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I. Well-defined Electron Configurations

The fundamental idea most useful for the description of many-electron
systems, i.¢. atoms, molecules, and solids, is the electron configuration. As we
shall elaborate, the assumption of one-electron wavefunctions, orbitals
$, occupied by zero, one or at most two electrons (in the latter case with
opposite spin direction) is only an approximation to the total wavefunction ¥’
of the many-electron systems. In most cases, it is a fairly good approximation,
but our main reason for accepting it is that, at present, any other, more
sophisticated representation is much too complicated to be handled for more
than some four or six electrons, restricting our field to isolated atoms such as
carbon or molecules such as BeH,. Actually, quantum mechanics in its most
strict sense has only been applied to two-electron systems such as He and H,,
and, with some approximation, to Li, Be, and LiH. This is not as surprising
when compared to classical mechanics, where a general solution was not
found of the motion of three particles under their mutual gravitational
attraction, whereas the solution (of great astronomical interest) of two par-
ticles is completely known. Both in quantum and classical mechanics, the
difficulty is the same: the appropriate equations are very clear-cut, but they
cannot be explicitly solved at present.

However, there are many reasons to be much more optimistic regarding
electron systems of importance to atomic spectroscopy and chemistry, rather
than regarding nuclei. Though the nuclei most definitely show evidence of
shell structure in the same way as atomic electron systems, the interactions
between the neutrons and protons are not known at present with any degree
of accuracy. On the other hand, the only potentials of importance in electron
systemsare electromagnetic. Running the usual risk of conservative minds, we
may even affirm that there is good evidence that, if any other interaction was of
importance in electron systems, it would already have been discovered. (We
may recall that the gravitational potential is 10* times weaker than the
electromagnetic interaction between charged elementary particles) In
addition by far the greater part of the interaction in electron systems is purely
electrostatic. The rest are called electrodynamic or relativistic effects and they
are only important for electrons coming close to nuclei with high atomic
number Z.

In this chapter, we shall restrict ourselves to the electrostatic effects.
Following Mulliken, we use capital letters for quantities related to total
systems and small letters for one-electron quantities. The virial theorem for
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an isolated atom relates the total energy —T, the sum of the electrostatic

potential energy Epor and the kinetic energy of the electrons Exiy by the
equations

Epot== —2T and Egy;==T. 1.y

In systems with more than one nucleus, 1.e. molccules, eq. (1.1) is only valid
when the nuclei are at their equilibrium distances (or at very large mutual
distances).
In the following, we write equations in atomic units, with the length unit
1 bohr=-2,=0.528 A (1 A=10-% cm) and the energy unit 1 rydberg=:109.7
kK, representing the ionization energy T of a hydrogen atom with a very
heavy nucleus. Many authors prefer the atomic unit 2 rydbergs (=¢*/a,,
where the electronic charge is —e). When indicating numerical results, we
usually apply the rather convenient kilokayser kK, which is a unit of wave-
number of radiation, but also an energy unit when combined with Bohr’s
equation from 1913
E==hec, (1.2)

the frequency v of the radiation in sec! being the product of the wavenumber
o and the velocity of light ir vacuo c, and h being Planck’s constant. The
relations between kK and some other energy unitsare:

1 kK ==1000 K=1000 cm~!

1 evV=8.00 kK 13
1 kcal/mole=:0.351 kK /molecule (1.3)
1 joule/mole==8.4 x 10-* kK/molecule.

For our purposes, we need only to consider real (and not complex) one-
electron wavefunctions . This restriction is essentially refraining from con-
sidering the effect of external magnetic fields on our system. The electron
density in the usual three-dimensional space is then given simply by ¢~

One of the rather queer things about quantum mechanics is the relation
between the kinetic energy exin and ¢?, being dependent on the Laplace
operator involving the second differential coefficient of § with respect to the
Cartesian co-ordinates

€xjn ==

ol L A aﬂ’]q)

1.4
47°m ax’ By (1-4)

The constant of nature h/(4=*m) is adapted to be 1 in atomic units, and the
integration with the differential d~ in the end symbolizes all ranges of the
appropriate co-ordinates, here x, y, z between limits entirely including the
region where ¢ is different from zero. The wavefunction ¢is normalized when

