o G s S AN SN, 1 N— e

Javé}* S

5 Javasz I

Data Structures in Java' for

the Principled Programmer

AR Java HiiE

ARSI RS Java™ s B

Duane A. Bailey
Williams College

KSR
WCB/McGraw-Hill

() IEF 1585 |

JAVA™ STRUCTURES: DATA STRUCTURES IN jAVATM FOR THE PRINCIPLED

PROGRAMMER/Duane A. Bailey
Copyright © 1999 by The McGraw-Hill Companies, Inc.

Original English Language Edition published by The McGraw-Hill Compames, Inc.

All Rights Reserved.
For sale in Mainland China only.

A H R McGraw-Hill ijﬁ"_lﬁﬂfﬁﬂéj('%étﬂF“ﬁ?iii*@iﬁmﬂ‘@}ﬁ?%ﬁ%ﬂ

TR BT 30 XA 6 P 0 X) B K o R L AT o
FH2ZEMBLRSIEIEE BEF D, A RRATAFXE DL,

FREHEEEREXFBIRL BB IIRE, TIREETSHEE,
6T R AR EAEA S R B 125 . 01-98-0003
B H#R4%&E (CIP) %18

Java™ Structures {IEE) Java™ R A . T3/ 1) (Bailey, D.A.) 3.

R EEREHRA, 1999.10
(KETENHFTLAE)
ISBN 7-302-02192-9

1.J .0 M.O¥ELEM-BFERIT Qlavaids-BFiZit
T kR A P B8 CIP 837 (1999) 48 63356 &

IR E . HHEREE R AEREERFEEDRE, B4 100084)
http:// www. tup. tsinghua. edu. cn

BNk & . EHRKFEERT

BATE : HEPIEBIEILRE KT

: 787 X960 1/16 EIg¥. 24. 25

:19994E 12 A 1 IR 2000 4E 12 A% 2 (REDR

: ISBN 7-302-02192-9/TP » 2142

: 5001~8000

: 32.00 T

ft & & F H
S d oS B

- HR. - Jt

IV.TP311.12

kR & B89 18

AR, BRI BFRAEMBE B LIEH, Bile2—1 B8 fE B,
il B E R A R ARSI 2 F B2 ML S E R R STRIE S B
Hi#; & EERERMPHE. AR THEE, IR UA S ESMRTEST A LM
HXRMES, ENEENE, b AEERRGEFICITRRRE BNES. AE
F b, EER BB G KRELFRFERG FH —FME - T AL RN BBRE
Fif. BN, EXHPEMETXTREMENNBEER, FERKERAE"ZLH
B2 A, RS RFTEERR, BH. EFUFHBE TRE —EHENEE
MEXFIRBM AR FS LR, ABEXTHMNTE, RIIMGEENE T —#HEMH
MBS F E B AR AR E BB, TR H . RERBEINES LR RAMIREE
HEHBPOREFREFKF B SIANRE S S, AITETHRE T HERS, AEEX
[E]5%: & € e AL Ligh- 2 P

RAT BB AR R R B R B RGE RA, ERAEHNER K
BB ERAEFEE ML E I FEIEE B, UFHRIE(RFHEIHETAS (B
BOMBE B, EE GBI AN TR,

FEERE KA

(R EVLHE A B (REM)) W E 4
1999.6

Preface

Envoi

God, thou great symmelry,

- Who put a biting lust in me

From whence my sorrows spring,
For all the frittered days

That I have spent in shapeless ways,
Give me one perfect thing.

—Anna Wickham

“IT’S A WONDERFUL TIME TO BE ALIVE.” At least that’s what I've found
myself saying over the past couple of decades. When I first started working with
computers, they were resources used by a privileged (or in my case, persistent)
few. They were physically large, and logically small. They were cast from iron.
The challenge was to make these behemoths solve complex problems quickly.

Today, computers are everywhere. They are in the office and at home.
They speak to us on telephones; they zap our food in the microwave. They
make starting cars in New England a possibility. Everyone’s using them. What
has aided their introduction into society is their diminished size and cost, and
increased capability. The challenge is to make these behemoths solve complex
problems quickly.

Thus, while the computer and its applications have changed over time, the
challenge remains the same: How can we get the best performance out of the cur-
rent technology? The design and analysis of data structures lay the fundamental
groundwork for a scientific understanding of what computers can do efficiently.
The motivations for data structure design work accomplished three decades ago
in assembly language at the keypunch are just as familiar to us today as we
practice our craft in modern languages on computers on our laps. The focus of
this material iz the identification and development of relatively abstract princi-
ples for structuring data in ways that make programs efficient in terms of their
consumption of resources, as well as efficient in terms of “programmability.”

