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Preface

Some depth of understanding of crystallography and some knowledge of the methods
employed in the study of crystalline solids are central to the contemporary study of
many of the active areas in chemistry, the earth sciences, materials science, and
physics. In this volume we explain the basic concepts of crystallography and discuss
the principal modes of study of crystalline solids, the diffraction of X-rays, electrons,
and neutrons. In our experience students require a thorough, rather than a superficial,
understanding of the basic concepts if they are to make effective progress in the study
of crystalline solids and that is what we have set out to provide in this volume. In a
subsequent yolume we shall discuss the next stage in the study of crystalline solids,
crystal chemistry and crystal physics.

This volume stems from the first nine chapters of our Crystaliine Solids (Nelson,
London, and Wiley, New York, 1974). Significant changes in treatment and extensive
widening of the scope will be immediately discernible to those who used that book.
We have adopted a vector mmmt of lattice and diffraction geometry: the elegant
methods of spherical trigoné have been almost totally discarded, albeit with
regret, in favour of vectagmethods which are cmmently suitable for computer usage.
The recxptoal W the reflecting Spm are ‘now utilized throughout our
Jo 1)1 crystals.
A new chapter oﬁ cryltal structure de




viii Preface

volume our enthusiasm*has been guided by our experience of teaching all the topics
contained in it to students at Cambridge over the past twenty-five years. In our choice
of the problems at the end of each chapter we have attempted to provide some interest
for the chemist, the geologist, the materials scientist, and the physicist. It is our hope
that these problems will provide students with the opportunity to test their
understanding of the subject as their reading of the book proceeds.

We owe a debt of gratitude to colleagues from the Department of Metallurgy and
Materials Science and from our own Department of Earth Sciences who have been
involved in teaching crystallography in Cambridge where the courses we teach are for
chemists and physicists as well as for materials scientists and geologists. We are
greatly indebted to those who reviewed our preliminary proposals for the revision of
the earlier book:

Dr P. Day (Inorganic Chemistry, University of Oxford)

Professor N. L. Paddock (Chemistry, University of British Columbia)

Professor B. Ralph (Metallurgy and Materials Science, University College, Cardiff)
Professor D. W. A. Sharp (Chemistry, University of Glasgow)

Professor J. P. Simons (Physical Chemistry, University of Nottingham)

Professor D. G. W. Smith (Geology, University of Alberta, Edmonton)

Our thanks are also due to our editor, Navin Sullivan, for his continuing interest in
our work from the inception of the first edition of Crystalline Solids. To Dr Trevor
Page (Metallurgy and Materials Science, Cambridge) we are indebted for Fig 10.11
and to Dr Ross Angel (Earth Sciences, Cambridge, and Earth and Space Sciences,
Stony Brook, New York) for Figs 10.5 and 10.10. Our debt to Sheila Tuffnell, who
converted our manuscript into impeccable typescript, is very special. We are indebted
too to Judith Ginifer, who helped in many ways.

Cambridge, Duncan McKie
December 1985 Christine McKie



1
Crystal Lattices

”
A crystalline solid is essentially a solid whose atoms are disposed in regular three-
dimensional array. The atoms in a solid are not static: each atom possesses thermal
energy and vibrates about its mean position. It is the mean positions of the constituent
atoms that are regularly arranged in space in a crystalline solid. Such regularity of
mean atomic positions corresponds to a state of minimum free energy and is the
fundamental characteristic of the crystalline state.

Initsearly development crystallography was confined to the study of single crystals.
that is solid bodies bounded by natural plane faces within which the mean positions
of all the constituent atoms are related to a single regular three-dimensional array of
points. But there are in addition many other solid crystalline substances which can
never, or only with difficulty, be obtained in single crystal form; such are the common
metals, brass and steel, which are aggregates of interlocking randomly oriented
" crystals of varying shape and size. Such polycrystalline substances belong just as
surely to the crystalline state as do the single crystals which exclusively formed the
subject of the science of crystallography in its early days. Not all solids are crystalline
however; glasses and other amorphous solids have, like liquids, only severely localized
volumes of atomic order involving merely hundreds or thousands of atoms. Examples
of solids with two-dimensional or one-dimensional atomic periodicity are known
and are regarded as special cases within the crystalline state.

