Computer

Architecture
A Quantitative Approach

LR
U AERESE)iik

David A. Patterson
= John L. Hennessy i

Lw T W AR 4 M r< MORGAN
China Machine Press AN KAUFMANN

T I AU

T ENIERESH
SR RPIE

(ELHR % 28KR)

Computer Architecture
A Quantitative Approach

(Second Edition)

David A. Patterson
John L. Hennessy

(%)

David A. Patterson & John L. Hennessy: Computer Architecture: A Quantitative Appro-
ach. Second Edition.

Copyright @ 1996 by Morgan Kaufmann Publishers, Inc.

Harcourt Asia Pte Ltd under special arrangement with Morgan Kaufmann authorizes
China Machine Press to print and exclusively distribute this edition, which is the only authorized
complete and unabridged reproduction of the latest American Edition published and priced
for sale in China only, not including Hong Kong SAR and Taiwan.

Unauthorized export of this edition is a violation of the Copyright Act. Violation of this

Law is subjected to Civil and Criminal penalties.

Harcourt\F $H 2+ & /£ '3Morgan Kaufmann2 RIRUEEBRAE T, HEAUHULAR Tk H iR i
HEHBERTERA, EHEYEEEFRR2MENZBIRANEHR, THETE
BA (TMESEEHEMEEFITRK) HEREM LR,

FIEARSERWOH QT SRR, SREEAE-WRERAERET.

MBRRE, BERL%E.

FZBENBIZE: Bx: 01-1999-2022
BHEMSRE (CIP) B

HHENGRER: BT E B2 EX/(F)MWME R Patterson, D. A.), ()
R #2(Hennessy, J. L)ZE - Jb51: ML TV HARH:, 1999.9
GHEHLEHEA)
ISBN 7-111-07439-4 e '\/ /
/,-‘ .
Lit- 0.0t 0% IEBFHEH - REEH - %X V.TP303

& B R 4 B 15 THCIPRR 2 F (1999) 8337855

H R & DJUSE (st PRI E 4Tk A2 HBE4ES 100037)
AR EATWEN ENR - BRI R R T R AT
199949 H B 1AR % 1k EI R

787mm x 1092mm1/16 - 64.5E[13K

ENl % 0 001- 4 000J1}

EHr: 88.005¢

RAS, AR, B, B, A RT3miRk

Computer Architecture Definitions, Formulas, and Rules of Thumb

Definitions
Antidependence: Dependence resulting from reuse of a name; corresponds to WAR hazard (page 232).

ATM (asynchronous transfer mode): A switch-based network standard (page 613).

Big Endian: The byte with the binary address “x...x00” is in the most significant position (“big end™) of a 32-
bit word (page 73).

Clock rate: Inverse of clock cycle time, usually measured in MHz (page 32).

CPI: Clock cycles per instruction (page 32).

Data dependence: True dependence resulting from use of a data value produced by an earlier statement; cor-
responds to a RAW hazard (page 229).

DSM: Distributed shared memory (page 640).

Hit rate: Fraction of memory references found in the cache, equal to 1 — Miss rate (page 400).

Hit time: Memory-access time for a cache hit, including time to determine if hit or miss (page 384).

Instruction count: Number of instructions executed while running a program (page 32).

Lintle Endian: The byte with the binary address “x...x00" is in the least significant position (“little end”) of a
32-bit word (page 73).

MIMD (multiple instruction stream, multiple data stream): A multiprocessor or multicomputer (page 637).

Miss penalry: Time to replace a block in the top level of a cache system with the corresponding block from
the lower level (page 43).

Miss rate: Fraction of memory references not found in the cache, equal to 1 — Hit rate (page 43).

N, The vector length needed to reach one-half R, (page B-30).

N,: The vector length needed so that vector mode is faster than scalar mode (page B-30).

Output dependence: Dependence resulting from two writes to the same name; corresponds to a WAW hazard
(page 232).

Roo: The megaFLOPS rate of an infinite-length vector (page B-30).

RAW data hazard (read after write): An instruction tries to read a source before a prior instruction writes it,
so it incorrectly gets the old value (page 151).

SIMD (single instruction stream, multiple data stream): An array processor (page 637).

SISD (single instruction stream, single data stream): A uniprocessor (page 637).