J*dr=1. (1.5)
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Two normalized wavefunctions ¢, and ¢, havean overtap integral

Sia= [y Podr. (1.6)

If the overlap integralis zero, ¢; and p,are said to be orthogonal,
The potential energy, expressing the attraction of the electron in ¢ by the
nuclei with charges +Z,e, +-Zg, . . .,+Zqge, has a much simpler formuiation

thaneq.(1.4), viz.
Zy o
e — . | Ph4pde )
Ko e

where ry is the distance of the electron from the nucleus Zx. Equation (1.7} is
the same expression as in classical electrostatic theory for the potential
energy of a charge distribution 2 in the potential U(x, y, 2)=Zx(Zx/rx). In
many cases, quantum-mechanical quantities Q are obtained by the integra-
tion of QU over dr, and it is therefore practical to introduce the bracket <Q>
as notation for the result, and to consider this bracket as the “‘average value™
of Q for ¢2. For instance, in an atom or gaseous ion with only one nucleus, it
is reasonable to put the origin of the co-ordinate system at the nucleus and to
define the unique distance r between the nucleus and the electron by

r?=x3y?4-2* (1.8)
in which case one can define average values of r® for a given ¢*
<rh>-=[r"Adr. ' (1.9)

It is seen that eq. (1.7) reduces to —-Z<r~t> for the nuclear charge Z. How-
ever, eqgs. (1.7), (1.10), (1.11), (2.27), (2.29) and (2.45) have the energy unit
2 rydbergs.

The electrostatic energy of the total system is not a simple addition of the
nuclear-electronic interaction enyc from eq. (1.7), but contains also a positive
interelectronic repulsion energy, and if the system is a molecule, the inter-
nuclear repulsion energy which has a fairly simple expression:

Enuc:‘z g_ﬂgf’ (L.10)

iro Tap
each pair of nuclei taken once, involving only their distance rap and not the
electronic wavefunctions. Unfortunately, nobody can maintain that the
cffects of interelectronic repulsion are simple, and we only begin to foresee
the difficulties when regarding the approximation on which this book is based,
the well-defined electron configuration of orthogonat ¢.

The total kinetic energy Exin is here the summation of the one-electron
energies exin of eq. (1.4), the nuclear-nuclear and nuclear-electronic contri-
butions to the potential energy are given by egs. (1.10) and (1.7) respectively,
and the interelectronic repulsion energy can (in this simplified case) be
written as sums of Coulomb integrals J(a, b) {in special cases J(a, a)] and
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*“exchange” integrals K(a, b) defined by integrations over two electrons (in
the orbitals {a and ¢p) at the time, with the mutual distance r,:

D12 (1.11)

K@ b= [ [ daprisdatads,

where J(a, b) represent the classical interaction between two extended charge
distributions ¢a® and ¢p* This quantity would also occur in the classical
theory, whereas K(a, b) would have no place there. The latter quantity is the
electrostatic interaction between the charge distribution ¢ and itself, and
still calculated according to classical formulae.

The interelectronic repulsion energy of the system is calculated by taking
each pair of electrons, in their orbitals ¢, and ¢n (which must be identical or
orthogonal), and reckon J(a, b)—K(a, b) if their spins are parallel [i.c. m(a)
==my(b) where m, can assume the values 4} or —}) and J(a, b) if their spins
are opposite (m,(a)=—myb)].

A common example is a configuration with a series of orbitals ¢a, ¢p, . . .
Yq all filled, i.e. occupied each by two electrons. We will denote such a con-
figuration by the spectroscopic symbol a?b? . . . q* writing the number of
electrons in each orbital as an exponent to the name of the orbital.

We saw above that the total electronic energy of this system can be written

q
Exin=T :%Zekm( k)

q q
Epot= —2T= —2Zeque(k)+ZJ(k, k)+4ZJ(a, b)—2ZK(a, b).  (1.12)
k=a k=a a%kb a*b

The ionization energy of removing one electron from the orbital ¢, can be
calculated assuming no rearrangement of the orbitals in the new configuration
a*b®* . . . m'... g% being

ITm =enuc(m) —exin(m) —J(m, m)—22J(a, m)4£K(a, m). (1.13)
afm a*xm
The assumption of no rearrangement of the orbitals has a close connection
with Koopman’s theorem that the ionization and excitation energies of a
given configuration are very nearly the same, either making two different
calculations of the total energy of the excited state and the ground state, or
using eq.(1.13).