In the past, my students have encountered this material in Pascal, Modula-2,
and, most recently, C++. None of these languages has been ideal, but each has
been met with increasing expectation. This text uses The Java Programming
Language'—*“Java”—to structure data. Java is a new and exciting language
that has received considerable public attention. At the time of this writing, for
example, Java is one of the few tools that can effectively use the Internet as a
computing resource. That particular aspect of Java is not touched on greatly in

! Java is a trademark of Sun Microsystems Corporation.

xii

Preface

this text. Still, Internet-driven applications in Java will need supporting data
structures. This book attempts to provide a fresh and focused approach to the
design and implementation of classic structures in a manner that meshes well
with existing Java packages. It is hoped that learning this material in Java
will improve the way working programmers craft programs, and the way future
designers craft languages.

Pedagogical Implications. This text was developed specifically for use with
CS2 in a standard Computer Science curriculum. It is succinct in its approach,
and requires, perhaps, a little more effort to read. I hope, though, that this text
becomes not a brief encounter with object-oriented data structure design, but
a touchstone for one’s programming future.

The material presented in this text follows the syllabus I have used for sev-
eral years at Williams. As students come to this course with experience using
Java, the outline of the text may be followed directly. Where students are new
to Java, a couple of weeks early in the semester will be necessary with a good
companion text to introduce the student to new concepts, and an introductory
Java language text or reference manual is recommended. For students that need
a quick introduction to Java we provide a tutorial in Appendix A. While the
text was designed as a whole, some may wish to eliminate less important topics
and expand upon others. Students may wish to drop (or consider!) the section
on induction (Séction 4.2.2). The more nontraditional topics—including, for ex-
ample, iteration and the notions of symmetry and friction—have been included
because I believe they arm programmers with important mechanisms for imple-
menting and analyzing problems. In many departments the subtleties of more
advanced structures—dictionaries (Chapter 13) and graphs (Chapter 14)—may
be considered in an algorithms course. Chapter 5, a discussion of sorting, pro-
vides very important motivating examples and also begins an early investigation
of algorithms. The chapter may be dropped when better examples are at hand,
but students may find the refinements on implementing sorting interesting.

Associated with this text is a Java package of data structures that is freely
available over the Internet for noncommercial purposes. I encourage students,
educators, and budding software engineers to download it, tear it down, build it
up, and generally enjoy it. In particular, students of this material are encouraged
to follow along with the code online as they read. Also included is extensive
documentation gleaned from the code by javadoc. All documentation—within
the book and on the Web—includes pre- and postconditions. The motivation
for this style of commenting is provided in Chapter 2. While it’s hard to be
militant about commenting, this style of documentation provides an obvious,
structured approach to minimally documenting one’s methods that students can
appreciate and users will welcome. These resources, as well as many others, are
available from McGraw-Hill at http://www.mhhe.com/javastructures.

Three icons appear throughout the text, as they do in the margin. The
top “compass” icon highlights the statement of a principle—a statement that
encourages abstract discussion. The middle icon marks the first appearance of
a particular class from the structure package. Students will find these files at

xiii

McGraw-Hill, or locally, if they’ve been downloaded. The bottom icon similarly
marks the appearance of example code.

Finally, I'd like to note an unfortunate movement away from studying the
implementation of data structures, in favor of studying applications. In the
extreme this is a disappointing and, perhaps, dangerous precedent. The design
of a data structure is like the solution to a riddle: the process of developing the
answer is as important as the answer itself. The text may, however, be used as
a reference for using the structure package in other applications by selectively
avoiding the discussions of implementation.

