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Preface

This book presents 1n a unified way the various fast algorithms that are used
for the implementation of digital filters and the evaluation of discrete Fourier
transforms.

The bbok consists of eight chapters The first two chapters are devoted to
background information and to introductory material on number theory and
polynomial algebra. This section 1s limited to the basic concepts as they apply
to other parts of the book. Thus, we have restricted our discussion of number
theory to congruences, primitive roots, quadratic residues, and to the
properties of Mersenne and Fermat numbers. The section on polynomial
algebra deals primarily with the divisibiity and congruence properties of
polynomials and with algebraic computational complexity.

The rest of the book is focused directly on fast digital filtering and
discrete Fourier transform algorithms. We have attempted to present these
techniques in a unified way by using polynormal algebra as extensively as
possible. This objective has led us to reformulate many of the algorithms which
are discussed in the book. It has been our experience that such a presentation
serves to clanfy the relationship between the algonthms and often provides
clues to improved computation technigues.

Chapter 3 reviews the fast digital filtering algorithms, with emphasis on
algebraic methods and on the evaluation of one-dimensional circular
convolutions.

Chapters 4 and 5 present the fast Fourier transform and the Winograd
Fourier transform algonthm.

We introdiice in Chaps. 6 and 7 the concept polynomial transforms and
we show that these'transforms are an important tool for the understanding of
the structure of multdimensional convolutions and discrete Fourier trans-
forms and for the design of improved algornithms. In Chap. 8, we extend these
concepts to the computation of one-dimensionat gonvolutions by replacing
fimte fields of polynomials by fimite fields of numbers This facilitates mtro-
duction of number theoretic transforms which are useful for the fast com-
putation of convolutions via modular arithmetic.

Convolutions and discrete Fourier transforms have many uses mn physics
and 1t‘is our hope that this book will prompt some additional research in
these areas and will help potential users to evaluate and apply these techniques.
We also feel that some of the methods presented here are quite general and
might someday find new unexpected applications.



Vi Preface

Part of the material presented here has evolved from a graduate-level
course taught at the University of Nice, France. I would like to express my
thanks to Dr. T.A. Kriz from IBM FSD for kindly reviewing the manuscript
and for making many useful suggestions. I am grateful to Mr. P. Bellot, IBM.
C.E.R,, La Gaude, France, for his advice concerning the introductory chapter
on number theory and polynomial algebra, and to Dr. J. W. Cooley, from IBM
Research, Yorktown Heights, for his comments on some of the work which
led to this book. Thanks are also due to Dr. P. Quandalle who worked with
me on polynomial transforms while preparing his doctorate degree and with
whom I had many fruitful discussions. I am indebted to Mrs. C. De Backer for
her aid in improving the English and to Mrs. C. Chevalier who prepared the
manuscript.

La Gaude HENRI J. NUSSBAUMER
November 1980



Contents

Chapter 1  Introduction

1.1
1.2

Introductory Remarks. . . . . . . . . . . . . . . .. ..
Notations . . . . . . . . . . ...

Chapter 2 Elements of Number Theory and Polynomial Algebra

2.1

22

Elementary Number Theory . .. . . . . . . . . . . . .
2.1.1 Divisibility of Integers. . . . . . ., ., . .. ..
2.1.2 Congruences and Residues . . . . . . e
2.1.3 Primitive Roots. . . . . . . . . . . .. . .. .
2.1.4 Quadratic Residues . . . . . . . . . . . ... .
2.1.5 Mersenne and Fermat Numbers ...........
Polynomial Algebra. . . . . . . .. . . . .. ..
221Groups..........._...;....'..

222 Ringsand Fields . . . . . . . . .

2.2.4 Convolution and Polynomial Product Algorithms

in Polynomiial Algebra. . . . . . . . . . . . ..

Chapter 3 Fast Convolution Algorithms

31

3.2

33

34
35
36

Digital Filtering Using Cyclic Convolutions . . . . . . . . .
3.1.1 Overlap-Add Algorithm . . . . . . . . . . . . . . .
3.1.2 Overlap-Save Algorithm . . . . . . . . . . . .
Computation of Short Convolutions and Polynomial Products . .

3.2.1 Computation of Short Convolutions by the
Chinese Remainder Theorem .
3.2.2 Multiplications Module Cyclotomic Polynomlals .