In this first chapter we develop the principles of geometrical crystallography by
consideration of perfect single crystals. For a perfect single crystal, the regular
arrangement of atoms in the crystal can be completely described by definition of a
fundamental repeat unit coupled with a statement of the translations necessary to
build the crystal from the repeat unit. For geometrical simplicity we exemplify this
basic crystallographic concept first by consideration of a two-dimensional case.

The arrangement of atoms in a layer of graphite (the crystalline form of carbon
stable at room temperature and atmospheric pressure) is shown in Fig 1.1. The carbon
atoms, represented as small solid circles in the figure, are in a honeycomb pattern
The distance between the centres of adjacent hexagons of the ‘honeycomb’ is 2-46 A
so that a layer of area about 1 mm? will contain about (4.10°? = 1-6.10'? hexagons;
the array of atoms in a layer of this size is thus effectively infinite. The repeat unit of
the two-dimensional structure, containing two carbon atoms, is shown in the top
left-hand corner of the figure enclosed in a parallelogram whose corners lie at the
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Fig 1.1 The arrangement of carbon atoms in one layer of the graphite structure. Each carbon
atom is represented by a small solid circle. Two reasonable unit-meshes are outlined and labelled
with the axial vectors a, b, and the inter-axial angle .

canttres of four adjacent hexagons. Theatomic pattern of the layer can be reconstructed
by repeating this parallelogram in a regular manner so as to fill the plane of the
atomic layer completely. 'ﬂle parallelogram, known as the unit-mesh of the layer, is
completely specified by d atmg two of its sides as the reference axes x and y,
stating the interaxial angle, ; ecilying the lengths of its edges. It is conventional
} a\lddenote the lengths of the edges of {h¢ unit-mesh parallel to the x and ‘y axes a8 a
b respectively and to denote the digle between the x and y axes as . In raphite
: M’mnmmesh has a = b= 246A, y=120°. A varjety of paralleldgrm all of the
same area; could have been chosen 4 the unit-medh of a graphite layer;
géneral conventional and convenient to select a unit-mesh with g and b as short as -
possible and the angle > 90°. It is immaterial where the corners of the.pmit-mesh
are placed in relation to the atoms of the graphite layér; the shape of thaeﬁwentmnxi

but it is in

unit-mesh is controtled by the atomig pattern to be constrycted from it; f&mge of

. origin merely affecting the coor&num of the atoms within the unit-mésh. For the
.. puepose of defining the positions: osﬂﬁeatoms of the repeat unit within the unit-mesh
- xemploy a coordinate system which has the edges of the unit-mesh 4s axes, the

usit of length along each axis bemg taken as the length of the oorrespondmg edge;
atomic coordinates are thus given as fractions of the lengths of the edges of the
unit-mesh referred conventionally to an origin at the top left-hand corner of the
unit-mesh. The origin of each of the unit-meshes in Fig 1.1 is differently disposed



Crystal lattices K]

with respect to the atomic array, but the reference axes are parallel and the area is the
same in each case The unit-mesh on the left of the figure contains an atom A with
coordinates %, § and an atom B with coordinates 4, . The periodic nature of the
atomic arrangement naturally implies that an atom situated at a point with
coordinates x, y, that is at a vector distance xa + yb from the origin, will be repeated
at vector distances (m+ x)a+(n+ y)b from the origin, where m and n are mtegers in
this case the atom A at 2, 1is repeated at (m+%)a, (n+4)b and the atom B at (m +)a,
(n+%)b. The presence of an atom at the origin of the unit-mesh on the right of the
figure implies the presence of other atoms of the same element at points with
coordinates 1,0; 0, 1; 1, 1; 2, 1; and so on: a statement of any one such pair of
coordinates is sufficient for reconstruction of the structure. In the unit-mesh on the
left of the figure the atom B has coordinates %, % and there will be necessarily an
equivalent atom with coordinates —1+4, —1 +=} i.e. —%, —3, corresponding to the
coordinates of the atom A in this unit-mesh with change of sign. The positions of
the two carbon atoms in unit-mesh I can thus be neatly specified as +(3, $). In terms
of this unit-mesh the structure of a layer of graphite can be completely specified by
stating the dimensions of the unit-mesh, a = b = 2:46 A,y = 120°, and the coordinates
of the carbon atoms within it, +(4, }); the atomic layer can then be reconstructed
by repetition of the unit-mesh in two non-parallel directions.