Acknowledgments. The trajectory of this manuscript is the product of many
forces. First, all of the eating establishments mentioned within this text are
real and, after extensive testing, I recommend them to Berkshire programmers,
authors, and tourists. My gratitude goes to colleagues Kim Bruce and Bill
Lenhart, whose use of various versions of this text in their courses has gener-
ated productive feedback. Long discussions with Kim and Bill have also had
the greatest impact on design of the structure package. Changes to many
parts of this text come from students, including Udai Haraguchi, James Rowe,
Qiang Sun, and Robin Yan (all of Williams), as well as Sarah Peterson (Grin-
nell). The reviewers—Zoran Duric (George Mason University), William Han-
kley (Kansas State University), Van Howbert (Colorado State), Brian Malloy
(Clemson University), Daniel D. McCracken (City College of New York), David
A. Poplawski (Michigan Technical University), John E. Rager (Amherst Col-
lege), Stuart Reges (University of Arizona), Susan Rodger (Duke University),
Dale Skrien (Colby College), Louis Steinberg (Rutgers University), Deborah A.
Trytten (University of Oklahoma), and Allen Tucker (Bowdoin College)—all
worked hard to meet fast and strict deadlines. Their efforts directly shape this
work. I am particularly indebted to Dale, who used this text in its rawest form at
Colby, and to the institutions using this text in preprint and beta editions. Kim-
berly Tabtiang (University of Wisconsin) and Claude Anderson (Rose-Hulman
Institute of Technology) scoured the text and code and found more errors than
seemed possible. Kim is also responsible for much of the careful design and
implementation of the Graph classes. Adams Technologies is responsible for
our Web-site design. My editors at McGraw-Hill—Betsy Jones, Kelley Butcher,
and Christine Parker—have kindly kept this multithreaded project on an under-
standing schedule. Finally, despite this work, life with Ryan, Kate, and Megan
(tolerant children) and Mary (reviewer, therapist, and loving wife) remains, for
me, that perfect thing.

Enjoy!

Duane A. Bailey
Williamstown, May 1998

Contents

Preface

Introduction
01 ReadMe. e e e

The Object-Oriented Method

1.1 Data Abstraction and Encapsulation
1.2 The Object Model
1.3 Object-Oriented Terminology
1.4 Sketching an Example: A Word List,
1.5 A Special Purpose Class: A Bank Account
1.6 A General Purpose Class: An Association
1.7 Imterfaces o i i i i i
1.8 WholIstheUser?
1.9 Conclusions e e e e e e e e e

Comments, Conditions, and Assertions

2.1 Pre- and Postconditions
2.2 Asgertions L
23 Craftsmanship
24 Conclusions e
Vectors

3.1 Application: The Word List Revisited
3.2 Application: Word Frequency
3.3 Thelnterface
3.4 The Implementation
3.5 Extensibility: A Feature
3.6 Application: The MatrixClass
3.7 Conclusions

Design Fundamentals

4.1 Asymptotic Analysis Tools.
4.1.1 Time and Space Complexity
412 EBxamples
4.1.3 The Trading of Time and Space

4.2 Self-Reference
421 Recursion

xi

CONTENTS

4.3 Properties of Design
4.3.1 Symmetry

4.3.2

4.4 Conclusions

Sorting

5.1 Approaching the Problem
5.2 Selection Sort
5.3 Insertion Sort
5.4 Mergesort
5.5 Quicksort
5.6 Sorting Objects
5.7 Vector-Based Sorting
5.8 Conclusions

Lists

6.1 Example: A Unique Program
6.2 Example: Free-Lists
6.3 Implementation: Singly-Linked Lists

6.4 Implementation: Doubly-Linked Lists
6.5 Implementation: Circularly-Linked Lists
6.6 Conclusions

Linear Structures
7.1 Stacks

7.1.1
7.1.2
7.1.3
7.14

7.2 Queues

Iterators*

8.1 Java’s Enumeration Interface
8.2 The Iterator Interface
8.3 Example: Vector Iterators
8.4 Example: List Iterators
8.5 Example: Filtering Iterators
8.6 Conclusions

.........................
............................

.............................
.............................
...............................

...............................

Example: Simulating Recursion
Vector-Based Stacks
List-Based Stacks
Comparisons

Example: Solving a Coin Puzzle
7.2.2 List-Based Queues
7.2.3 Vector-Based Queues
7.2.4 Array-Based Queues

7.3 Example: Solving Mazes

7.4 Conclusions

CONTENTS

vii

9 Ordered Structures
9.1 Comparable Objects
9.1.1 Example: Comparable Integers
9.1.2 Example: Comparable Associations
9.2 Keeping Structures Ordered
9.2.1 The OrderedStructure Interface
9.2.2 The Ordered Vector
923 Example: Sorting. Lo
924 TheOrdered List
9.2.5 Example: The Modified Parking Lot
9.3 Conclusions