3.2.3 Matrix Exchange Algorithm . . . . . . . . . . . . .

Computation of Large Convolutions by Nesting of Small
Convolutions. . . . . . . . . . |

3.3.1 The Agarwal-Cooley Algonthm e e
33.2 The Split Nesting Algorithm . . . . . . . . . . . . .
333 Complex Convolutions . . . . . . . . . . . . . ..
3.3.4 Optimum Block Length for Digital Filters . . . . . . .
Digital Filtering by Multidimensional Techniques . . . . . . .
Computation of Convolutions by Recursive Nesting of Polynomials

Distributed Arithmetic . . . . .

2.2.3 Residue Polynomials . . . . . . | .....

43
43
47
52
S5
56
60



VIII

3.7

Short Convolution and Polynomial Product Algorithms . . . . . 66
37.1 Short Circular Convolution Algorithms . . . . . . . . . 66
37.2 Short Polynomial Product Algorithms . . . . . . . . . . 73
373 Short Aperiodic Convolution Algorithms . . . . . . . . 78

Chapter 4 The Fast Fourier Transform

41

42

43
44
45
4.6

The Discrete Fourier Transform . . . . . . . . . . . - .. 80
411 Propertiesofthe DFT. . . . . . . . . . . . ... -~ 81
4.1.2 DFTs of Real Sequences. . . . . . . . . D .. 83
4.1.3 DFTs of Odd and Even Sequences . . . . . . Lo 84
The Fast Fourier Transform Algorithm . . . . . . . . . - . . 85
42.1 The Radix-2 FFT Algorithm . . . . . . . . . . . . .. 87
422 The Radix-4 FFT Algorithbm . . . . . . . . . .. . .- 91
423 Implementation of FFT Algorithms . . . . . . . . . . . 9%
424 Quantization Effects in the FFT . . . . . . . .. ... 96
The Rader-Brenner FFT. . . . . . . . . . . .« -« .« © 99
Multidimensional FFTs . . . . . . . . . . . . . . . L. 102
The Bruun Algorithm . . . . . . . e e e e e e 104
FFT Computation of Convolutions . . . . . . . . . .- . .- 107

Chapter S Linear Filtering Compautation of Discrete Fourier Transforms

5.1

52

54

5.5

The Chirp z-Transform Algorithm. . . . . . . . . . . . - - - 112
51.1 Real Time Computation of Convolutions and DFTs

Using the Chirp z-Transform. . . . . . . - - . - - - 113
51.2 Recursive Computation of the Chirp z-Transform. . . . . 114
5.1.3 Factorizations in the Chirp Filter , . . . . . . . . . - . 115
Rader's Algorithm . . . . . . . . . . .o oo e ©, 116
52.1 Composite Algorithms. . . . . . . . . . . . .- 118
52.7 Polynomial Formulation of Rader’s Algorithm . . . . . . 120
523 Short DFT Algorithms . . . . . . . . . « .« -« - 123
The Prime Factor FFT . . . . . . . . . . .« .« - - 125
53.1 Multidimensional Mapping of One-Dimensional DFTs. . . 125
532 The Prime Factor Algorithm . . . . . . . . . . . . . 127
53.3 The Split Prime Factor Algorithm. . . . . . . . . . . - 129
The Winograd Fourier Transform Algorithm (WFTA). . . . . . 133
541 Derivation of the Algorithm . . . . . . . . . . . . . 133
542 Hybrid Algorithms . . . . . . . .. e e 138
5.4.3 Split Nesting Algorithms. . . . . . . . . . - .- - 139
5.4.4 Multidimensional DFTs . . . . . . . . .« « - - - 141
5.4.5 Programming and Quantization Noise Issues . . . . . . . 142
Short DFT Algorithms . . ~ . . . . . . . . -« - - - o 144
§51 2-Point DFT. . . . . . .« o oo v oo 145

552 3-Point DFT. . . . . . . - . . -« o oo 145



Contents

553 4Point DFT. . . . . . . . . . . . .. ... ....
554 5-PointDFT. . . . . .. . .. . ... .. .....
555 7-Point DFT. . . . . . . . . . . . . . . ... ...
556 8-PointDFT. . . . . . . . . . .. .. . . .. ...
557 9-Point DFT. . . . . . . . . . . . . . . . . . .. .
558 16-PointDFT . . . . . . . . . . . ... . ... ..