Spatial locality (locality in space): If an item is referenced, nearby items will tend to be referenced soon
(page 38).

Superscalar: A machine that executes multiple instructions per clock cycle with instruction issue controlled
dynamically by hardware (page 278).

Temporal locality (locality in time): If an item is referenced, it tends to be referenced again soon (page 38).

TCP/IP (Transmission Control Protocol/Internet Protocol): The standard network protocols used on the
Internet (page 609).

VLIW: A machine that executes multiple instructions per clock cycle with instruction issue controlled stati-
cally by software (page 278).

WAR data hazard (write after read): An instruction tries to write a destination before it is read by a prior
instruction, so the prior instruction incorrectly gets the new value (page 151).

WAW data hazard (write after write): An instruction tries to write an operand before it is written by a prior
instruction. The writes are performed in the wrong order, incorrectly leaving the value of the prior in-
struction in the destination (page 151).

Fcrmulas

1.

n
i . . .
AM = - 2 Time; WAM = . Y Weight, x Time; HM=

CPU time = Instruction count X Clock cycles per instruction x Clock cycle time (page 32)

. . l
Execution time ;4 _

Amdahl's Law: Speedup, .. = Fraction (page 30)

enhanced

Execution time - 1 — Fracti
new — Fraction Y ——
(enhanced Speec‘uPenhanced

Average memory-access time = Hit time + Miss rate X Miss penalty (page 384)

Means—arithmetic (AM), weighted arithmetic (WAM), harmonic (HM), and weighted harmonic

(WHM):
n
n —_— 1
1 WHM= n Weighli
Ratet.

M=

j:l l—l

1 Ratei

i

1=
where Time; is the execution time for the ith program of a total of » in the workload, Weight, is the
weighting of the ith program in the workload, and Rate, is a function of 1/Time, (pages 25-26)

Cost of die + Cost of testing die + Cost of packaging and final test
Final test yield

(page 10)

Cost of integrated circuir =

Defects per unit area X Die area)_a
o

where Wafer yield accounts for wafers that are so bad they need not be tested and o corresponds to the

number of masking levels critical to die yield (usually o0 = 3.0, page 12)

Die yield = Wafer yield x (1 +

1 Clock cycle unpipelined
1 + Pipeline stall cycles per instruction~ Clock cycle pipelined

1 .
1 + Pipeline stalt cycles per instruction x Pipeline depth

Speedup from pipelining =

where Pipeline stall cycles account for clock cycles lost due to pipeline hazards (page 141)

Linle’s Law: Mean number of tasks in system = Arrival rate X Mean response time
assuming the system is in equilibrium (page 508)

Rules of Thumb

1.

ok W

Amdahl/Case Rule: A balanced computer system needs about 1 MB of main memory capacity and 1
megabit per second of I/O bandwidth per MIPS of CPU performance.

90/10 Localitv Rule: A program executes about 90% of its instructions in 10% of its code (page 38).
DRAM-Growth Rule: Density increases by about 60% per year, quadrupling in three years (page 7).
Disk-Growth Rule: Density increases by about 50% per year, quadrupling in just over three years (page 7).
Address-Consumption Rule: The memory needed by the average program grows by about a factor of 1.5
to 2 per year; thus, it consumes between 1/2 and 1 address bit per year (page 6).

85/60 Branch-Taken Rule: About 85% of backward-going branches are taken while about 60% of for-
ward-going branches are taken (page 166).

2:1 Cache Rule: The miss rate of a direct-mapped cache of size N is about the samne as a two-wzy set-
associative cache of size N/2 (page 396).

DLX Instruction Set, Description Notation, and DLX Pipeline Structure

DLX Standard Instruction Set

Instruction type/opcode

Instruction meaning

Data transfers

" LB, LBU, SB
LH, LHU, SH
Lw, sw
¢ LF,LD, SF, SD
j MOVI2S, MOVS2I

Move data between registers and memory, or between the integer and FP or special
registers; only memory address mode is 16-bit displacement + contents of a GPR

Load byte, load byte unsigned, store byte

Load half word, load haif word unsigned, store half word
Load word, store word (to/from integer registers)

Load SP float, load DP float, store SP float, store DP float
Move from/to GPR to/from a special register

. MOVF, MOVD Copy one FP register or a DP pair to another register or pair
MOVFP2I,MOVI2FP Move 32 bits from/to FP registers to/from integer registers
" Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow

