H i EEEEEE
BRASREE RIS

FAREFIRY C++ PHESSCIY
DATA STRUCTURES

A Pseudocode
Approach
withC++

VA0

&Xi,

A R AP H R4t FEEET HIREE e

www.pptph.com.cn e

SN E St R SH AR TS Sk

$YIRLSHIBA C++1HiEScH
(BEX hF)

Data Structures A Pseudocode Approach with C++

Richard F. Gilberg

Behrouz A. Forouzan

THOMSON

ZA RGP B R AERFIHEER L

PSTERRGRH (CIP) Bidl

BRI C+AISEIL / (32) FHI/REM (Gilberg, R.E.), (3£) #/RELH (Forowzan, B.A.)

iz . Jbii: ARHSEHHARAE, 2002.1
ISBN 7-115-09766-6

L. II.O%..OF... N OHELEH—HELQCESFEFRIT—RL IV.TP311.12
o E R AEHE CIP HdEZF (2001) 3 084700 5
T

Richard F. Gilberg , Behrouz A. Forouzan: Data Structures A Pseudocode Approach With C++

ISBN 0-534-95216-X

First published by Brooks/Cole, a division of Thomson Asia Pte Ltd, United States of America.

All Rights Reserved.

Reprint for People’s Republic of China by Thomson Asia Pte Ltd and PPTPH under the authorization of
Thomson Learning. No part of this book may be reproduced in any form without the prior written permission of
Thomson Learning and PPTPH.

AREXFHAHBHFE S HAREFHRR.

ARMBEEAEH BABHF ST HAREREN, HEXBEEIE. REFRHREHETFA, FMELUEMR
REFFHETRE.

KRELER A, BHEDL S,

ENELBEREEEARNESHEARNKEHM
HIEaAMN C+ + fA0H
(ZE3CAR)

¢ = Richard F.Gilberg Behrouz A .Forouzan
HIEmE BRMEE

o NRBFE MR BRERIT RHEXKIBFEH 145
BE4 100061 #F R 315@ pptph.com.cn

R 4t http;//www . pptph.com.cn ,):)
HEML 01067120212 010-67129211 ({4 5) BN
b7 SR A R /A e
Jb 5T BH R B ED R T ED R
FEBELEERRITREN
& HA.787x1092 1716
Ei3K .42.75
=¥.1047 FF 20024 1 BE 1K
EP¥ .1 -3 000 Bt 2002 4 1 RIS 1 W

EHENEGREBIZE EF.01 -2001-2487 5
ISBN 7-115-09766-6/TP*2527

EH#.55.00 T
AEMANEARDE,BS5EMBER BiE:(010)67129223

+0 [;l.l ‘:* l|l;,:‘ :'ll“l:,:

AR IR AT I

MR E

B C++IE SRR A BB -

EHN4N 12T, BARS T HBAMNS TR, SEAR.
B HER. R, BAFY. B3, MLARESE. BRI KERNRE
Feil, EHEFZ A HRBNAIE. WRETEHTHAK CHiET
R&nIR, SR — P SRR A A B AR B B . 2 BHRER NS
BRI EMARER.

EREEEN SRS EN T AT AEEIBRES I ER, BA]
e BT RF I BRSNS HBE.

tH k15t PR

2001 “F, HEFHERT T “+H” PR ESSHERMERERNENERL). %
SUHERRRRE . AR HERERBEE “MFEAEM, SEREERE” 7B T, #
BT & AR, e T — KRGS ANFEM . RMBEERZEERPN CERRE,
HET R EA B TS THESCERSE R, —SEARKRIH, TRl e im &l
HREITHE AT IR BREREN T E. AHIZUFRRRTRE, BmRES M 1518 TE.
HHT, SIS EARE BRI FESEARNEYRIE SRR ERNEN . BERES Y BB
B2ERMFE, BEIEARE. EXRIE, FIHEMIBEN . BEEESIHEMNRARE,
INsEXS 5| BB AL, (2T B R R .