Chapter 6 Polynomial Transforms
6.1 Introduction to Polynomial Transforms . . . . . . . . . . . .
6.2 General Definition of Polynomial Transforms . . . . . . . . .
6.2.1 Polynomial Transforms with Roots in a Field of
Polynomials . . . . . . . . . . ... .. ..., ..
6.2.2 Polynomial Transforms with Composite Roots . . . . . .
6.3 Computation of Polynomial Transforms and Reductions. . . . .
6.4 Two-Dimensional Filtering Using Polynomial Transforms . . . .
6.4.1 Two-Dimensional Convolutions Evaluated by Polynomial
Transforms and Polynomial Product Algorithms . . . . .
6.4.2 Example of a Two-Dimensional Convolution Computed
by Polynomial Transforms. . . . . . . . . . . . ..
6.4.3 Nesting Algorithms . . . . . . . . . . . . . . ...
6.4.4 Comparison with Conventional Convolution Algorithms . .
6.5 Polynomial Transforms Defined in Modified Rings . . . . . . .
6.6 Complex Convolutions . . . . . . . .. . . . . . . . ...
6.7 Multidimensional Polynomial Transforms . . . . . . . . . . .

Chapter 7 Computation of Discrete Fourier Transforms by Polynomial
Transforms
7.1 Computation of Multidimensional DFTs by Polynomial Transforms
- 7.1.1 The Reduced DFT Algorithm . . . . . . . . . . . . .
7.1.2 General Definition of the Algorithm. . . . . . . . . . .
7.1.3 Multidimensional DFTs . . . . . . . . . . . . ..
7.1.4 Nesting and Prime Factor Algorithms . . . . . . . . . .
7.1.5 DFT Computation Using Polynomial Transforms Defined
in Modified Rings of Polynomials. . . = . .
7.2 DFTs Evaluated by Multidimensional Correlations and Polvnomlal
Transforms . . . . . . . . . . . .
7.2.1 Derivation of the Algorithm . . )
7.2.2 Combination of the Two Polynomial Trdmform Methods
7.3 Comparison with the Conventional FFT. . . . . . . . . . . .
7.4 0Odd DFT Algorithms . . . . . . . . . . . . . . . . .. .
7.4.1 Reduced DFT Algorithm. N=4 . . . . . . . . . .
7.4.2 Reduced DFT Algorithm. N=8 = = . . . . . .
7.4.3 Reduced DFT Algorithm. N=9 . . . . = . . . .. .
7.4.4 Reduced DFT Algorithm. N=16 . . . . . . . . . . . .

181
182

. 196

. 201
. 201
. 205



X

Chapter 8 Number Theoretic 'Iransforms

8.1

8.2

83

8.4
85 .

8.6
8.7

Definition of the Number Theoretic Transforms
8.1.1 General Properties of NTTs .

Merscnne Transforms .

8.2.1 Definition of Mersenne ]ranslorms .

8.2.2 Arithmetic Modulo Mcrsenne Numbers
8.2.3 IHlustrative Example

Fermat Number 1ransforms :
4.3.1 Defimtion of Fermat Number Tmnsforms .
832 Arithmetic Modulo Fermat Numbers .

8.3.3 Computation of Complex Convolutions by FNTs .

Word Length and Transform Length Limitations .
Pseudo Transforms . . )

8.5.1. Pseudo Mersenne Transforms

8.5.2 Pscudo Fermat Number Transforms.
Complex NTTs. .

Comparison with the FFT

References . . . . . « « « « v o o a0 e e e
Subject Index . . . . . . . . . . . ...

Contents

.21
. 213
. 216
. 216
. 219
. 221

22
. 223
. 224
- 227
. 228
. 230
. 231
. 234
. 236
. 239

. 241
. 247



1. Introduction

1.1 Introductory Remarks

The practical applications of the digital convolution and of the discrete Fourier
transform (DFT) have gained growing importance over 'the last few years. This
is a direct consequence of the major role played by digital filtering and DFTs
in digital signal processing and by the increasing use of digital signai processing
techniques made possible by the rapidly declining cost of digital hardware, The
motivation for developing fast convolution and DFT algorithms is strongly
rooted in the fact that the direct computation of length-N convolutions and
DFTs requires a number of operations proportional to N* which becomes
rapidly excessive for long dimensions. This, in turn, implies an excessively large
requirement for computer implementation of the methods.