' ADD, ADDI, ADDU, ADDUT
SUB, SUBI, SUBU, SUBUIL
. MULT, MULTU, DIV, DIVU

" AND, ANDI
" OR, ORI, XOR, XORI
LHI

SLL, SRL,
SRLI, SRAT

S__,S
" Control
1 BEQZ, BNEZ
BFPT, BFPF
J, JR
JAL, JALR
TRAP

SRA, SLLI,

I

 Floating point
ADDD, ADDF
SUBD, SUBF
MULTD, MULTF
DIVD, DIVF

CVTF2D, CVTF2I,
- CVTD2F, CVTD2I,
CVTI2F, CVTI2D

D,__F

Set conditional:

Add, add immediate (all immediates are 16 bits); signed and unsigned
Subtract, subtract immediate; signed and unsigned

Multiply and divide, signed and unsigned; operands must be FP registers; all operations
take and yield 32-bit values

And, and immediate
Or, or immediate. exclusive or, exclusive or immediate
Load high immediate—loads upper half of register with immediate

Shifts: both immediate (S__I) and variable form (S__): shifts are shift left logical,
right logical, right arithmetic
" may be LT, GT, LE,GE, EQ,NE

Conditional branches and jumps; PC-relative or through register

Branch GPR equal/not equal to zero; 16-bit offset from PC+4

Test comparison bit in the FP status register and branch; 16-bit offset from PC+4
Jumps: 26-bit offset from PC+4 (J) or target in register (JR)

Jump and link: save PC+4 in R31, target is PC-relative (JAL) or a register (JALR)
Transfer to operating system at a vectored address

Return to user code from an exception; restore user mode

FP operations on DP and SP formats
Add DP, SP numbers

Subtract DP, SP numbers

Multiply DP, SP floating point

Divide DP, SP floating point

Convert instructions: CVTx2y converts from type x to type v, where x and y are T
(integer), D (double precision), or F (single precision). Both operands are FPRs.

DP and SP compares: “__" = LT, GT,LE, GE, EQ, NE; sets bit in FP status register

Hardware Description Notation (and some standard C operators)

! Notation Meaning Example Meaning
|
e Data transfer. Length of transfer is given pegs[R1) e Transfer contents of R2 to R1. Registers have a fixed
i by the destination’s length; the lengthis Regs(RrR2; length, so transfers shorter than the register size must
: specified when not clear. The left-hand indicate which bits are used.
side may have multiple destinations
L separated by commas.
fu Array of memory accessed inbytes. The Regs [R1]«M[x] Place contents of memory location x into R1. If a transfer
| starting address for a transfer is indi- starts at M[1] and requires 4 bytes, the transferred bytes |
f cated as the index to the memory array. are M[1],M[i+1],M[1i+2]),and M[i=3]. |
| — I)
' e-n Transfer an #-bit field, used whenever M{yleqgM[x]; Transfer 16 bits starting at memory location X to memory |
length of transfer is not clear. location y. The length of the two sides should match. |
[— ——]
PX, Subscript selects a bit. Regs [R1]5e0; Change sign bitof R1 to 0. (Bits are numbered from MSB |
‘ starting at 0.)
" T - T - 1
[P SR, Subscnpl selects a field. Regs{R31,, 31¢ Moves contents of memory location x into low-order byte ‘
P B M[x]; of R3. ‘
Coxt Superscript replicates a bit field. Regs (R3], - 3(._024‘. Sets high-order three bytes of R3 to 0.
2 Con(.alenates two fields, Regs [R3] 024 Moves contents of location x into low byte of R3; clears
: ## M[x]: upper three bytes.
F2##F3e M[x]; Moves 64 bits from memory starting at location x; first 32
bits go into F2, second 32 into F3. i
L& Dercferencc a pmnler get the addrecc of pre&x; Assign to object pointed to by p, the address of the vari- |
! a variable. able x. !
<<, >> C loglcal shifts (lefl right). Regs (R1] << 5 Shift R1 left 5 bits. i
EEPREY C relational operators: equal, not equal, (Regs[R1l]== True if the contents of R1 equal the contents of R2 and t ‘w
o<, greater, less, greater or equal, less or Regs[R2]) & contents of R3 do not equal the contents of R4. i
| »=,< equal. (Regs[R3]!= |
i Regs [R41) i
e ————— e ——— — -
&, C bitwise logical operations: and, or, (Regs[R1] & Bitwise and of R1 and the bitwise or of R2 and R3. i
L, exclusive or, and complement. (Regs[R2] | ;
Regs [R31)) |