AP RERE 1977 FEgBieH: “ES5|HNEEM, BRI EEMH P E R R
BEREMA WTO, 17 B L EPRFESHK HaBzl, RATLIURREE IR K B A Wb
FENHRAKFAE BREARAL . M RE— /MR &, EHIM— L IF B MEA BT,
M HERGE TIREF R ERMBE L. 513 EINRRES, T DUEH B EBCFKFER
RE, REFEPREKFREIGRS, RIERINEFRHOFERG EHFKAE,

AT REMPR “BEXNE W54, EAEASSHEEMEROTE, ARBBHEKR
HAFAXERRERIE, SEIMZHEH BRAREE, BEsE— R ERREEH A
MBI . F— MBS EH M E TR0, BESNE S S SRR EM,
M EE BRI ER B2 M ERER. XS AR, BT IFEIRZERAR
MEFERRE, emRaREEERESEARNBFEKFLHESERNHESEM .

H AR 43 4 m B B S BRFE S EARRFEH B TR 2 — KR, B AR
2, FHAMEE (www.pptph.comen) FAAT BATEHELHEHNEPBRFEHER, BEH
MBS IR ARG LA REEM B AT, BERE. FE) RBUTMELEBERSTHE
WA RN RIRA RN, RATERBENRRAM SGEERMNO T/, HHESEFRTIE8
WS BRE S EAREH

PN R]
2001 £ 12 H

F &8

fERTHEN TSR RS, DA INAR e P A 3R I R S e A AL P B A B B
PIBE SRR A AT 2E T B RRRLSE R R B SR AR RR, Bl v LG SRR () R R AL
AR, HWEAIEMRF DA, IrENERRZERHRRE RETEI AR R (B
1), EEMEFRRBHEETENTRAER (FiE . B8, BN T iHENE A
REUEEXNER, AREBATHILBENZOAS. RN EIESWRSHRE, FBE
T ARG WRER 7 E B3 EMFENFE: TR EEN AR S KHE
DRI T —EMEIRE R R, FILAERR., FIHEESMNEENLESENSEMHE
KER. MEFHH.

BiEsgH (BERAEZSHESEN—HEEIMUETHEERENZDME) fEh%
AEAT IR OCRRBEEREANSNER. FEBMEFFAR S EEE L MBELS
KIS, BEAMEBEENSHAEENSSI SR, WEARAEARESEMMEENS A, 8
TEFE IR G, FAERBRER AT ENB R ARG . I ENEAR GE R ERN
SR, HENHNACEEBE R ET RN &S, ETHEPET RIE KR OB &
THHMEBFE. L RZERE 1993 FHEHESBESEHRZE., F F50 2388
AFLEERRR, 1997 it — B A SRR AR

APR—ABERHBRYEEE OB, B0 28, RAHME THIIER FE2F).
R (BEIE) R (B4F), BAFI (BBSE), B (F7F), AVLF (E8F), H (9
F).BW (E10F) ME (B 128) FLMABNEIESH; HMETXEHESHMETE
MRBARRRSRER; SHTSEIMEXNFEFERERNLRER: 2 7S X EEENN
fa) 2= A . VEEETESS 6 EX RIS RN TAEIRE., £ 11 X R HT RE % HEE
AT T LERTE AR

AP FERF XA 8”7 BRXBARBHTIANSFES. hME-MEL L
L B RM#RES, FRAETUREFTERABRIESOHMAERS . FRHARENEEF
A TV B RO H VI AT A ROHE S RS R, fo/eXA 8T
TR REFEEEEHRB L BREFLE, B EREMERMEFRINES. FEER
TR B EARYE S TR & i B4R, M Ee g S M EMEEE
FHEH AL HBHHE, FHTVIFEEN—FHERFR R MR PRSI B3RFE
BRI S LR A, FRMRBHRTAEN I T %4 EHSCBRES, Bk
EHEENRRARAET FEHZN C++ES AR, XENERIMIRBHAE. BRH
S I C+ AU AU & —ETH [X 508 B BIZEA TGS, R B IEAE A i) R 5
Z0E S PRS2 N B R, EHREXMAELER FEKEEX C+iIEBESCEBVILMN
THE,

ABEESENTENSURBEETE, BAEEHHFELR: LT Pascal iF

1

5. IBMILHET . Cobol EFMRERSAMIL, HERTERT CIESHEEEW. &8
TAEHTE 1998 SE MR Data Structures: A Pseudocode Approach with C FE:Rl AT 3 — X
HHIRA. 2PHEWASEGE, WS TENTENSVEEENHZRNANEERNE, I
RARK, EERY. 8 ENEEAEEMANLAEHRE T RENRIMEL, fEETELY
HH 2 B H(exercise). TSHVEMLAE (problem) F1 LA (project) =RULEEH RSB .