There is a certain appeal in the idea of expressing the total energy of a
system as a sum of one-electron energies, but it is not easy to define these
quantities in a consistent way. In a many-electron system, the genuine one-
electron operator quantities enyc(m)—exin(m) are usually much larger,
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frequently by a factor of ten for the loosest bound electrons, than I, the
two-electron quantities (J and K integrals) cancelling most of the contribu-
tion from the two first terms. On the other hand, the sum of the ionization
energies Im (one electron taken at the time from the undamaged original
system) is not equal to —1 times the total energy either, but is —XJ(k, k) too
small. It might therefore seem proper to define one-electron energies as

im=Im+$J(m, m)+-ZJ(a, m)—$ZK(a, m) (1.14)
afm atm
which would make T=ZXiy and actually make the virial theorem for the
system, eq. (1.1) valid for the individual one-electron energies:

~~exin(m)=}[equc—1J(m, m)—?(& m)+§§K(a, m)].  (1.15)

From the virial theorem for the system, it can be demonstrated that
T=2ip=—2f —Xg;,=ZIm+Zg,, (1.16)

the two-electron quantities g,o being taken twice in the summation of In,
while the one-electron quantities f, are correctly taken into account.Of course,
the sum of the comsecutive ionization energies, gradually leading to the
removal of all electrons from the nuclei, equals T.

There is no doubt, however, that the quantities iy defined in eq. (1.14) have
very little practical interest to chemists, the arithmetic mean iy of I and
the frequently much larger f;=enyc(m)—exin(m) being much larger than Iy,
in many cases. These considerations mainly serve to demonstrate how difficult
it is to define one-electron energies in both a consistent and satisfactory way.

We admit an expansion of our definition of “well-defined electron con-
figuration™ in the case of degenerate sets of orbitals. These sets of orbitals,
having the same energy (in the sense of identical f, and certain conditions on
the g,5), are extremely important in high symmetries, as we shall see, and are
called shells in monatomic entities and subshells in molecules. If a number e
of orbitals are degenerate, each subshell or shell in a well-defined configuration
contains 0, 1, 2, 3, 4, . . . or 2e electrons, though it may not always be
possible to assign an integral number of electrons to each definite orbital in
the degenerate set.

Very frequently, the e orbitals ¢ can be written in such a way that only
three different parameters of interelectronic repulsion occur, viz. J(a, a),
J(a, b), and K(a, b) where a and b are two different cases of the degenerate
orbitals. Usually J(a, b) is much larger than K(a, b). This can be understood
from eq. (1.11), since the charge density $a{n, being a product of two ortho-
gonal wavefunctions, firstly has alternant positive or negative sign in various
points of the space; secondly, K(a, b) has only positive contributions from
places where the “squared overlap™ ¢,*{y? is positive. For these two reasons
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K(a, b) may be rather small, while J(a, b) would not vanish even if {5 and
yp were separated at some distance. The difference between J(a,a)and Ia,b)
has the same ovder of magnitude as K(a, b),

We may consider a very simplified example for showing two important
differences between intersiectronic repulsicn in classical and quantum
mechanics. If q electrons occur in a set of degenerate orbitals, and if we make
the approximation that all J integrais are ideniical, the classical value would
be $q%, while eq. (1.12) indicates 1q(q—1)J, that is —4J less for each ¢lec-
tron. In other words, the eleciron is a self-coherent particle, though for all
practical purposes it functions as a charged cloud * in a stationaty state.
Therefore, there is no repulsion between the electron and itself, or rather,
this repulsion is taken care of in its rest mass energy. A *classical’” hydrogen
atom with a cloudy electron would have the ionization energy decreased
1J =§ rydberg for this reason.