DLX Pipeline Structure

MEMWB.ALUOutpuft -

Stage Any instruction
IF IF/ID.IR & Mem[PC];
TF/ID.NPFC, PC & (if EX/MEM.cond {EX/MEM.ALUOutput} else {PC+4});
ID D EX.A & Regs{IF/ID.IRg_ _10l; ID/EX.B &« Regs[IF/ID.IR11_ 15];
ID/EX.NPC « IF/ID.NPC; Df X.IR ¢ IF/ID.IR;
ID/EX.Imm « (IF/ID.IRjg) ##IF/ID.IR1g 31:
ALU instruction Load or store instruction Branch instruction
. EX EX/MEM.IR « 1D/EX.IR; EX/MEM. IR« ID/EX.IR
‘ EX 'MEM.ALUCutput e EX 'MEM.ALUQuULpuUt ¢ EX/MEM.ALUOutput ¢«
T IDJ/EX.A runc ID'EX.B; or ID/EX.A + ID/EX.Imm; ID/EX.NPC+1ID/EX. Imm;
EX/MEM.ALUOULPUL «)
ID/EX.A op ID/EX.Imm; EX/MEM.cond &« 0; EX/MEM.cond &
EX/ MEM cond R C; EX/MEM. B(— ID/EX.B; (ID/EX.A op 0);)
MEM MEM/WB.IR <—EX/ME’M IR MEM/WB.IR ¢ EX/MEM.IR; !
MEM/WB.ALUOutput & MEM/WB.LMD ¢
EX/MEM.ALUOutpuUt ; Mem [EX/MEM.ALUOutput]; or
Mem{EX/MEM.ALUOQutput] ¢
‘F—— e EX/MEM.B:;
| WB Regs [MEM/WR. Ith_ 20] « Regs [MEM/WB.IR11 . 15] €«]
MEM/WB.ALUOutput; or MEM/WB.,LMD; |
Regs IMEM/WE.IR1: | 15) & {
|

To Andrea, Linda, and our four sons

About the Authors

David A.Patterson(University of California at Berkeley)has taught computer architecture since
Joining the faculty in 1977 and is holder of the E. H. and M. E. Pardee Chair of Computer Science.
His teaching has been honored by the ACM with the Outstanding Educator Award and by the
University of California with the Distinguished Teaching Award. He also received the inaugural
Outstanding Alumnus Award of the UCIA Computer Science Department. He is a member of the
National Academy of Engineering and is a Fellow of both the IEEE and the Association for
Computing Machinery (ACM).

Past chair of the CS Division in the EECS Department at Berkeley and the ACM Special
Interest Group in Computer Architecture, Patterson is currently chair of the Computing Research
Association. He has consulted for many companies, including Digital, HP, Intel, and Sun, and is
also co-author of five books.

At Berkeley, he led the design and implementation of RISC I, likely the first VLSI Reduced
Instruction Set Computer, This research became the foundation of the SPARC architecture,
currently used by Fujitsu, ICL, Sun, TI, and Xerox. He was also a leader of the Redundant Arrays
of Inexpensive Disks (RAID) project, which led to high-performance storage systems from many
companies. These projects led to three distinguished dissertation awards from the ACM. His
current research interests are in large-scale computing using networks of workstations (NOW).

JOHN L. HENNESSY (Stanford University) has been a member of the Starfford faculty since
1997, where he teaches computer architecture and supervises a group of energetic Ph. D. students. He
is currently Chairman of the Computer Science Department and holds the Willard R. and Inez Kerr
Bell Professorship in the School of Engineering. Hennessy is a Fellow of the IEEE, a member of the
National Academy of Engineering, and a Fellow of the American Academy of Arts and Sciences.
He received the 1994 IEEE Piore Award for his contributions to the development of RISC technology.