APRAEIBRGH NG RESHED, aTHETHES SR MnA AR, 4
EBERAEENRIT, N TRERE &3 M # 2B . (23t E N SRR
B BRERTENLEM 05 1 HERHT R SIRRER .

ERUR AR BRI R IR

2001 4 11 HF4dbX

Preface

Features of This
Book

Pseudocode

Abstract Data Types

The study of data structures is both exciting and challenging. It is excit-
ing because it presents a wide range of programming techniques that
make it possible to solve larger and more complex problems. It is chal-
lenging because the complex nature of data structures brings with it
many concepts that change the way we approach the design of programs.
Because the study of data structures encompasses an abundant
amount of material, you will find that it is not possible to cover all of it in
one term. In fact, data structures is such a pervasive subject that you will
find it taught in lower-division, upper-division, and graduate programs.

Our primary focus in this text is to present data structures as an in-
troductory subject, taught in a lower-division course. With this focus
in mind, we present the material in a simple, straightforward manner
with many examples and figures. We also deemphasize the mathemat-
ical aspect of data structures, leaving the formal mathematical proofs
of the algorithms for later courses.

Pseudocode is an English-like presentation of the steps needed to
solve a problem. It is written with a relaxed syntax that allows stu-
dents to solve a problem at a level that hides the detail while they con-
centrate on the problem requirements. In other words, it allows
students to concentrate on the big picture.

In addition to being an excellent design tool, pseudocode is also
language independent. Consequently, students can use the same
pseudocode design to implement an algorithm in several different lan-
guages. We developed our pseudocode syntax in our data structures
classes over a 15-year period. During that time, our students have im-
plemented the pseudocode algorithms in Pascal, C, and C++. In this
text, we use C++ for all of our code implementations.

As we discuss the various data structures, we first present the gen-
eral principles using diagrams to help the student visualize the concept.
If the data structure is large and complex enough to require several al-
gorithms, we use a structure chart to present a design solution. Once
the design and structure are fully understood, we present a pseudocode
algorithm, followed as appropriate by its C++ implementation.

The second major feature of this text is its use of abstract data types
(ADTs) implemented as C++ classes. To make ADTs data independent,
we use template classes. All ADTs accept either one (data) or two (data

Preface

Structure and Style

Visual Approach

Pedagogical End
Materials

Organization And
Order Of Topics

and key) arguments. In this way any data type, including derived types
and structures, can be used with all ADTs. Conversely, each ADT can
be used with any data type as long as the required operators are pre-
defined for that type. We introduce the concept immediately in Chap-
ter 1 and use it extensively throughout the text.

Not every data structure should be implemented as an ADT
class. However, where appropriate, we develop a complete C++ im-
plementation for the student’s study and use. Specifically, students
will find ADT class implementations for Lists (Chapter 3), Stacks
(Chapter 4), Queues (Chapter 5), AVL Trees (Chapter 8), B-Trees
(Chapter 10), and Graphs (Chapter 12). The code for all of the ADTs
is available on the Instructor’s Materials page at the Brooks/Cole
Web site www.brookscole.com/compsci/gilberg/cs2pp.

One of our basic educational tenets is that good habits are formed
early. The corollary is that bad habits are hard to break. Therefore,
we consistently emphasize the principles of structured programming
and software engineering. Every algorithm and program in the book
uses a consistent style. As the algorithms and programs are ana-
lyzed, style and standards are further explained. While we acknowl-
edge that there are many good styles, our experience has shown that
if students are exposed to a good style and implement it, they will be
better able to adapt to other good styles. On the other hand, unlearn-
ing sloppy short-cut habits is very difficult.

