec-
tures are shown to be false withoug further assumptions.

In Chapter 4, we analyze discretization methods which usc values
of the approximate solution at several previous gridpoints but do not
permit re-substitutions into the differential equations, i.c.. linear
multistep methods. After an exposition of the wellknown accuricy and
stability theory for such methods, we outline a theory of “cyclic” multi-
step methods which employ different k-step procedures in a cyclic “ashion
as the computation moves along (as suggested by Donelson and itansen).
The investigations of Gragg on asymptotic expansions for linzar muliti-
step methods have been presented and supplemented by a generai analysis
of the symmetric case. Again tire fast seciion o ihe Chiapicd s bl
reserved for the T-»oc th=ory.

After these preparations, we discuss general multistage multistep
methods in Chapter 5. This class of methods is so wide that we have con-
centrated on the analysis of important subclasses, such as pradictor-
corrector methods, hybrid methods, and others. In agreement with the
intentions of the book it appeared relevant to point out typic.l restric-
tions which peiniit farther-reaching assertions. New results voncern the
principal error function of general predictor-corrector methnds and an
extension of the concept of effective order to multistep metheis. Cyclic
methods are taken up again in a more general context.

Methods which explicitly use derivatives of the right hand <:.i» of the

 differential equation have been analyzed in the first section of C hapter 6

this class includes power series metheds, Lie series methods. Runge-




X Preface and Introduction

Kutta-Fehlberg methods and the like. The Nordsiech-Gear mudiivalue
approach did not it into the pattern of Chapter S; I have tried to give a
consistent account of its theory. Last but not least [ have inciuded an
analysis of extrepolation methods which have proved to be most powerful
in practical computation; a particular effort was devoted to a clarifica-
tion of the stability properties of such methods.

Naturally it has not been possible to achieve full coverage of the
field. In particular. it seemed premature to force a rigid terminology
upon developments which may not yet have found their finel form. For
this reason I have not included an account of the “variable coetficient™
approach of Brunner {1}, Lambert {1}, and others, although it appears
to be verv promicing  Also. the use of spline funciions was omiued to-
gether with that of various non-polynomial local approximants (see.
e. g., Gautschi [2]. Lambert and Shaw [1]. Nickel and Rieder {1]).
Finally. I did not dare to propose a refined theory of “stiff methods™
at this time, although 1 hope that my theory of strong exponential stub-
ility will provide one of the bases for such a theory.

A few remarks concerning the bibliography are necessary. | had
originally planned to include a comprchensive bibliography of more
than a thousand entries. However, the use of such a bibliography in the
text would necessarily have been restricted to endless enumerations and
thus not have been very helpful. Therefore, 1 decided to restrict my
references essentially to those publications whose results I either quoted
without proot or whose arguments [ followed exceedingly closely. Thus
the bibliography in this book is quite meager and contains-—-besides a
number of “classics’™ - only a strangely biased selection from the relevant
literature. | sincerely hope that the many colleagues whose important
contributions | have not quoted will appreciate this reasoning and be
reassured by the discovery of how many other important papers have
not been quoted. Clearly, the ideas of innumerable papers have influenced
the contents of this book though they are not explicitly nientioned.

Similarly, my thoughts about the subject could only mature through
personal contact and discussion with many of the prominent numerical
analysts all over the world. It would be unfair to enumerate a few of
the mamy names: all colleagues whom [ had a chance to ask about
their view . on discretization methods are silent co-authors of this text,
and 1 wish o thank them accordingly.

Phe saneseript was prepared between the summers of 1969 and
$571 [ooekd pot have been written had | not been able to spendd he
car t9es 6 without much teaching obligation—-at the University of
adfornia o San Dicgo under a National Science Fdundation Senior
Feitowsdup More than two thirds of the manuscript originated during

3
¢
S
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that pleasant year in Southern California for which [ have to thank
above all the chairman of the UCSD Mathematics D artment, my
friend Helmut Roehrl. The remainder of the manuscript I somehow
managed to complete at weekends, evenings, etc. during the following
year, despite my many duties in Vienna, and during a “working vaca-
tion” with my friends at the University of Dundee.

The typing of Chapters 1 through 4 was done by Lillian Johnson at
UCSD. that of Chapters 5 and 6 by Christine Grill at the Technical
University of Vienna. Miss Grill also re-typed and rere-typed many
pages and did a lot of editorial work on the manusciipt. Further editorial
work and proofreading was done by a number of my young colleagues
at Vienna. principally by W. Baron, R. Frank. and R. Mischak. To all
these 1 wish to ¢xpress my gratitude.