We now pass on to the next stage of complexity and consider in general terms a
three-dimensional structure. Here the repeat unit can always be enclosed within a
parallelepiped, known as the unit-cell, and the effectively infinite structure can be
built up by repetition of the unit-cell in three non—coﬁanar directions which are
conventionally taken as the reference axes x, y, and z. The lengths of the unit-cell
edges parallel to the x, y, and z axes are respectively denoted a, b, and c. It is
conventional also to take the positive directions of the reference axes so that the axial
system is right-handed and the interaxial angles a = y Az, f=zA X, y =x A ) are
all three > 90° as exemplified in Fig 1.2.7 As in the two-dimensional example
considered earlier the coordinates of atomic positions are conventionally stated as
fractions of the unit-cell edges.

Fig 1.2 Unit-cell nomenclature. The reference
axes x, y, z.are right-handed, the length of the
unit-cell edge pasaliel to each reference axis is
respectively a, b, ¢, and the interaxial angles are
denoted a, B, y.

l’&am to make easily intelligible pqrgpechw dta ings of three~dimensional
ﬂrmmm are very simple and. the #ask is virtos ihpa&le for really
;  structures. It has conseiguently bed ,oémmonpm&tice&m structural

the tkm—d:meagwnﬂ structure is: Kejeéﬁd dowi one of the reference
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(c) (d)
Fig/1.3 The structure of graphite. (a) and (b) are perspective drawings to show how identical
twd-dimensional layeré are stacked to make the thres-dimensional structure; in (a) the positions
of garbon atoms are shown as small solid circles and Cg tings are outlined; in (b) the C; rings
are again outtined and Ja.tice points are shown as large solid circles; in both (a) and (b) the
unit-cell is outlined. The coordinates of the carbon atoms in the graphite unit-cell, are 0,0,0;"
0.04:%4,0:4 83 (c) and (d) are projections down the 2-axis on to the xy plane; in (c) the
c:jon atoms with z = 0 are shown as small solid circles and the C, rings of this layer are
outlined with solid lines while the carbon atoms of the superimposed layer at z = % are shown as
open circles and their linkage into C, rings is indicated by broken lines; in (d) the C¢ rings of the
2=10and z =} layers are similarly represented and lattice points are shown as large solid circles;
in the lower right-hand corriers of both (c) and (d) the unit-celt is shown in projection.

\
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axes on to the plane containing the other two axes, which may or may not be -
perpendicular to the axis of projection. Atomic coordinates in the direction of the axis
of projection are marked on the plan beside the symbol representing the atomic
position. In Fig 1.3(a) and (c) a perspective drawing and a plan of the three-dimensional
graphite structure are shown. The atom labelled A lies in: the x, y plane and at distances
me, where m is a positive or negative integer, above or below the plane. When the
coordinate parallel to the axis of projection of an atom, such as A, is zero it is
customary to omit the coordinate from the plan of the structure; an atom with no
coordinate written beside it is to be taken as lying in the plane of projection. The
atom labelled B lies at ¢ above the plane of projection and this is indicated by
writing 3 next to the symbol for the atom on the plan. At C, and related positions,
two atoms, C' and C", are superimposed in projection, one with z = 0 and the other
with z = 4;in such a case it is customary to write both coordinates beside the symbol
for the atom as 0, 4.