Hennessy's original research area was optimizing compilers. His research group at Stanford
developed many of the techniques now in commercial use. In 1981, he started the MIPS project at
Stanford with a handful of graduate students. After completing the project in 1984, he took a one-
year leave form the university to co-found MIPS Computer Systems, which has since merged with
Silicon Graphics. Hennessy's recent research at Stanford focuses on the area of designing and
exploiting multiprocessors. Most recently, he has been involved in the development of the DASH
multiprocessor architecture, one of the first distributed shared-memory multiprocessors.

| Foreword

by C. Gordon Bell

Once again, [am honored and delighted to write the foreword to what is now the
second edition of this landmark book.

With this edition, which is actually a whole new book, my 1990 prediction
that Computer Architecture: A Quantitative Approach would be the standard ref-
erence for computer systems analysis and design is reaffirmed. In the interim be-
tween editions, the authors wrote and published Computer Organization and
Design: The Hardware/Software Interface to serve as the introductory foundation
for this book.

In the two three-year generations of Moore’s Law since the first edition of
Computer Architecture, the number of transistors per chip has increased by a fac-
tor of 16 and circuit speed has more than quadrupled. Disk densities have in-
creased at similar rates of 60% per year. However, main memory and disk access
times have not improved at comparable rates. These order-of-magnitude changes
in technology have initiated numerous changes in instruction set and system ar-
chitecture, which have driven the revision of this text around the theme of in-
creased parallelism.

Of course, many of the technological changes we are speaking of were spurred
on by advances in hardware. Since the first edition, we have seen the need for a
two- or three-level cache and memory hierarchy to match processing speeds; the
adoption of hardwired, pipelined instruction level parallelism in architectures; the
universal adoption of the shared bus multiprocessor, or "multi," to replace the use
of many uniprocessors; a significant decrease in the use of vector processors; the
use of parallel disks or redundant arrays of inexpensive disks (RAID}—previous-
ly covered in only two pages; and the prevalence of interconnected computers for
performance and reliability.

In addition to these hardware-induced changes, the new text reflects a concep-
tual change: The notion of a unique computer architecture for size and class has
been replaced by a comparison and description of various Alpha, MIPS, SPARC,
PowerPC, and PA-RISC microprocessors that can be combined to scale a range
of applications. Gone from this edition are the VAX and IBM 360 architectures,
known as a minicomputer and mainframe, respectively. Instead, the Intel 80x86,
or PC architecture, is described in its own appendix, because after all it is the ref-
erence architecture that all others compete with in PCs, workstations, various
multiprocessors, and networks.

Thus, the material herein is required understanding for anyone working with
architecture or hardware, including architects, chip and computer system engi-
neers, and compiler and operating system engineers. It would prove beneficial to

vi-

Computer Architecture: A Quantitative Approach

software engineers writing parallel programs for multiprocessors and computer
clusters, as well.

The second edition continues the authors’ particular style of analysis in sec-
tions such as Fallacies and Pitfalls and Putting It All Together and in new sec-
tions on Crosscutting Issues. In addition, they continue to provide a sense of
context in sections on Historical Perspective.

The reason this book remains a standard of comparison is the understanding,
experience, taste, and uniqueness of the authors. Originally, Hennessy and Patter-
son stimulated a major change in instruction set architecture through their work
on RISC (Patterson coined the word). Their university research led to the MIPS
and SPARC instruction set architectures for the '90s. Most recently, their work
has moved to higher architecture levels, stimulating the understanding and devel-
opment of single bus and distributed shared-memory multiprocessors (Hennessy)
and of clusters, such as networks of workstations and RAID (Patterson).

I'm looking forward to the changes that will necessitate the 2002 version. This
book will help make all the intervening computers better and more useful, and
therefore I hope you enjoy, learn from, and use this fine text.

| Preface

1 started in 1962 to write a single book with this sequence of chapters, but soon
found that it was more important to treat the subjects in depth rather than to skim
over them lightly. The resulting length has meant that each chapter by itself con-
tains enough to publish the series in separate volumes...

Donald Knuth, The Art of Computer Programming,
Preface to Volume 1 (of 7) (1968)

Why We Wrote This Book

This quote from Donald Knuth has never been truer, at least, not for us! Although
this is officially the second edition of Computer Architecture: A Quantitative
Approach, it is really our third book in a series that began with the first edition,
continued with Computer Organization and Design: The Hardware/Software
Interface, and brings us now to this book, one that we have largely written from
scratch. Since a major goal of our efforts has been to present concepts in the con-
text of the most recent machines, there was remarkably little from the first edition
that could be preserved intact.