A brief scan of the book will demonstrate that our approach is prima-
rily visual. There are over 345 figures, 35 tables, 140 algorithms, 180
programs, and numerous code examples. Although this amount of
material tends to create a large book, these materials make it much
easier for students to follow the concepts.

End of chapter materials reenforce what the student has learned. The
important topics in the chapter are summarized in bulleted lists. Fol-
lowing the summary are three practice sets.

Exercises are multiple choice and short answer questions covering
the material in the chapter. The answers to the odd numbered ques-
tions are included in the back of the book.

Problems are short assignments that ask the student to develop a
pseudocode algorithm or write a short program to be run on a comput-
er. These problems can usually be developed in 2 to 3 hours. The in-
structor's manual contains complete solutions for all exercises and
problems.

Projects are longer, major assignments that may take an average
student 6 to 9 hours or more to develop.

We have tried to build flexibility into the text so that the material may
be covered in the order that best suits the needs of a particular class.
Although we use the materials in the order presented in the text, there
are other possible sequences (shown in the figure on this page). We
recommend that you assign Chapter 1 as general reading. It contains
basic information on pseudocode, abstract data types, and algorith-
mics students will need for the rest of the text.

Preface 3

The first two sections of Chapter 2 review sequential and binary
search concepts. The third section, hashed list searches, may be new
material. If you have covered search algorithms in your programiming
class, you may save this chapter for later. On the other hand, if your
students have not studied searching algorithms, then you will need to
cover at least the first section. Many of the algorithms in the following
chapters require an understanding of sequentijal and ordered list
searching. In many texts, sorting is covered with searching. Because
our sorting chapter includes the recursive implementation of quick
sort and heap sort (which requires an understanding of trees and
heaps), we place it at the end of the text. With the exception of these
two sorts, however, it could be covered before Chapter 3.

Chapter 3 introduces linear lists and the basic linked list data struc-
tures. It also introduces the first complete ADT class. For these reasons,
Chapter 3 should be covered before the remaining chapters in the text.

Chapter 1
Introduction
Chapter 2
Searlching
Chapter 3 Chapter 11
Linked Lists Advanced Sorting
i Concepts
Chapter 4 Chapter 6
Stacks Recursion
Chapter 5 Chapter 7 Chapter 12
Queues Introduction to Trees Graphs
Chapter 8
Search Trees
Chapter 9 Chapter 10
Heaps Multiway Trees

Possible subject sequences

The stack concept (Chapter 4) is basic to an understanding of re-
cursion (Chapter 6), and recursion is in tum required to understand
trees (Chapters 7, 8, and 10) and heaps (Chapter 9). Likewise, queues
(Chapter 5) are used in breadth-first traversals in Chapters 7 and 12.

Chapter 9, Heaps, is a stand-alone chapter. Its only outside refer-
ence is the heap sort in Chapter 11.

We end the text with graphs in Chapter 12. Like many other data
structure subjects, a complete course could be devoted to graphs. In
this chapter, we review some basic graph concepts. Although this ma-
terial could be covered anytime after Chapter 3, you will find that it con-
tains some of the most difficult algorithms in the text. For this reason,
we recommend that you present Chapter 12 at the end of the term,

Preface

when your students will be much better prepared to handle the materi-
al.

No text of this scope can be developed without the support of many
people. This is especially true for this text. The basic algorithms were
field-tested by our students at De Anza College. Our first acknowledg-
ment, therefore, has to be to the hundreds of students who by using
and commenting on the text made a vital contribution. We especially
thank our student, Scott Demouthe, who not only proofed the text, but
verified every exercise and problem at the ends of the chapters.

We would also like to acknowledge the support of the De Anza staff.
Their encouragement helped us launch the project, and their comments
contributed to its success. To name them all is impossible, but we especial-
ly thank John Perry, Delia Garbacea, and George Rice.

