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Preface

Features of This
Book

Pseudocode

Abstract Data Types

The study of data structures is both exciting and challenging. It is excit-
ing because it presents a wide range of programming techniques that
make it possible to solve larger and more complex problems. It is chal-
lenging because the complex nature of data structures brings with it
many concepts that change the way we approach the design of programs.
Because the study of data structures encompasses an abundant
amount of material, you will find that it is not possible to cover all of it in
one term. In fact, data structures is such a pervasive subject that you will
find it taught in lower-division, upper-division, and graduate programs.

Our primary focus in this text is to present data structures as an in-
troductory subject, taught in a lower-division course. With this focus
in mind, we present the material in a simple, straightforward manner
with many examples and figures. We also deemphasize the mathemat-
ical aspect of data structures, leaving the formal mathematical proofs
of the algorithms for later courses.

Pseudocode is an English-like presentation of the steps needed to
solve a problem. It is written with a relaxed syntax that allows stu-
dents to solve a problem at a level that hides the detail while they con-
centrate on the problem requirements. In other words, it allows
students to concentrate on the big picture.

In addition to being an excellent design tool, pseudocode is also
language independent. Consequently, students can use the same
pseudocode design to implement an algorithm in several different lan-
guages. We developed our pseudocode syntax in our data structures
classes over a 15-year period. During that time, our students have im-
plemented the pseudocode algorithms in Pascal, C, and C++. In this
text, we use C++ for all of our code implementations.

As we discuss the various data structures, we first present the gen-
eral principles using diagrams to help the student visualize the concept.
If the data structure is large and complex enough to require several al-
gorithms, we use a structure chart to present a design solution. Once
the design and structure are fully understood, we present a pseudocode
algorithm, followed as appropriate by its C++ implementation.

The second major feature of this text is its use of abstract data types
(ADTs) implemented as C++ classes. To make ADTs data independent,
we use template classes. All ADTs accept either one (data) or two (data
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Structure and Style

Visual Approach

Pedagogical End
Materials

Organization And
Order Of Topics

and key) arguments. In this way any data type, including derived types
and structures, can be used with all ADTs. Conversely, each ADT can
be used with any data type as long as the required operators are pre-
defined for that type. We introduce the concept immediately in Chap-
ter 1 and use it extensively throughout the text.

Not every data structure should be implemented as an ADT
class. However, where appropriate, we develop a complete C++ im-
plementation for the student’s study and use. Specifically, students
will find ADT class implementations for Lists (Chapter 3), Stacks
(Chapter 4), Queues (Chapter 5), AVL Trees (Chapter 8), B-Trees
(Chapter 10), and Graphs (Chapter 12). The code for all of the ADTs
is available on the Instructor’s Materials page at the Brooks/Cole
Web site www.brookscole.com/compsci/gilberg/cs2pp.

One of our basic educational tenets is that good habits are formed
early. The corollary is that bad habits are hard to break. Therefore,
we consistently emphasize the principles of structured programming
and software engineering. Every algorithm and program in the book
uses a consistent style. As the algorithms and programs are ana-
lyzed, style and standards are further explained. While we acknowl-
edge that there are many good styles, our experience has shown that
if students are exposed to a good style and implement it, they will be
better able to adapt to other good styles. On the other hand, unlearn-
ing sloppy short-cut habits is very difficult.

A brief scan of the book will demonstrate that our approach is prima-
rily visual. There are over 345 figures, 35 tables, 140 algorithms, 180
programs, and numerous code examples. Although this amount of
material tends to create a large book, these materials make it much
easier for students to follow the concepts.

End of chapter materials reenforce what the student has learned. The
important topics in the chapter are summarized in bulleted lists. Fol-
lowing the summary are three practice sets.

Exercises are multiple choice and short answer questions covering
the material in the chapter. The answers to the odd numbered ques-
tions are included in the back of the book.

Problems are short assignments that ask the student to develop a
pseudocode algorithm or write a short program to be run on a comput-
er. These problems can usually be developed in 2 to 3 hours. The in-
structor's manual contains complete solutions for all exercises and
problems.

Projects are longer, major assignments that may take an average
student 6 to 9 hours or more to develop.