10 Trees
10.1 Terminology oL
10.2 The Interface
10.3 Motivating Example: Expression Trees
10.4 Implementation,........ e e e e e
10.4.1 The BinaryTreeNode Implementation
10.4.2 Implementation of the BinaryTree Wrapper
10.5 Traversals
10.5.1 Preorder Traversal
10.5.2 Inorder Traversal
10.5.3 Postorder Traversal
10.5.4 Levelorder Traversal
10.5.5 Recursion in Iterators
10.6 Property-Based Methods.
10.7 Example: Huffman Compression
10.8 Conclusions e

11 Priority Queues

111 The Interface
11.2 Example: Improving the Huffman Code
11.3 Priority Vectors
11.4 A Heap Implementation
11.4.1 Vector-Based Heaps

11.4.2 Example: Heapsort

11.4.3 Skew Heaps

11.5 Example: Circuit Simulation
116 Conclusions

12 Search Trees
12.1 Binary Search Trees
12.2 Example: TreeSort.
12.3 Implementation
12.4 Splay Trees

viii

CONTENTS

12.6 Conclusions 264
13 Dictionaries 267
13.1 TheInterface it 267
13.2 Unit Cost Dictionaries: Hash Tables 268
13.2.1 Open Addressing 269
13.2.2 External Chaining 277
13.2.3 Generation of Hash Codes 279
13.2.4 Analysis e e e e e e e 285
13.3 Ordered Dictionariesand Tables 285
13.4 Example: Document Indexing 287
13.5 Conclusions 291
14 Graphs 293
14.1 Terminology 293
14.2 The Graph Interface 294
14.3 Implementations 298
14.3.1 Abstract Classes v . 298
14.3.2 Adjacency Matrices 300
14.3.3 Adjacency Lists 306

14.4 Examples: Common Graph Algorithms 312
14.4.1 Reachability. e e e e e e e e 312
14.4.2 Topological Sorting 315
14.4.3 Transitive Closure 317
14.4.4 All Pairs Minimum Distance 318
14.4.5 Greedy Algorithms 319

14.5 Conclusions 324
A A Sip of Java 329
Al AFirst Program v, 329
A2 Declarations 331
A.2.1 Primitive Types 331
A.2.2 Reference Types 333

A.3 Important Classes e e e 334
A.3.1 The ReadStreamClass 334
A3.2 PrintStreams. 335
A33 Strings. 335

A4 Control Constructs 336
A.4.1 Conditional Statements 336
A2 Loops 337

A5 Methods 339
A.6 Inheritance and Subtyping 340
A.6.1 Inheritance 340
A6.2 Subtyping 341

CONTENTS

ix

B Use of the Keyword Protected
C Principles

D Structure Package Hierarchy
E Selected Answers

Index

345

349

351

355

363

Chapter 0

Introduction

“This is an important notice.
Please have it translated.”
—The Phone Company

YOUR MOTHER probably provided you with constructive toys, like blocks or
Tinker Toys! or Legos. These toys are educational: they teach us to think
spatially and to build increasingly complex structures. You develop modules
that can be stuck together and rules that guide the building process.

If you are reading this book, you probably enjoyed playing with constructive
toys. You consider writing programs an artistic process. You nave grown from
playing with blocks to writing programs. The same guidelines for building
structures apply to writing programs, save one thing: there is, seemingly, no
limit to the complexity of the programs you can write.

Well, almost. When writing large programs, the data structures that main-
tain the data in your program govern the space and time consumed by your
running program. In addition, large programs take time to write. Using differ-
ent structures can actually have an impact on how long it takes to wrile your
program. Choosing the wrong structures can cause your program to run poorly,
or be difficult or impossible to implement effectively.

Thus, part of the program-writing process is choosing between different
structures. Ideally you arrive at solutions by analyzing and comparing their
various merits. This book focuses on the creation and analysis of traditional
data structures in a modern programming environment, The Java Programming
Language, or Java for short.

0.1 Read Me

As might be expected, each chapter is dedicated to a specific topic. Many
of the topics are concerned with specific data structures. The structures we
will investigate are abstracted from working implementations in Java that are
available to you if you have access to the Internet.? Other topics concern the
“tools of the trade.” Some are mathematical and others are philosophical, but
all consider the process of programming well.

1 Al trademarks are recognized. ,
2 For more information, see http://www.mhhe.com/javastructures.

Ilie.

Introduction

Unicycles: thz
ultimate riding
structure.

The topics we cover are not all-inclusive. Some useful structures have been
left out. Instead, we will opt to learn the principles of programming data struc-
tures, so that, down the road, you can design newer (and probably better)
structures yourself.