To anyone who has not been through the process, the value of peer
reviews cannot be fully appreciated. Writing a text rapidly becomes a
myopic process. The important guidance of reviewers who can stand
back and review the text as a whole cannot be measured. To twist an
old cliche, “They are not valuable, they are priceless.” We would espe-
cially like to acknowledge the contributions of the following reviewers:

James Clark, University of Tennessee, Martin

Roman Erenshteyn, Goldey-Beacom College

James Glenn, University of Maryland

Tracy Bradley Maples, California State University—Long Beach
Shensheng Zhao, Governors State University

Our thanks also go to our editors and staff at Brooks/Cole, Kallie
Swanson, Grace Fujimoto, and Mary Vezilich. We would also like to ac-
knowledge Kelli Jauron and Kathy Davis at Carlisle Publishers Services.

Last, and most obviously not the least, we thank our families and
friends for their support. Many years ago an author described writing
a text as a “locking yourself in a room” process. While the authors suf-
fer through the writing process, families and friends suffer through
their absence. We can only hope that as they view the final product,
they feel that their sacrifices were worth it.

Richard F. Gilberg
Behrouz A. Forouzan

et kA 4. e

Contents

1 Introduction 1

1-1

1-5
1-8

Pseudocode 2

Algorithm Header 2

Purpose, Conditions, and Return 3
Statement Numbers 4
Variables 4

Algorithm Analysis 5
Statement Constructs 5
Pseudocode Example 6

The Abstract Data Type 7
Atomic and Composite Data 8
Data Structure 8

Abstract Data Type 9

A Model for an Abstract Data
Type 10

ADT Operations 11

ADT Data Structure 11

ADT Class Templates 13
Algorithm Efficiency 13
Linear Loops 14

Logarithmic Loops 14

Nested Loops 15

Big-O Notation 17

Standard Measures of Efficiency 19
Big-O Analysis Examples 20
Summary 22

Practice Sets 23

Exercises 23

Problems 25

Projects 25

2 Searching 27

2-1

List Searches 28

Sequential Search 28
Variations on Sequential
Searches 30

Binary Search 33

Binary Search Algorithm 36
Analyzing Search Algorithms 37

2-5
2-8

C++ Search Algorithms 38
Sequential Search in C++ 38
Binary Search in C++ 40
Search Example 41

Hashed List Searches 44
Basic Concepts 44

Hashing Methods 46
Hashing Algorithm 50
Collision Resolution 51
Open Addressing 53

Linked List Resolution 57
Bucket Hashing 57
Combination Approaches 58
Hash List Example 58
Summary 62

Practice Sets 64

Exercises 64

Problems 65

Projects 65

Linked Lists 67

3-1

3-2

Linear List Concepts 68
Insertion 68

Deletion 69

Retrieval 70

Traversal 70

Linked List Concepts 70
Nodes 71

Linked List Data Structure 71
Pointers to Linked Lists 73
Linked List Algorithms 73

Create List 73

Insert Node 74

Delete Node 78

Search List 80
Unordered List Search 83
Retrieve Node 83

Empty List 84

Full List 84

List Count 85

Contents

Traverse List 85 Data Structure 169

Destroy List 87 Stack ADT Implementation 170
3-4 Processing a Linked List 88 4-6 Stack ADT—Array

Add Node 90 Implementation 175

Remove Node 90 Array Data Structure 176

Print List 91 Create Stack Array 177

Testing Insert and Delete Logic 92 Push Stack Array 178
3-5 List Applications 93 Pop Stack Array 178

Append Lists 93 Stack Top Array 179

Array of Lists 95 Empty Stack Array 180

Full Stack Array 180
Stack Count Array 180
Destroy Stack Array 181

3-6 Complex Linked List
Structures 97
Circularly Linked Lists 97

Doubly Linked Lists 98 4-7 Summary 181
Multilinked Lists 103 4-8 Practice Sets 182
Multilinked List Insert 104 Exercises 182
Multilinked List Delete 105 Problems 183

3-7 Building a Linked List—C++ Projects 185
Implementation 105
Data Structure 105
Application Functions 106 5 Queues 189 -

3-8 List Abstract Data Type—Linked 5-1 Queue Operations 190
List Implementation 112 Enqueue 190
List ADT Declaration 113 Dequeue 190