Historically, the most important event in fast algorithm development has
been the fast Fourier transform (FFT), introduced by Cooley and Tukey in
1965, which computes DFTs with a number of operations proportional to N
log N and therefore reduces drastically the computational complexity for large
transforms. Since convolutions can be computed by DFTs, the FFT algorithm
can also be used to compute convolutions with 2 number of operations pro-
portional to N log N and has therefore played a key role in digital signal process-
ing ever since its introduction. More recently, many new fast convolution and
DFT techniques fave been proposed to further decrease the computational
complexity corresponding to these operations. The fast DFT algorithm in-
troduced in 1976 by Winograd is perhaps the most important of these methods
because it achieves a theoretical reduction of computational complexity over the-
FFT by a method which can be viewed as the converse of the FFT, since it com-
putes a DFT as a convolution. Indeed, as we shall see in this book, the rela-
tionship between convolution and DFT has marny facets and its implications go
far beyond a mere algorithmic procedure.

Another important factor in the development of new algorithms was the
recognition that convolutions and DFTs can be viewed as operations defined in
finite rings and fields of integers and of polynomials. This new point of view has
allowed both derivation of some lower computational complexity bounds and
design of new and improved computation techniques such as those based on
polynomial transforms and number theoretic transforms.

In addition to their practical implications, many convolution and DFT
algorithms are also of theoretical significance because they lead to a better under-
standing of mathematical structures which may have many applications in areas




2 1. Introduction

other than convolution and DFT. It is likely, for instance, that polynomial
transforms will appear as a very general tool for mapping multidimensional
problems into one-dimensional problems.

The matter of comparing different algorithms which perform the same func-
tions is pervasive throughout this book. In many cases, we have used the number
of arithmetic operations required to execute an algorithm as a measure of the
computational complexity. While there is some rough relationship between the
overall complexity of an algorithm and its algebraic complexity, the practical
value of a computation method depends upon a number of factors. Apart from
the number of arithmetic operations, the efficiency of an algorithm is related to
many parameters such as the number of data moves, the cost of ancillary oper-
ation, the overall structural complexity, the performance capabilities of the
computer on which the algorithm is executed, and the skill of the programmer.
Therefore, ranking different algorithms as a function of actual efficiency ex-
pressed in terms of computer execution times is a difficult art so that the com-
parisons based on the number of arithmetic operations must be weighted as a
function of the particular implementation.

1.2 Notations

It is always difficult to avoid the proliferation of different symbols and subscripts
when presenting the various DFT and convolution algorithms. We have
adopted here some conventions in order to simplify the presentation. Discrete
data sequences are usually represented by lower case letters such as x,. We have
not used the representation {x,} for data sequences, because this simplifies the
notation and because the context information prevents confusion between the
sequence and the n™ element of the sequence. Thus, in our representation, a
discrete-time signal x, is a sequence of the values of a continuous signal x(2),
sampled at times ¢t = nT and represented by a number. Polynomials are re-
“presented by capital letters such as

N—-1
X(2) =3, x, 2" (1.1
n=0
For transforms, we use the notation X,, which, for a DFT, has the form

4

J?k =’Ex. W, ‘ (1.2)

LR

We have also sometimes adopted Rader’s notation {x), for the residue of x mod-
ulo p.
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1.3 The Structure of the Book

Chapter 2 presents introductory material on number theory and polynomial
algebra. This covers in an intuitive way various topics such as the divisibility of
integers and polynomials, congruences, roots defined in finite fields and rings.
This background in mathematics is required to understand the rest of the book
and may be skipped by the readers who are already familiar with number theory
and modern aigebra.

Fast convolution aigorithms are discussed in Chap. 3. It is shown that most
of these algorithms can be represented in polynomial aigebra and can be con-
sidered as various forms of nesting.

The fourth chapter gives a simple development of the conventional fast
Fourier transform algorithm and presents new versions of this method such as
the Rader-Brenner algorithm, V

Chapter 5 is devoted to the computation of discrete Fourier transforms
by convolutions and deals primarily with Winograd Fourier transform which is
an extremely efficient algorithm for the computation of the discrete Fourier
transform,

In Chaps. 6 and 7, we introduce the polynomial transforms which are DFTs
defined in finite rings and fields of polynomials. We show that these transforms
are computed without multiplications and provide an efficient tool for com-
puting multidimensional convolutions and DFTs.

In Chap. 8, we turn our attention to algorithms implemented in modular
" arithmetic and we present the number theoretic transforms which are DFTs
defined in finite rings and fields of numbers, We show that these transforms may
have important applications when implemented in special purpose hardware.



2. Elements of Number Theory and Polynomial Algebra

Many new digital signal processing algorithms are derived from elementary
number theory or polynomial algebra, and some knowledge of these topics is
necessary to understand these algorithms and to use them in pracucal applhica-
tions.