Lattices

Some crystal properties of interest and importance are dependent only on the shape
of the unit-cell, that is to say they depend only on the way in which repeat units are
related to one another. It is consequently useful to have a simple way of describing
the periodicity of a crystal structure and for this purpose the concept of the lattice is
introduced. The way in which the crystal structure is built up by repetition of the
repeat unit can be completely, and very simply, described by replacing each repeat
unit by a lattice point placed at an exactly equivalent point in each and every repeat
unit. All such lattice points have the same environment in the same orientation and
are indistinguishable from one another. We return to two dimensions to exemplify
this matter in the first instance and again take as our example a layer of the graphite
structure (Fig 1.4). Figure 1.4a shows a layer of the graphite structure with carbon
atoms labelled A, B, C,...,a, b, ¢, ... and a conventional unit-mesh outlined. The
lattice of this structure can be constructed by placing a lattice point at the carbon
atom A and at all equivalent points, thatisat B,C, D, E, F, G, H, [, etc. The resultant
two-dimensjpnal lattice is shown in Fig 1.4(b). If a lattice point is placed at A, then it
is not permissible to place a lattice point at a because, although A and a both
represent carbon atoms théy are not identically situated; both lie at the centroid of a
triangle formed by their three nearest neighbours, but the triangles about A and a are
disposed at 60° to each other so that although both atoms have identical
environments, their environments are not similarly oriented. Either the carbon atoms
at A, B,C.... or the atoms at a, b, c,.. ., but not both sets of atoms, may be taken
as lattice points.

Figure 1.4(c) represents a layer of the structure of boron nitride, BN, boron atoms
being represented by solid circles and nitrogen atoms by open circles. The two-
dimensional lattices of graphite and BN are evidently identical except for the small
difference in their unit-mesh dimensions: for graphite a = b = 2-46 A, while for BN
a=b =251 A The repeat unit in graphite however consists of two carbon atoms.
while in boron nitride it consists of one boron and oné nitrogen atom.

In a lattice every repeat unit of the structure is represented by a lattice point. A
graphite layer, for instance, can be built up by placing the repeat unit of two carbon
atoms in the same orientation at each lattice point in such a manner that the
corresponding point of every repeat unit is placed at a lattice point. It is of no
consequence which point of the repeat unit is sited at the lattice point so long as it is
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the same point for every repeat unit. The lattice thus has, in two dimensions, the
same unit-mesh as the structure to which it refers and is completely specified by a
statement of the repeat lengths a and b parallel to its x and y axes and its interaxial

angle y.

e [ . [ . L] ° ®
B - C
E) e -] ° °
D E
d e ° S
® L] . . . ° [} )
G H
.. [ o ° °
g h :
L] ® [ ] [ ] * [}
[ ] [ J -] o
) b ]
y y
a

o
(]

X ¢ T
(a) (b) . (c)

Fig 1.4 The two-dimensional lattice of & graphite layer. (a) shows the arrangement of carbon
atoms (solid circles) in one layer of the graphite structure (Figs 1.1, 1.3); identically situated

carbon atoms are labellad A, B, C, D, .. . the carbon atoms iabelled @, b, ¢, d, ... have a
differently oriented environment but are each identically situated; the unit-mesh is outlined and

it is apparent that the repeat unit consists of two carbon atoms, such as A and a. (b) shows the
cofresponding two-dimensional /attice with the dimensions @ = b, y of the unit-mesh indicated.
{c) shows the structure of a layer of boron nitride, BN, which has the same lattice with y = 120°
and @ = b, but a is slightly different from s for graphite, the difference being too small 10 show on
diagram; boron and nitrogen atoms are repressnted respectively as sofid and open circles.