Secondly, eq. (1.12) suggests a decreased interelectronic repulsion energy
for electrons having parallel spin, as expressed by the K integrals with nega-
live coefficients. This entirely nonclassical phenomenon is caused by ihe
action of Pauli’s principle on the total wavefunction ¥, which for a well-
defined configuration can be written as an antisymmetrized Slater determi-
nant according to rules given in Condon and Shortley’s book.

These sentences have some chance of soon becoming obsolete for the
following reasons. ¥ for a system with q electrons has 4q variables, that is
3q continous space variables and q spin variables, each assuming only one of
two possible values. It is very difficult to have an intuitive idea of the wave-
function of a bismuth atom or the complex FeF~ ~ - containing 83 electrons
being represented in a space with 249 ordinary dimensions. Actually, there
are good reasons for believing that the 249 dimensions are superfluous to the
physical description, and that six (or possibly rather five) continnous and two
spin variables would suffice. As we saw above, in electron systems there is no
trace observed of three- or more-particle interactions; one-and two-electron
operators are all that is needed. As pointed out by Lowdin, this would make
second-order density matrices having as variables tbe co-ordinates of only
two electrons (X, Y1, Z1, My, Xa» Yo Zg, M) @ valid substitute for the much
more complicated ¥. Actually, ¥" would already now have been rejected for
the same reason as the special relativistic theory abandoned the classical
Galilei-space-time; that is, the description contains more information than
can be obtained from experiments, if it were not for an annoying fact: there
exists a definite rule, the variation principle, that the application of the
Hamiltonian operator (expressing the various contributions of kinetic and
potential energy discussed above) on an arbitrary trial wavefunction ¥ never
gives an encrgy lower than the actual, observed encrgy. Unfortunately, one
can construct seemingly decent second-order density matrices which give a
more negative energy than the actual value. We have not yet found a criterion



1. WELL-DEFINED ELECTRON CONFIGURATIONS

for “permissible’” second-order density mairices corresponding to possiblet’
and obeying the variation principle.

It is reasonable to hope for such a criterion to be found, and thers is little
dcubt that ¥ has only received a provisionai acquittal. Especially, we know

. . . . . o
now that the interelectronic repulsion energy is only a question of <.—> of
) ST
such a second-order density matrix.

[The allusion to five rather than six independent space variables of the
sccond-order density matrix was made because, gencrally, A nondsgenerate
state has a 9" which has no lower symmetry than the Hamiltonian operator.
Therefore, it is expected that second-order density matrices can be written
as functions of (X,, ¥y, 2, Ty, iz M1, m.2), since the interelectronic repulsion
is spherically symmetric and dependent onry, only.]
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2. Degenerate Orbitals in High Symmetry

The highest possible symmetry in Euclidean three-dimensional space is
the spherical symmetry with centre of inversion, where the physical quantities
depend only on one space variable, the distance r [eq. (1.8)]} from the origin
of the co-ordinate system. Arguments from spherical symmetry can be used
for isolated atoms and monatomic ions, while all conceivable molecules
have lJower symmetry, as we see in Chapter 4.

In spherical symmetry, the individual orbitals ¢ have the exceptional
property of being separable in a product of an angular function A; and a
radial function R/r:

“I":Al(x) Y Z) : R(r)/r. (2'1)

We divide here by r to make R? express the charge density of {* per
spherical shell (“between r and r+dr”), but many authors prefer to use R/r
for the radial function.

In eq. (2.1) we meet for the first time a group-theoretical quantum num-
ber, the non-negative integer / characterizing the angular function A,, For
historical reasons, spectroscopists introduced trivial names for the various
values of /, viz,

I=012345678910...

spdfghiklmn ... 2.2)

and, after the development of quantum mechanics, it was discovered that /
had something to do with the orbital angular momentum of the electron
being equal to v/ I(/4-1)h/2x.

The angular function A, can be written as a linear combination of homo-
geneous polynomials Ap in Cartesian co-ordinates:

Ap=x2ybze/t! afb4-c=l 2.3)

Many authors prefer to write Ap in a polar co-ordinate system with tri-
gonometric functions of angles substituting x, y, and z. This is a little confus-
ing and not suitable for our purpose, because our favourite example of a
molecular symmetry will be the octahedral, to which the Cartesian co-ordi-
nates are particularly adapted.