This chapter introduces the necessary background required to understand
these algorithms in a simple, intuitive way, with the intent f familiarizing
engineers with the mathematical principles that are most frequently used in this
book. We have made here no attempt to give a complete rigorot s mathematical
treatment but rather to provide, as concisely as possible, some mat hematical tools
with the hope that this will prompt some readers to study furt her, with some
of the many excellent books that have been published on the subject [2.1-4).

The material covered in this chapter is divided into two r ain parts: ele-
mentary number theory and polynomial algebra. In elementary iumber theory,
the most important topics for digital signal processing appli ations are the
Chinese remainder theorem and primitive roots. The Chinese -emainder the-
orem, which yields an unusual number representation, is us d for number
theoretic transforms (NTT) and for index manipulations whic « serve to map
one-dimensional problems into multidimensional problems. The primitive roots
play a key role in the definition of NTTs and are also used to ¢ anvert discrete
Fourier transforms (DFT) into convolutions, which is an impor ant step in the
development of the Winograd Fourier transform algorithm.

In the polynomial algebra section, we introduce briefly the cu ncepts of rings
and fields that are pervasive throughout this book. We show h w polynomial
algebra relates to familiar signal processing operations such as ¢ 'nvolution and
correlation. We introduce the Chinese remainder theorem for p lynomials and
we present some complexity theory results which apply to co volutions and
vorrelations.

2.1 Elementary Number Theory

In this section, we shali be essentially concerned with the proper ies of integers.
We begin with the simple concept of integer division.

2.1.1 Divisibility of Integers
Let a and b be two integers, with b positive. The division of a by b is defined by

-a=bg+r, 0L r<b, 2.1
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where g is called the quotient and r is called the remainder. When r = 0, b and ¢
are factors or divisors of a, and b is said to divide a, this operation being denoted
by b|a. When a has no other divisors than 1 and a, @ is a prime. In all other
cases, a is composite.

When a is composite, it can always be factorized into a product of powers of
prime numbers pf, where c, is a positive integer, with

a= I‘I 5. (2.2)

The fundamental theorem of arithmetic states that this factorization is unique.
The largest positive integer d which divides two integers @ and b is called the
greatest common divisor (GCD) and denoted

d=1(a,b); (2.3)

when d = (4, b) = 1, a and b have no common factors other than 1 and they are
said to be mutually prime or relatively prime.

The GCD can be found easily by a division algorithm known as the Euclidean
algorithm. In discussing this algorithm, we shall assume that a and b are positive -
integers. This is done without loss of generality, since (a, b) = (— a, b) = (q,
—b) = (—a, —b). Dividing a by b yields

a=b£h+r1, f|<b (24)
by definition, d = (g, b) < a or b. Therefore, if r, = 0, b|a and (a, b) = b. If
ri # 0, we obtain, by continuation of this procedure, the following system of

equations:

=rq; +r; r<n -

ry=rq; +r;, r; << r,

............ (2.5)
T2 == Nk 19k ‘{"' Ty Ti << Py
Pt == P Qiesy
Since r, > r, > ry .., the last remainder is zero. Thus, by the last equation,
relre.y The preceding equation implies that ~,!r, ,, since rlri . Finally, we
obtainr, (hand r,la Hence, reisadivisor of 2 an h Suppose now that ¢ is any
divisor of @ and b. By (2.4), ¢ also dividen + ~ " “iimplies that ¢ divides r,,
ry ... ry. Thus, any divisor ¢ of @and b divieies v, - . therefore ¢ < ri. Hence,

r. is the GCD of g and b.
An important consequence of Euclid’s algonthm is that the GCD of two

integers a and b is a linear combination of @ and b. This can be seen'by rewriting
(2.4) and (2.5) as
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r=a—bq
rn=>b—rgq
Ty = Tgez — Py Q- (2.6)

The first equation shows that r, is a linear combination of 2 and b. The second
equation shows that r; is a linear combination of b and r, and therefore of both a
and b. Finally, the last equation implies that r, is a linear combination of a and
b. Since r, = (a, b), we have

(a, b) = ma + nb, 2.n

where m and n are integers. When g and b are mutually prime, (2.7) reduces
to Bezout’s relation

1 = ma+ nb. (2.8)

We now change our point of view by considering a linear equation with mtcger
coefficients a, b, and ¢

ax+ by = ¢ 2.9

where x and y are a pair of integers which are the solution of this Diophantine
equation. Such an equation has a solution if and only if (@, )| c. To demonstrate
this point, we note the following. It is obvious from (2.9) that fora = 0or b = 0,
we must have b|c or ajc.