Another word of thanks is due to my friend and colleague Jack
Lambert at Dundee. Although he was hard-pressed by the preparation
of a manuscript himself, he kindly read the entire text ard corrected many
of my blunders with regard to the use of the English language. Further
improvements in style were suggested by Kenneth Wickwire. (I ventured
to write this book in English because it will be more easily read in poor
English than in good German by 909, of my intended readers.)

The co-cperation [ have received from Springer-Verlag has been most
pleasing. The type-setting and the production of the book are of the usual
high Springer quality. ‘

Finally. [ wish to give praise to my dear wife Christine who suffered,
without much complaint, severe restrictions of our home life during mose
than 2 years. At the same time, her loving care and reassurance helped
me 1o get on with the work. If there is just one person in the world who
will rejoice in the completion of this book it will be she.

Vienna, June 72
Hans I. Stetter
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Chapter 1
General Discretization Methods

In this introductory chapter we consider general aspects of dis-
cretization methods. Much of the theory is applicable not only to stan-
dard discretization methods for ordinary differential equations (both
initial and boundary value problems) but also to a great variety of other
numerical methods as indicated in the Preface (see also the end of Section
1.1.1). It should be emphasized that this is also true for the material on
asymptotic expansions and their applications, although we have not
elaborated on this. The chapter is concluded by a few remarks on the
practical aspects of “solving” ordinary differential equations by discreti-
zation methods.

1.1 Basic Definitiorfs
1.1.1 Discretization Methods

Def. 1.1.1. Throughout, the problem whose solution is to be approximated

by a discretization method will be called the original problem. It is

specified by a triple {E, E°, F} whére E and E° are Banach-spaces and

F: E—E®, with 0in the range of F. A true solution of the original problem -
is an element z€ E such that

(1.1.1) Fz=0.

We will always assume that a true solution of the original problem
exists and is unique (the uniqueness may often be ubtained by .suitably
restricting the domain of F); we will not consider existence and uniqueness
questions for the original problem.

Since we ‘are dealing with the numerical solution of (real) ordinary
differential equations, E und E® will normally be spaces of continuous
functions from an interval in R to IR® and the mapping F will be defined
by a differential operator. Initial and/or boundary conditions are included
in the definitions of E, F or the domain of F as seems appropriate.
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Example. E=CV0.1], with v = max )

sefoL )
i

E'=R xC[0,1], with |\ ,
i\

;
\.i" = |dpl + max ldin|:
Ty oot

AU RS
(i 1'1'::< , ) )e—'!; for re £
’ S (),

where z,eR, fe C(R-Rj {t Lipschitz-continuousy are the data of the problem.

The true solution of the original problem thus specified (viz. the solution of the dif-
ferential equation ¥ = f{y), with initial condition v(0)= z,} exists and is unique.

The basic idea of a discretization method is to replace the original
probler by an infinite sequence of finite-dimensional problems each of
which can be solved “constructively” in the sense of numerical mathe-
matics. The replacement is to be such that the solutions of these finite-
dimensional problems approximate, in a sease to be. defined, the true
solution z of the original problem better and better the further one
proceeds in the sequence. Thus, onc can obtain an arbitrarily good
approximation to z by taking the solution of a suitably chosen problem in
the sequence.

Of course, it will generally not be possible to obtain the solution of
this finite-dimensional problem with arbitrary - accuracy on a given
computing tool and with a given computational effort (see Section 1.5).
Nevertheless, the construction of discretization methods commenly
follows the reasoning in the above paragraph.

Def. 1.1.2. 4 discretization method W (applicable to a given ovigmal
problen; B=1E, E°, F}} consists of an infinite sequence of quintuples
{E, ES A, A% @,} .. Where

E, and E! are finite-dimensional Banach spaces;

A,: E-E, and A?: E°-»E? are linear mappings with

]im A, ¥l =1yl Tor cach fixed peE.
lim A dll o= |dlige  for cach fixed de E;
and @, (E—=E"—(E,—E?), with F in the domain of all ¢,.
IN' is an infinite subset of N.

Def. 1.1.3. A discretization D is an infinite sequence of triples
{E, E2, F,},cy.» where E, and E? are finite-dimensional Banach spaces;
F,E,—~E2.

A solution of the discretization D is a sequence {{,},en (o€ Ep
such that

(1.1.3) F,{,=0, neN".

N’ is again an infinite subset of N.
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Def. 1.1.4. The discretization D={E, E°,F,}, - is called the discretiza-
tion of the original problem W= {E. E°, F} gencrated by the discretization
method W= {E_ES A AL, ¢, . if M is applicable to P and

N <N,
¥ E,=E, L)=E
T " "] for neN'".
= @ulF) {

In this case T is denoted by IR

Remark. in the following, we will assume throughout {without loss of
gf’ncraht\)"h‘n IN" =IN" and that the sequences {E,} and {E?} of Mand

v_"‘\ 1;, {CSp. Ut weniial.