3-9 Summary 124 Queue Front 191

3-10 Practice Sets 125 Queue Rear 191

Exercises 125 Queue Example 192
Problems 127 5-2 Queue Linked List Design 192
Projects 128 Data Structure 192

Queue Algorithms 194
Create Queue 194
Enqueue 196

Stacks 135 Dequeue 197
4-1 Basic Stack Operations 136 Retrieving Queue Data 198
Empty Queue 199
Push 136
Full Queue 199
Pop 136
Queue Count 200
Stack Top 137 Destroy Queue 200
4.2 Stack Linked List 5-3 Queuing Theory 200

Implementation 137

Data Structure 137 5-4 Queue Applications 202

Stack Algorithms 139 Queue Simulation 202
Categorizing Data 209
4-3 Stack Applications 146
. . gkt 5-5 Categorizing Data—C++
Reversing Data 146
: Implementation 211
Reverse a List 146 in Li c 2
Convert Decimal to Binary 147 Mam ine Logic 211
Parsing 148 Fill Queues 212
Print Queues 213
P t 149
ostponemen Print One Queue 214

Backtracking 157 56 g ADT—Linked List
) lemeC - ueue - e S
4-4 Eight Queens Problem—C++ Implementation 215

Implementation 163 Q Struct 215
Main Li Logi 164 ucue cture
ain Line Logic Queue ADT Implementation 216

Get Board Size 164 5-7 Qu ADT-—Arra;
a- Abstract Data i S ensontation o
5 Stack Abs ata Type Implementation 221

Implementation 189

Contents 3

5-8
5-9

Array Queues Implementation 222
Summary 228

Practice Sets 229

Exercises 229

Problems 231

Projects 232

Recursion 237

6-1

6-2
6-3

6-4

6-5

8-7
6-8

Factorial—A Case Study 238

Recursion Defined 238

Iterative Solution 239

Recursive Solution 239

How Recursion Works 240

Designing Recursive

Algorithms 242

The Design Methodology 243

Limitations of Recursion 243

Design Implementation—Reverse a
Linked List 244

Another Case Study—Fibonacci

Numbers 2486

The Towers of Hanoi 249

Recursive Towers Of Hanoi 250

C++ Implementations of

Recursion 253

Fibonacci Numbers 253

Prefix to Postfix Conversion 254

Towers of Hanoi 259

Summary 260

Practice Sets 261

Exercises 261

Problems 263

Projects 264

Introduction to Trees 265

7-1

7-2

7-3

7-4

Basic Tree Concepts 266
Terminology 266

Tree Representation 268
Binary Trees 270

Properties 271

Binary Tree Traversals 273
Depth-First Traversals 273
Breadth-First Traversals 278
Expression Trees 280

Infix Traversal 280

Postfix Traversal 281

Prefix Traversal 282

General Trees 282
Changing General Tree to Binary
Tree 282

7-6
7-7
7-8

Insertions into General Trees 283
General Tree Deletions 285
Huffman Code 285

Summary 288

Practice Sets 290

Exercises 290

Problems 293

Projects 293

Search Trees 294

8-1

8-3

8-4

8-5
8-6

Binary Search Trees 285

Definition 295

Operations on Binary Search
Trees 296

Binary Search Tree Search
Algorithms 297

AVL Trees 306

AVL Balance Factor 309

Balancing Trees 309

AVL Node Structure 314

AVL Delete Algorithm 319

Adjusting the Balance Factors 323

AVL Tree Implementation 324

Data Structure 324

Program Design 325

Count Words Summary 328

AVL Abstract Data Type 329

AVL Tree Data Structures 330

AVL Tree Functions 331

AVL Tree Data Processing 342

AVL Tree Utility Functions 344

Summary 347

Practice Sets 348

Exercises 348

Problems 350

Projects 351

Heaps 354

9-1
9-2
9-3

9-4
9-5

Heap Definition 355
Heap Structure 355
Basic Heap Algorithms 356
ReheapUp 356
ReheapDown 358