Fora # 0, b # 0, it is apparent that if (2.9) holds for integers x and y, then
d = (a, b) is such that djc. Conversely, if d|¢, ¢ = ¢,d and (2.7) implies the
existence of two integers m and n such that d = ma + nb. Hence ¢ = ¢,d =
cyma + cinb, and the solutions of the Diophantine equation are given by
x = ¢;m, y = ¢yn. Thus, for (a, b) | ¢, the solution of the Diophantine equation
is given by the Euclidean algorithm. The solution of the Diophantine equation
is not unique, however, This can be seen by considering a particular solution
¢ = axy, + by,. Assuming x, y is another solution, we have

a(x — xo) = by, — ») (2.10)
and, by dividing this expression by d, we obtain
(@/d) (x — x;) = (5/d) (s — 7) @2.11)

Since [(a/d), (b/d)] = 1, this implies that (b/d)|(x — xo) and x = xo + (b/d)s
where s is an integer. Substituting into (2.11), we obtain

Yy =Y —(a/d)s

2.12
x = Xo + (b/d)s. @13
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This defines a class of linearly related solutions for (2.9) which depend upon the
integer s.
‘As a numerical example, consider the equation

15x + 9y = 21.

We first use Euclid’s algorithm tc determine the GCD d with ¢ = 15 and
b=9,

15=9-146
9= 6-1+43
6 = 3.2

Hence d == 3. Since 3|21, the Diophantine equation has a solution. We now
define 3 as a linear combination of 15 and 9 by recasting the preceding set of
equations as

6=15—9.1

3=9—~6:1=—-15+4+2.9
Thus, m == — 1 and n = 2. Dividing ¢ = 21 by d = 3 yields ¢, = 7. This gives
a particular solution x, = — 7, y, = 14. If we divide a = 15 and b =9 by
d = 3, we obtain (a/d) = 5 and (b/d) = 3. Hence, the general solution to the
Diophantine equation becomes

y=14—15s

x = -7+ 3s,

where s is any integer.

2.1.2 Congruences and Residues

In (2.1), the division of an integer a by an integer b produces a remainder r. All
integers @ which give the same remainder when divided by b can be thought as
pertaining to the same equtvalence class relative to the equivalence relatlon
a=>bq+r.

Two integers a, and a, pertaining to the same class are said to be congruent
modulo b and the equivalence is denoted

a, = a; modulo b. (2.13)
Thus, two numbers a, and a, are congruent modulo b if

bl(a, — a). 2.19)
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Underlying the concept of congruence is the fact that, in many physical prob-
lems, one is primarily interested in measuring relative values within a given
range. This is apparent, for instance, when measuring angles. In this case, the
angles are defined from O to 359° and two angles that differ by a multiple of
360° are considered to be equal. Hence angles are defined modulo 360.

Thus, in congruences, we are interested only in the remainder r of the division
of a by b. This remainder s usually called the residuwe and is denoted by

v a  modulo b {215
i'his representation 1s sometimes simplfied to a form with ihe symboi <, [2.4],
r= <a>b’ (216)

where the subscript is omitted when there is no ambiguity on the nature of the
modulus b.

It follows directly from the definition of residues given by (2.14) that addi-
tions and multiplications can be performed directly on residues

@ + @)y = La) + (@)

2.17
{aay) = (ay) {a:r). (217)

With congruences, diviston is not defined. We can however define something
close to it by considering the linear congruence

ax =c¢ modulob (2.18)

This linear congruence is the Diophantine equation ax -+ by == ¢ i which all
terms are defined modulo 5. Thus, we know by the results of the preceding sec-
tion that we can find valaes of x satisfying (2.18) if and only if d|¢, with d =
(a, b). In this case, the solutions can be derived from (2.12) and are given by

X = xg + (Wdyy  moduio b, (2.19)

where x, s a particular solution and s can be any integer smaller than 5. How-
ever, there are only d distinct solutions since (b/d)s has only d distinct values mo-
dulo b. An important consequence of this point is that the linear congruence
ax = ¢ modulo b always has a unique solution when (a, b) = 1. Thus, when
(a, b)|c, the linear congruence ax = ¢ modulo b can be solved and Euclid’s
algorithm provides a method for computing the values of x which satisfy this
relation. We shall see later that Euler’s theorem gives a more elegant solution
to (he iinear congruence (2.18) when (a4, b) = 1. i

We consider now the problem of solving a set of simultaneous linear
congruences with different moduli. Changing our notation, we want to find the
integer x which satisfies simultaneously the k linear congruences