I'urthermore, we will always assume that the dimensions of E, and
E? are the same. This is a trivial necessary condition for the existence

n

of a unique {, which satisfies {1.1.3).

Examp.e. Consider the original problem of the Example following Def. 1.1.1. The wcll-
known Euler method (polygon method) may be characterized as a discretization method
applicable to this problem as follows:

For nelN'=IN, let G,= |v,n.v=0(1}n; and

\
E,=(G,—R). with {n|, = max r;(‘-)E
LA

v=0ilm |

E) =@, R). with gy =|d(0)|+ max

v=1(1n

»

)

(A,.)f‘)(;;\) =) ( ! \> for yek:

H

(1.1.4) [%('r‘w.’](-'?»ﬁ =
N

e I
A A

The exmstence of a umque solution sequence [J,) of the discretization is trivial sincz the

valnes of the ¢, are defined recursively.

A discretization method YN applicable to the original problem R not
only generates a discretization D =9R(P) of P but establishes at the
same time. throogh its mappings A, and A?, relations between the spaces
of R and its discretization IN(P) which permit an interpretation of
P('P) and its solution ;é,,} as an approximation of R and its (rue solution
z. This will be elaborated in the following sections.



4 1 General Discretization Methods

The relations between the spaces and mappings involved in the
original problem and its discretization can be visualized by the following
diagram:

E —— F° original problem
- .
A,,J lwn IAS
E, —f~ E°  discretization, nelN"

Fig. 1.1. Relation between the elements of a discretization method

The existence and uniqueness of a true solution z for the original
problem does not automatically imply the existence and uniqueness of
{, which satisfy (1.1.3). Therefore, we will explicitly establish the unique
solvability of F{,=0 for many of the discretization methods under
discussion. Furthermore, we will prove a resuli (Theorem 1.2.3) which
guarantees the existence of a umnique {, for all sufficiently large n for
reasonable discretization methods. For many classes of problems and
discretization methods, the unique solvability of (1.1.3) is trivial.

As in the example followiag Def. 1.1.4, in our applications the spaces
E, and E? will normally be spaces of functions mapping discrete and
finite subsets of intervals (so-called “grids™) into R®. The mappings A,
and A? will “discretize” the continuous functions of E and E? into grid
functions. The mappings F,=@,(F) will be defined by difference oper-
ators relative to the grids. "

Def. 1.1.1—1.1.4 also admit essentially different interpretations. Con-
sider, e.g., the original problem of the previous example, with all func-
tions arbitrarily many times differentiable, and choose

= {polynomials of degree <n}:

A,y = polynomial in E, obtained by the truncation
of the formal power series of yeE ;

:RXEn-I;

EO
(535 )
A (d(z) L d(r)

n(0)~z,
E, , f E .
= (’7 - n—l f("(;))), o 8 S

For the generated discretization, (1.1.3) consists of a system of n+1
equations for the n+1 coefficients of £, whxch is considered as an
approximation to A, z.

A number of the general concepts and results also make sense for a
varicty of such unorthodox “discretizations” {2.g. Ritz and Galerkin's
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methods for boundary vaiue problems). Also it is immediately clear that
most results apply to standard discretizations of partial differential equa-
tions, at least when the side conditions are not too complicated. However,
in ihe more specialized parts ¢f this treatise we will restrict ourselves
cxclusively to genuine discretizations of ordinary differential equation
problems.

1.1.2 Consistency

To be useful as a too! for obtaining an approximation to the solution

-z of (1.1.1), a discretization method should gencrate a discretization
which approximates the original problem in the following sense:

Def. 1.1.5. A discretization method M= E, EX A A, 0,)..n appli-

cable to the original problem P={E, E°, F} 15 Called consistent with
War yeE if yisin the domain of F and of ¢,(F)A,. neN’, and

(1.1.5) lim [ @,(F)A, v~ AYF ylge=0.

_ neN
M is called consistent with B if it is consistent with ¥ at each yeE.

If M is consistent with R (at v) the discretization M(R) is also called
consistent with 4 (at y).
Def. 1.1.6. In the situation of Def. 1.1.5, M and M(R) are called con-
sistent with R of order p at y if
(1.1.6) (0u(F) Ay~ ALF Yl rg=0(n™") as nsox.
In connection with the order of consistency, the reference “at z” may
be omitted.
Exampic. As in Section 1 1.1. For any ye C'V[0,1], we have fror: (1.1.2) and (1.1.4).
W(0)—~z,) = (¥(0)—z4), v=0,

IS T K i o
)
(0 v=0,

- v—1" . 1 v
AR (V—) v=1(1)n, with zve(L- ‘-).
n n n

/

' Al limit processes n-»« carry the restriction ne N whlch we will omit from now on.