Heap Data Structure 360
Heap Algorithms 361
ReheapUp 361
ReheapDown 362
BuildHeap 363
InsertHeap 364
DeleteHeap 365

4

Contents

9-6 Heap Applications 387
Selection Algorithms 367
Priority Queues 368

9-7 A Heap Program 370
Heap Program Design 370
Heap Functions 375

98-8 Summary 377

9-9 Practice Sets 378
Exercises 378
Problems 380
Projects 380

10 Muitiway Trees 383

10-1 m-Way Search Trees 384

10-2 B-Trees 385
B-Tree Insertion 387
B-Tree Insert Design 388
B-Tree Insert Node 389
B-Tree Deletion 396
Traverse B-Tree 407
B-Tree Search 410

10-3 Simplified B-Trees 411
2-3Tree 411
2-3-4 Tree 411

10-4 B-Tree Variations 412
B*Tree 412
B+Tree 413

10-5 Lexical Search Tree 413
Tries 414
Trie Structure 415

10-68 B-Tree Abstract Data Type 415
Header File 415
Utility Functions 415
Insert Algorithms 423
Delete Algorithms 428

10-7 Summary 434

10-8 Practice Sets 435
Exercises 435
Problems 436
Projects 436

11 Advanced Sorting Concepts 438

11-1 General Sort Concepts 439
Sort Order 439
Sort Stability 440
Sort Efficiency 440
Passes 440
11-2 Insertion Sorts 441
Straight Insertion Sort 441
Shell Sort 443
Insertion Sort Algorithms 447
Insertion Sort Implementation 449

11-3 Selection Sorts 451

Straight Selection Sort 451

Selection Sort Algorithms 456

Selection Sort Implementation 457
11-4 Exchange Sorts 459

Bubble Sort 459

Bubble Sort Algorithm 461

Quick Sort 462

Exchange Sort Algorithms 468
11-5 Summary 470

Exchange Sort Implementation 470
11-6 External Sorts 474

Merging Ordered Files 474

Merging Unordered Files 475

The Sorting Process 476

Sort Phase Revisited 482
11-7 Summary 484
11-8 Practice Sets 4856

Exercises 485

Problems 486

Projects 486

12 Graphs 490

12-1 Terminoclogy 491
12-2 Operations 492
Add Vertex 492
Delete Vertex 493
Add Edge 493
Delete Edge 493
Find Vertex 493
Traverse Graph 494
12-3 Graph Storage Structures 497
Adjacency Matrix 497
Adjacency List 498
12-4 Graph Algorithms 499
Create Graph 500
Insert Vertex 500
Delete Vertex 502
Insert Arc 503
Delete Arc 505
Retrieve Vertex 506
First Arc 507
Depth-First Traversal 508
Breadth-First Traversal 510
12-5 Networks 512
Minimum Spanning Tree 512
Shortest Path Algorithm 517
12-6 Abstract Data Type 521
Insert Vertex 523
Delete Vertex 524
Insert Arc 525
Delete Arc 526
Depth-First Traversal 528

Contents 5

Standard C++ Libraries 559

12-7 Summary 531 C++ Function Prototypes 561

12-8 Practice Sets 532 Classes Related to Input and
Exercises 532 Output 569

Breadth-First Traversal 529

ol

Problems 533 H The String Class 574
Projects 534 I Pointers to Functions 584
J Inheritance 587
. K C++ Templates 601
Appendixes L Standard Template Library 608
A ASCII Tables 537
B Structure Charts 542 Solutions to Selected Exercises 626
C Program Standards and Glossary 647
Styles 549 Index 657

D Random Numbers 554

Introduction

This text assumes that the student has a solid foun-
dation in structured programming principles and has
written programs of moderate complexity. Although
the text uses C++ for all of its implementation exam-
ples, the design and logic of the data structure algo-
rithms are based on pseudocode. This approach
creates a language-independent environment for the
algorithms.

In this chapter we establish a background for the
tools used in the rest of the text, most specifically
pseudocode, the abstract data type, and algorithm
efficiency analysis. We also introduce the measures
we use throughout the text to discuss algorithm
efficiency.