Perhaps the most important aspect of this book is the set of problems at the
end of each section. All are important for you to consider. For some problems
I have attempted to place a reasonable hint or answer in the back of the book.
‘Why should you do problems? Practice makes perfect. I could show you how to
ride a unicycle, but if you never practiced, you would never learn. If you study
and understand these problems, you will find your design and analytical skills
are improved. And your mother will be proud.

This text is brief and to the point. Most of us are interested in experimenting.
We will save as much time as possible for solving problems, perusing code, and
practicing writing programs. As you read through each of the chapters, you
might find it useful to read through the source code online. As we first consider
the text of files online, I'll refer to the file name in the margin, as you see here.
The top icon refers to files in the structure package, while the bottom icon
refers to files supporting examples.

One more point—this book, like most projects, is an ongoing effort, and
the latest thoughts are unlikely to have made it to the printed page. If you
are in doubt, turn to the Web for the latest comments. You will also find
online documentation for each of the structures, generated from the code using
javadoc. It is best to read the online version of the documentation for the most
up-to-date details, as well as documentation of several structures not formally
presented within this text.

0.2 He Can’t Say That, Can He?

Sure! Throughout this book are little political comments. These remarks, on
first blush, may not be interesting. Skip them! If, however, you are interested in
ways to improve your skills as a programmer and a computer scientist, I invite
you to read on. Sometimes these comments are so important that they appear
as principles:

Principle 1 The principled programmer understands a principle well enough
to form an opinion about it.

Now, let’s get to work!

0.2 He Can’t Sz}y That, Can He?

Problems

0.1x All starred problems have answers. Where do you find answers to
problems? (Hint: See page 355)

0.2x You are an experienced programmer. What five serious pieces of advice
would you give a new programmer?

0.3 Surf to the Web site associated with this text and review the resources
available to you.

0.4x Which of the following structures are described in this text (see Ap-
pendix D, “Structure Package Hierarchy”): BinarySearchTree, BinaryTree,
BitSet, Dictionary, Hashtable, List.

0.5 Surf to http://www. javasoft.comand review the Java resources avail-
able from Sun, the developers of Java.

0.6x Review documentation for Sun’s java.util package. (See the Core
API Documentation at http://www.javasoft.com.) Which of the following
data structures are available in this package: BinarySearchTree, BinaryTree,
BitSet, Dictionary, Hashtable, List?

0.7 Check your local library or bookstore for Java reference texts.

0.8 If you haven’t done so already, learn how to use your local Java pro-
gramming environment by writing a Java application to write a line of text.
(Hint: Read Appendix A.)

0.9 Find the local documentation for the structure package. If none is to
be found, remember that the same documentation is available over the Internet,
from http://www.mhhe.com/javastructures.

0.10 Find the examples distributed with the structure package. Many of
the examples are discussed later in this text.

Chapter 1
The Object-Oriented Method

“‘I will pick up the hook.

You will see something new.
Two things. And I call them
Thing One and Thing Two.
These Things will not bite you.
They want to have fun.’”
—Theodor Seuss Geisel

COMPUTER SCIENCE DOES NOT SUFFER the great history of many other disci-
plines. While other subjects have well-founded paradigms and methods, com-
puter science still struggles with one important question: What is the best
method to write programs? 'To date, we have no best answer. The focus of
language designers is to develop programming languages that are simple to use
but provide the power to accurately and efficiently describe the details of large
programs and applications. The development of Java is one such effort.

Throughout this text we focus on developing data structures using object-
oriented programming. Using this paradigm the programmer spends time devel-
oping templates for structures called classes. The templates are then used to
construct instances or objects. A majority of the statements in object-oriented
programs involve sending messages to objects to have them change their state.
Programs involve, then, the construction and coordination of objects. In this
way languages like Java are object-oriented.

In all but the smallest programming projects, abstraction is a useful tool
for writing working programs. In programming languages such as Pascal and
C, the details of a program’s implementation are hidden away in its procedures
or functions. This approach involves procedural abstraction. In object-oriented
programming the details of the implementation of data structures are hidden
away within its objects. This approach involves data abstraction. Many modern
programming languages use object orientation to support basic abstractions of
data. We review the details of this support in this chapter.

1.1 Data Abstraction and Encapsulation

If you purchase a muffin from the Clarksburg Bread Company you can identify
it as a muffin without knowing its ingredients. Muffins are dome-shaped, bread-
like, and sometimes sweet. Whether or not there’s baking powder in a muffin
is of little concern to you. Of course, the baker is free to switch from baking

OOP:
Object-oriented
programming.