This said, we once again offer an enthusiastic welcome to anyone who came
along with us the first time, as well as to those who are joining us now. Either
way, we can promise the same quantitative approach to, and analysis of, real
machines.

As with the first edition, our goal has been to describe the basic principles
underlying what will be tomorrow’s technological developments. For readers
who are new to our series with this book, we hope to demonstrate what we stated
about computer architecture in our preface to the first edition: It is not a dreary
science of paper machines that will never work. No! It’s a discipline of keen in-
tellectual interest, requiring the balance of marketplace forces to cost/perfor-
mance, leading to glorious failures and some notable successes.

Our primary objective in writing our first book was to change the way people
learn and think about computer architecture. We feel this goal is still valid and
important. The field is changing daily and must be studied with real examples and
measurements on real machines, rather than simply as a collection of definitions
and designs that will never need to be realized.

We have strived to produce a new edition that will continue to be as relevant
for professional engineers and architects as it is for those involved in advanced
computer architecture and design courses. As much as its predecessor, this edi-
tion aims to demystify computer architecture through an emphasis on cost/perfor-
mance tradeoffs and good engineering design. We believe that the field has
continued to mature and move toward the rigorous quantitative foundation of

viii

Computer Architecture: A Quantitative Approach

long-established scientific and engineering disciplines. Our greatest satisfaction
derives from the fact that the principles described in our first edition in 1990
could be applied successfully to help predict the 1andscape of computing technol-
ogy that exists today. We hope that our new book will allow readers to apply the
fundamentals for similar results as we look forward to the coming decades.

This Edition

The second edition of Computer Architecture: A Quantitative Approuch shouid
have been easy to write. After all, our approach hasn’t changed and we sought to
continue our focus on the basic principles of computer design. Unfortunately for
our task as authors, though the principles haven’t changed, the examples that are
relevant today and the conclusions that may be drawn have changed a great deal.

Consequently, we started with a careful evaluation of the first edition content
from some very helpful readers who are gratefully acknowledged in the section
that follows. We also thought carefully about what we would need to do to fulfill
the book’s original objectives, given the current state of computing. Being prag-
matists, we started with a selective view of what would need to be revised, but
there was no way to avoid the fact that everything needed to be reexamined. In
the end we can offer you something that is virtually new.

We created fresh drafts, we condensed, we rewrote, we revised, and we elimi-
nated less essential discussions. We enlarged the discussion of the topics we feel
are the most exciting and valuable new ideas of computer engineering and sci-
ence, and we reduced the coverage of other topics. In addition, we benefited from
the help of another beta class-testing.

Despite these efforts or perhaps because of them, the second edition was actu-
ally harder to write than the first. We blame our workload on society’s hunger for
faster computers. The microprocessors being shipped today are the most sophisti-
cated computers ever built, and feeding an expectation of doubled performance
every 18 months has meant introducing new and extremely sophisticated imple-
mentation techniques.

Perhaps most important, we did not want to produce a new edition unless we
were certain that it could meet the standard of contribution that we set for our-
selves in our first book. In the final cut, the basic concepts and approach remain,
but they are now viewed with the added perspective of several years of progress
in the field. :

Topic Selection and Organization

As before, we have taken a conservative approach to topic selection, for there are
many more interesting ideas in the field than can reasonably be covered in a treat-
ment of basic principles. We have steered away from a comprehensive survey of
every architecture a reader might encounter. Instead, our presentation focuses on
core concepts likely to be found in any new machine. The key criterion remains

Preface

that of selecting ideas that have been examined and utilized successfully enough
to permit their discussion in quantitative terms.

Again, our hope is that the design principles and quantitative data in this book
will delimit discussions of architecture styles to terms like faster and cheaper, in
contrast to previous debates.

Our first dilemma in determining the new topic selections was that topics re-
quiring only a few pages in the first edition have since exploded in their impor-
tance. Secondly, topics that we excluded previously have matured to a point
where they can be discussed based on our quantitative criteria and their success in
the marketplace.

As a final filter, we evaluated the extent of introductory material necessary for
this presentation independent of our decision making for the first edition. Again,
our reviewers and readers were immensely helpful. To the extent that readers felt
certain discussions were less necessary, we eliminated them in favor of new ma-
terial. For example, many of our readers learned the basics of our approach in the
first edition or from Computer Organization and Design: The Hardware/Software
Interface.