It is seen that only one A, exists for /=0. Since we neglect the normaliza-
tion factors [satisfying eq. (1.5) on a spherical surface], we can write this
s-electron angular function as the constant 1.
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It is also obvious that three A, exist for /=1; we may write ther;l as x/r,
y/r,and z/r, respectively.
One might expect that six A; would subsist for /=2. Among the six Ap

possible
xy/r? xz/r® yz/r? x3[r® y*[r® z*[r® 2.4)

something is wrong with the three last ones. They are not linearly inde-
pendent, as can be seen from the fact that the sum of the last three A,
(x*+y*-+23)/1? is another way of writing 1 according to eq. (1.8). In other
words, the six Ap of eq. (2.4) correspond to five d orbitals A, and one s
orbital A,. One way of making A, orthogonal is to write the last two

2-yH/r* (Q2—xt—y)/r% 2.5

In the same way, ten Ap exist for /=3, but three A, are to be separated out
because they represent p orbitals A; and not f orbitals Ag. This is a general
mechanism for orthogonalization of § in spherical symmetry. Two ortho-
gonal ¢, and ¢, are orthogonal either because they have different A, values
(and they would be orthogonal even if they had identical radial functions R)
or because they have the same / value but orthogonal radial functions.

Among the valid forms of A; is evidently (xyz)/r®, but the other six f
orbitals have quite complicated forms, due to the singling out of the threc p
characteristics. Bethe and Von der Lage studied these A; under the name of
“Cubic Harmonics™ and indicated as a possible choice of the residual six A,:

-z x(@—-yH/r
¥ —#y)/ct yxi-z)/e (2.6)
(@)t Z(x*—y?)/e

Among the A,, one is relatively simple, (x4+y*z*—3rf)/r*. In general,
from the (/-4 1)(/+2)/2 possible Ap for a given value of /, only (2/4-1) genuine
A, appear, the rest corresponding to all previous / values smaller than the /
value considered, and of the same parity. We introduce here the word parity
in & very straightforward fashion, / being even for 0,2, 4,6 . . . and odd
for 1,3, 5,7. ... Actually, parity is a much more fundamental concept.
The orbitals § and total wavefunctions ¥ in spherical symmetry and in any
other symmetry having a centre of inversion can be classificd according to
odd or even parity by substitution of the “inverted” co-ordinates (—x, -,
—Z):

Yoaa (—X, —Y, —2Z) = —todd (X, Y, 2) @n

Yeven (—%, —Y, —Z)=Yeven (X, ¥, 2). -

It is customary to use the German abbreviations u (= ungerade) for odd and
g (== gerade) for even functions. An odd and an even function are necessarily
orthogonal, because the contributions to the integration eq. (1.5) always
cancel from opposite sides of the co-ordinate system. It is obvious that an
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arbitrary function ¢* cannot necessarily be ascribed even or odd parity.
However, it can always be written as the sum of two (non-normalized)
functions Yeven and Yoqq defined by

qJeVen:(qJ*(X: )", Z)+ 4’*(—’(: "“'y’ - Z))/2
Yoaa ==(¢*(X, ¥, £)—$*(—X, —y, —2))/2

Whereas the angular functions of eq. (2.1) can be expressed in a definite
form, the radial functions depend heavily on the central field U(r), the electro-
static potential to be put into Schrodinger’s equation. In spherical symmetry,
the kinetic energy of an orbital ¢ can be divided into two parts, radial kinetic
eniergy, similar to eq. (1.4) being an integration of

(2.8)

h? 4R ,
€ in=1}-— —-—— .Rdr 2.9
rad kin J‘ iGm de (2.9)
while the angular kinetic energy has the fixed form (in atomic units, the
cnergy unit 1ry-=e%/2a,):

€ang kin = ‘--I-(f}—:l) J2dr=I({+ D<r 2> (2.10)

v Ir
d~ being dr between the limits r==0 and r= « (or larger than such r that ¢?
has become negligible). In eq. (2.10) we can talk about a pseudo-potential
of “centrifugal forces”, vanishing for /=0.
Schrédinger’s equation for R then becomes