A three-dimensional lattice can be derived in an exactly analogous manner. For
instance, the three-dimensional structure of graphite has a repeat unit containing
four carbon atoms (Fig 1.3(a) and (c)). The lattice of this structure may be simply
obtaitied by placing lattice points at the site of the carbon atom C’ (Figs 1.3(a) aad
(c)) and at all equivalent points. Inspection of the figure shows that the atom B casnot
be related to the atom C' by a lattice translation; both atoms have ideatioal
environments in their own layetr, but ‘their caviromments in

ifferent. The unit-cell of ‘the"
c=6B0A, o= f =90y = 12

Hawugmpawt.
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same environmient in the :same orientation. It follows immediately that anyv lattice
point is related to‘any other by‘a simple lattice translation.

A plane passing through thitee non-colinear lattice points is known as w lattice
plane. Since’all lattice points are' equivalent there will be equivalent parallei planes
passing through'all the other potnts.of the lattice. Such a set of planes is known as
a set of lattice planmes; several sets are-illustrated in Fig 1.5. A set of lattice planes
divides each édge of the unit-cell into anintegral number of equal parts; this property
forms the basi$ of ‘the very usefid system of indexing of lattice planes deveinped by
W. H. Miller, Professor of Mineralogy in the University of Cambridge from 1832
to 1880. If the latnodrepeats along the x, y, 2 axes are respectlvely a, b, ¢ ard if the
first plane out from the origin {at a lattice point) of a set of lattice planc- makes
intercepts a/h, b/k, c/l, where h, k; I are integers, on the x, y, z axes respectively,
then the Miller indices of this set of Jattice planes are (hkl), the three facio:s h, k, |
being conventionally enclosed in round brackets. A set of lattice planes i'/) thus
divides a into |#| parts, b into | k| parts, and c into |/| parts. The set of lattic: planes
labelled I in Fig 1.5 has Miller indices (122).

The equations to:a Set of lattice planes can be written in intercept orm as
(hx/a)+(ky/b)+(Iz/c) = n, where n is an integer. If n is zero the lattice plan: passes
through the origin; if n = 1 the.plane of the set makes intercepts a/h, b/k, ¢.{ on the
x, y, z axes respectively; if n = 2 the intercepts are 2a/h, 2b/k, 2¢/l; and it n = —1
the intercepts are —a/h, —b/k, =c/l. Thus the set of lattice planes (kkl) includes the
plane with indices (hkl), which makes intercepts —a/h, —b/k, — ¢/l on the reference
axes and is commonly spoken of as the ‘bar h, bar k, bar I’ plane.

Of course some sets of lattice planes will make intercepts that are not ali positive
or all negative: for instance the first plane out from the origin (taken as the front
lower right-hand corner) of the set labelled II in Fig 1.5 makes intercepts —a/2, —»,
¢/2 on the x, y, z axes respectively so that the indices of this set are (212). If a plane is
parallel to one of the reference axes, its intercept on that axis is at infinity and the
corresponding Miller index is zero; thus set [1I in Fig 1.5 being parallel to the z-axis
has ¢/l infinite so that ! must be zero and the Miller indices of the set are (210). The
set of planes labelled IV in Fig 1.5 is parallel to the x and z axes so that h = [ =
since the intercept of the first plane out from the origin on the y-axis is b, the md;ces
of the set are (010). In terms of Miller indices the unit-cell can be described as the
parallelepiped bounded by adjacent lattice planes of the sets (100), (010), (001).

The line of intersection of any two non-parallel lattice planes is the row of
lattice points common to both planes. The intersections of two sets of lattice planes
will thus be a set of parallel rows of latlice points; for instance sets I11 and IV in
Fig 1.5 intersect in lines parallel to the z-axis. It is convenient 10 index such rows
by reference to the parallel row through the origin, which is itself the intersection of
the lattice” planes through the origin belonging to each of the two sets. The
coordinates of the lattice points in such a row are 0, 0, O for the lattice point at the
origin; Ua, Vb, Wc, where U, V, W are integers with no common factor other than
umty, for the next lattice point out from the origin; and nUa, nVb, nWc, where n is an
integer, for the other lattice points of the row. Such a row of lattice points is