Our intent has always been to focus on material that is not available in equiva-
lent form from other sources, so we continue to emphasize advanced content
wherever possible. With the availability at this writing of a complete introduction
in Computer Organization and Design, the focus on advanced topics was some-
what easter to maintain than in our first book.

An Overview of the Content

In keeping with our focus on advanced topics, we consolidated the first five chap-
ters of our earlier edition into two. The basic content of the first edition Chapters
I (Fundamentals of Computer Design) and 2 (Performance and Cost) are intro-
duced in the opening chapter, Fundamentals of Computer Design. These ideas
work better together than they did in isolation,

The two chapters on instruction sets from the previous edition are now pre-
sented in our second chapter, Instruction Set Principles and Examples, and its
companion piece, Appendix D, An Alternative to RISC: The Intel 80x86. We re-
wrote this material to show how program measurements led to the design of our
generic RISC machine, DLX. Because of the dominance of the 80x86 design, we
no longer cover the VAX or IBM 360 instruction sets. The 80x86 appendix repre-
sents increased coverage and can form the basis of a careful study of this archi-
tecture and other computers of its class.

This de-emphasis on the history of instruction sets follows the continuing evo-
lution of the content of computer architecture courses. In the 1950s and 1960s,
course content consisted primarily of computer arithmetic. In the 1970s and early
1980s, it was largely instruction set design. Today, it is largely high-performance
processor implementation, memory hierarchy, input/output, and multiprocessors.

Computer Architecture: A Quantitative Approach

Hence the organization of the remaining chapters and appendices.

Chapters 3 and 4 cover all aspects of instruction execution in high-perfor-
mance processors: pipelining, superscalar execution, branch prediction, and dy-
namic scheduling. This encompasses so much material that, even with the
introduction to pipelining available in Computer Organization and Design, we
needed an intermediate and an advanced chapter.

Chapter 5 discusses the remarkable number of optimizations in cache design
that have occurred over the last six years. A partial list of topics new to this edi-
tion includes victim caches, pseudo-associative caches, prefetching, cache-
oriented compiler optimizations, nonblocking caches, and pipelined caches.

Chapters 6 and 7 represent the increasing importance of input/output in to-
day’s computers. Chapter 6, Storage Systems, concentrates on storage IO, pre-
senting trends in magnetic disks and tapes. It describes redundant arrays of
inexpensive disks, or RAID, and gives a comparison of disk I/O performance for
a wide range of UNIX systems. What was covered in three pages on interconnec-
tion networks in the first edition has expanded into Chapter 7. This new chapter
takes the novel approach of covering in a common framework the interconnection
networks found in local area networks, wide area networks, and massively paral-
lel processors.

Chapter 8, Multiprocessors, and Appendix E, Implementing Coherence Proto-
cols, expand the 15 pages from the first edition into an extensive discussion of the
issues involved with shared-memory multiprocessors. Snooping bus protocols
and directory-based protocols are fully covered, with Appendix E describing in
detail why these protocols work and providing insight into some of the complexi-
ties of real coherency algorithms.

This brings us to Appendices A through C. Appendix A updates computer
arithmetic, including fused multiply-add and the infamous Pentium floating-point
error that was front-page news in 1994. Vector processors, covered previously as
Chapter 7 of the first edition, has been revised as Appendix B in this presentation,
due in part to the 100-plus pages on instruction-level parallelism in the main text
and in part reflecting a decline in the popularity of vector architectures. Appendix
C updates the first edition RISC appendix, replacing coverage of the Intel i860
and Motorola 88000 with that of the HP PA-RISC and IBM/Motorola PowerPC
and giving the 64-bit instruction set architectures of MIPS, PowerPC, and
SPARC.

There is no single best order in which to approach these chapters. We wrote
the text so that it can be covered in several ways, the only real restriction being
that some chapters should be read in sequence, namely, Chapters 2, 3, and 4
(pipelining) and Chapters 6 and 7 (storage systems, interconnection networks).
Readers should start with Chapter 1 and read Chapter 5 (memory-hierarchy
design) before Chapter 8 (multiprocessors), but the rest of the material can be
covered in any order.