We have tried to build flexibility into the text so that the material may
be covered in the order that best suits the needs of a particular class.
Although we use the materials in the order presented in the text, there
are other possible sequences (shown in the figure on this page). We
recommend that you assign Chapter 1 as general reading. It contains
basic information on pseudocode, abstract data types, and algorith-
mics students will need for the rest of the text.
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The first two sections of Chapter 2 review sequential and binary
search concepts. The third section, hashed list searches, may be new
material. If you have covered search algorithms in your programiming
class, you may save this chapter for later. On the other hand, if your
students have not studied searching algorithms, then you will need to
cover at least the first section. Many of the algorithms in the following
chapters require an understanding of sequentijal and ordered list
searching. In many texts, sorting is covered with searching. Because
our sorting chapter includes the recursive implementation of quick
sort and heap sort (which requires an understanding of trees and
heaps), we place it at the end of the text. With the exception of these
two sorts, however, it could be covered before Chapter 3.

Chapter 3 introduces linear lists and the basic linked list data struc-
tures. It also introduces the first complete ADT class. For these reasons,
Chapter 3 should be covered before the remaining chapters in the text.

Chapter 1
Introduction
Chapter 2
Searlching
Chapter 3 Chapter 11
Linked Lists Advanced Sorting
i Concepts
Chapter 4 Chapter 6
Stacks Recursion
Chapter 5 Chapter 7 Chapter 12
Queues Introduction to Trees Graphs
Chapter 8
Search Trees
Chapter 9 Chapter 10
Heaps Multiway Trees

Possible subject sequences

The stack concept (Chapter 4) is basic to an understanding of re-
cursion (Chapter 6), and recursion is in tum required to understand
trees (Chapters 7, 8, and 10) and heaps (Chapter 9). Likewise, queues
(Chapter 5) are used in breadth-first traversals in Chapters 7 and 12.

Chapter 9, Heaps, is a stand-alone chapter. Its only outside refer-
ence is the heap sort in Chapter 11.

We end the text with graphs in Chapter 12. Like many other data
structure subjects, a complete course could be devoted to graphs. In
this chapter, we review some basic graph concepts. Although this ma-
terial could be covered anytime after Chapter 3, you will find that it con-
tains some of the most difficult algorithms in the text. For this reason,
we recommend that you present Chapter 12 at the end of the term,
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when your students will be much better prepared to handle the materi-
al.

No text of this scope can be developed without the support of many
people. This is especially true for this text. The basic algorithms were
field-tested by our students at De Anza College. Our first acknowledg-
ment, therefore, has to be to the hundreds of students who by using
and commenting on the text made a vital contribution. We especially
thank our student, Scott Demouthe, who not only proofed the text, but
verified every exercise and problem at the ends of the chapters.

We would also like to acknowledge the support of the De Anza staff.
Their encouragement helped us launch the project, and their comments
contributed to its success. To name them all is impossible, but we especial-
ly thank John Perry, Delia Garbacea, and George Rice.

To anyone who has not been through the process, the value of peer
reviews cannot be fully appreciated. Writing a text rapidly becomes a
myopic process. The important guidance of reviewers who can stand
back and review the text as a whole cannot be measured. To twist an
old cliche, “They are not valuable, they are priceless.” We would espe-
cially like to acknowledge the contributions of the following reviewers:

James Clark, University of Tennessee, Martin

Roman Erenshteyn, Goldey-Beacom College

James Glenn, University of Maryland

Tracy Bradley Maples, California State University—Long Beach
Shensheng Zhao, Governors State University

Our thanks also go to our editors and staff at Brooks/Cole, Kallie
Swanson, Grace Fujimoto, and Mary Vezilich. We would also like to ac-
knowledge Kelli Jauron and Kathy Davis at Carlisle Publishers Services.

Last, and most obviously not the least, we thank our families and
friends for their support. Many years ago an author described writing
a text as a “locking yourself in a room” process. While the authors suf-
fer through the writing process, families and friends suffer through
their absence. We can only hope that as they view the final product,
they feel that their sacrifices were worth it.

Richard F. Gilberg
Behrouz A. Forouzan
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Introduction

This text assumes that the student has a solid foun-
dation in structured programming principles and has
written programs of moderate complexity. Although
the text uses C++ for all of its implementation exam-
ples, the design and logic of the data structure algo-
rithms are based on pseudocode. This approach
creates a language-independent environment for the
algorithms.

In this chapter we establish a background for the
tools used in the rest of the text, most specifically
pseudocode, the abstract data type, and algorithm
efficiency analysis. We also introduce the measures
we use throughout the text to discuss algorithm
efficiency.