‘compietely specified by the three integers U, ¥, W, which are conventicnally enclosed
in square brackets as [UV W] in order to distinguish them from Miller indices for
lattice planes, conventionally enclosed in round brackets as (hki). The symbol [UV W]
represents not only the lattice point row passing through the origin and through the
lattice point with coordinates Ua, Vb, Wc but all paraliel lattice point rows; the
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Fig 1.5 Lattice planes and zone axes. The array of lattice points exposed on the three visibia

f of a parslielepiped whose edges are parallel to those of the unit-cell is displayed in (a) with _
circles to represent lattice points and thin broken lines parallel to axial directions. Four sets

of lattice planes are indicated by thick solid lines representing the intersection of lattice planes

with the visible faces of the paralielpiped: their Miller indicds are | (122), Il (2¥2), It (210),

IV (010). In (b) the definition of Miller indices is illustrated : the shaded plane (hk/) makes

i ‘8/h. bjk, ¢/l on the x, y, z axes, a, b, c being the lattice repeat slong sach axis and », &, /

imegers. In (c) the definition of the zone axis symbol is iflustrated : [UVW] is the direction

el to the line through the origin and the point Ua, Vb, We.
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lattice direction [U VW] is thus parallel to the lattice vector Ua+ ¥bh+ We, where
U, V, W are integers and 8, b, ¢ are the base vectors of the lattice.

It is necessary for us to explore further the geometry and notation of lattice planes
and rows because a thorough understanding of these matters is essential not only for
the description of the external shape of single crystals but also, and more importantly,
for the interpretation of the diffraction of X-radiation by crystals (chapter 6). In both
these ficlds it is only the angular disposition of lattice planes and rows with respect
to the reference axes .of the unit-cell that is significant; the actual position in space
of a given plane or row is of no consequence. For this reason the Miller indices (hkl)
may be taken to represent a set of paraliel lattice planes and the lattice vector
[UVW] to represent a set of parallel lattice point rows (the alternative descrip-
tion of [UVW] as the zone axis symbol must await the definition of the term
‘zone’ on p. 13). The symbol (kkl) thus denotes any plane of the set of lattice
planes which satisfy the equation (hx/a)+ (ky/b)+(lz/c) = n, where n is integral,
with one qualification which enables a distinction to be made between plancs of the
set which lie on opposite sides of the origin. If it is desired to make this distinction,
as is often the case, the symbol (hkl) is reserved for those planes of the set which make
intercepts on the same side of the origin as the plane whose intercepts on the x, v, z
axes are respectively a/h, b/k, ¢/l and the symbol (hkly is used to denote those
planes of the set which make intercepts on the same side of the origin as the plane
whose intercepts on the x, y, z axes are respectively —a/h, —b/k, —c/l. The plane
(hkl) is said to be the opposite of (hkl), the superscript ‘bar’ representing, as is usual
in crystallography, a minus sign. In a precisely analogous way the zone axis symbol
[UV W] represents all directions parallel to the vector from the origin to the lattice
point with coordinates Ua, Vb, We, with the proviso that opposite directions may
be distinguished as [UV W] and [UVW]; [UV W] is taken to be in the same sense
as the vector from the origin to Ua, Vb, Wc and [UVW] in the same sense as the
vector from the origin to the lattice point at -- Ug, — Vb, — We. In general, of course,
the indices in the symbols (hkl) or [UV W] need not all be of the same sign.

The condition for the lattice vector [UV W] to be parallel to a plane (hkl) can
be derived by reference to Fig: 1.5(b). Any vector r parallel to the set of planes (hkl)
will be given by

r = AAB+ uAC,
where 4 and u are scalars

1 1
Si AB= ——a+-b
ince ha+k
1 1
AC = ——a+- .
and C ha+1c,

1 A p
r= —E(Aﬂ‘)a +}(—b+7c.
So, for the lattice vector [U VW] to be paraliel to the set of planes (hkl)

u
.__c’
!

ie. hU = —(A+p), kV=24, and IW =y,
whence hU+kV+IW =0. '

Ua+ Vb+ We = —%(l+u)a+%b+
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