Preface Xi

In summary, about 70% of the pages are new to this edition. As the second edi-
tion is also about 20% longer than the first, you can see why it was as much work
as writing a new book.

Readers interested in a gentle introduction to computer architecture should
read Computer Organization and Design: The Hardware/Software Interface. If
you already have the first edition of Computer Architecture and are not interested
in advanced processor design, advanced cache design, storage systems, intercon-
nection networks, multiprocessors, 64-bit RISC architectures, or the 80x86, then
you can save both money and space on your bookshelf. Obviously, we think
owners of the first edition should be interested in many of these topics or we
wouldn’t have written about them! ’

Chapter Structure and Exercises

The material we have selected has been stretched upon a consistent framework
that is followed in each chapter. We start by explaining the ideas of a chapter.
These ideas are followed by a Crosscutting Issues section, a feature new to the
second edition that shows how the ideas covered in one chapter interact with
those given in other chapters. This is followed by a Putting It All Together section
that ties these ideas together by showing how they are used in a real machine.

Next in the sequence is Fallacies and Pitfalls, which lets readers learn from the
mistakes of others. We show examples of common misunderstandings and archi-
tectural traps that are difficult to avoid even when you know they are lying in
wait for you. Each chapter ends with a Concluding Remarks section, followed by
a Historical Perspective and References section that attempts to give proper
credit for the ideas in the chapter and a sense of the history surrounding the in-
ventions. We like to think of this as presenting the human drama of computer de-
sign. It also supplies references that the student of architecture may want to
pursue. If you have time, we recommend reading some of the classic papers in
the field that are mentioned in these sections. It is both enjoyable and educational
to hear the ideas directly from the creators.

Each chapter ends with exercises, over 200 in total, which vary from one-
minute reviews to term projects. Brackets for each exercise (<chapter.section>)
indicate the text sections of primary relevance to answering the question. We
hope this helps readers to avoid exercises for which they haven’t read the corre-
sponding section, in addition to providing the source for review. We also rate the
exercises, estimating the amount of time a problem might take:

[10] 1 minute (read and understand)

[20] 15 to 20 minutes for full answer

[25] I hour for full written answer

[30] Short programming project: less than 1 full day of programming
[40] Significant programming project: 2 weeks of elapsed time

Xii

Computer Architecture: A Quantitative Approach

[{50] Term project (2 to 4 weeks by two people)
[Discussion] Topic for discussion with others interested in computer archi-
tecture

Supplements

An Instructor’s Manual with fully worked-out solutions to the exercises in the
book is available from the publisher only to instructors teaching from this book.

If you are not an instructor and would like access to solutions, Solutions to
Selected Exercises in Computer Architecture: A Quantitative Approach, Second
Edition is available for sale from the publisher. It contains solutions to 81 of the
exercises in this book. Software to accompany this book, including DLX compil-
ers, assemblers, and simulators, cache simulation tools, and traces, is available to
readers at the Morgan Kaufmann home page on the World Wide Web at http://
www.mkp.com. This page also contains a list of errata, postscript versions of the
numbered figures in the book, and pointers to related material that readers may
enjoy. In response to your continued support, the publisher will add new materi-
als and establish links to other sites on a regular basis.

Finally, it is possible to make rmoney while reading this book. Talk about cost/
performance! If you read the Acknowledgments that follow, you will see that we
went to great lengths to correct mistakes. Since a book goes through many print-
ings, we have the opportunity to make even more corrections. If you uncover any
remaining resilient bugs, please contact the publisher by electronic mail
(arc2bugs@mkp.com). The first reader to report an error with a fix that we incor-
porate in a future printing will be rewarded with a $1.00 bounty. Please check the
errata sheet on the home page (http://www.mkp.com) to see if the bug has aiready
been reported. We process the bugs and send the checks about once a year, so
please be patient.

Concluding Remarks

Once again this book is a true co-authorship, with each of us writing half the
chapters and half the appendices. We can’t imagine how long it would have taken
without someone else doing half the work, offering inspiration when the task
seemed hopeless, providing the key insight to explain a difficult concept, supply-
ing reviews over the weekend of 100-page chapters, and commiserating when the
weight of our other obligations made it hard to pick up the pen. Thus, once again
we share equally the blame for what you are about to read.

John Hennessy David Patterson