2 2 2
b IR [w_ U@y—N ’_(ﬁ‘_Q]R=o @.11)
4=*m dr? 4=*m 1o

and the solutions for negative energy w are sought. For a positive w there
exists a continuous infinity of solutions, called the continuum, corresponding
to ionized states of the system (because the zero point of w is the encrgy ofan
electron very far away from the nucleus and the other electrons, if present)
and not fulfilling the virial theorem eq. (1.1), since both exin and epot are
positive. For negative w there exist only a discrete set of stationary states,
fulfilling the virial theorem and having radial functions R which vanish
exponentially at large r (expressing the fact that the electron is bound to the
rest of the atom). However, for all values of /, and for all monatomic entities
being either neutral or positively charged, there exist an infinite number of
these stationary states, queueing very densely up for w being just below zero.

We shall concentrate our attention on the lowest stationary ¢ of a given
symmetry type l. Neglecting the behaviour of R at r=0 and r—> «, we can
talk about the number of nodes of R, values of r where R=0. The jowest
energy is found by an orbital having no podes [this is mainly a question of
d2R /dr? of eq. (2.9) necessarily being much larger when nodes occur). The
following orbital with the same / can only be made orthogonal to the first one
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by having one node (because RiR.; snust be positive for some r and negative
for some other interval of r values). The third orbital must have two nodes
for being orthogonal on both R, and R,, and so on. We define a principal
quantuiri number n such that the number of nodes of R is n—/—1. This has
not the same direct physical significance as /, but is essentially a file number.
Jn a one-electron system with spherical symmetry, as represented by
H, Het, Lit+, . . . with a nucleus of the atomic number Z, eq. (2.11) can
be solved completely with U= --2Z/r (the factor 2 arising from the choice
of one rydberg as unit of energy).
The lowest solution for each / can be demonstrated by substitution in
eq.(2.11)to be
R=r"* exp(—Zr/(I4-1)) (2.12)

again neglecting normalization constants, and the corresponding energy is
w= —Z2/[(I41)?==—2Z%/n" (2.13)

A very special property of U=—2Z/r occurring in one-clcctron systems is
that the higher solutions with nodes in R, though having widely different radial
functions, have the same energy as the last term in eq. (2.13), t.e. —2Z%/n?
independent of /. It is interesting to note various values of <17>[cf. eq. (1.9)]
calculated for the “hydrogenic® radial functions:

<17¥>= 23 /(n*(+- 1)+ $)))

<3 t>==Z/n?

<r> = (3m—Il(l+1))2Z

<1?> = n¥(Sn24- 1311+ 1)) /222,

(2.14)

The potential energy —2T of a hydrogenic systein being proportional o
<<r1>,eq. (2.13) corresponds to a lindependent valuc of the latter quantity.
In many-electron systems, the radial funciion R is not hydrogenic. The
central field U{r) can take care of nearly all, but not all, the effects of inter-
electronic repulsion, because the latter turns out to have spherical symmetry
to a great extent in the actual atom. The Hartree-Fock self-consistent func-
tions (HFSCF) R of the various shells of a definite atom minimizes the energy
given in eq. (1.12) and adapts therefore the behaviour of the individual n, [
shells mutually, as described in Hartree’s book. This is a fairly complicated
calculation, done by repeated iteration and ust:ally bv analytical approxima-
tions to R, but it is not impossible with modern computing machines and has
been done for a variety of atoms. Recently, Watson (1959, 1960) has per-
formed such calculations for iron group atoms ang ions with Z=21 to 30,
and Watson and Freeman (1961) for the group Z==:13 to 18 and Z=31 to 36.
A fairly good approximation to the HFSCF radial functions without nodes
can be written
R ==t exp (--ar) 2.15)
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where [, and « are two fractional constants, In literature, reference is fre-
quently made to Slater’s hydrogenic radial functions, having « equal to the
ratio Z,/n, between an effective charge Z,, and an “effective principal quan-
tum number™ n,. In nearly all cases, /, is assumed to be equal to / of the n, I
shell. However, for many purposes this is a quite unsatisfactory approxima-
tion. There are good reasons for believing that a much smaller value of
I, say 0.5 or 0.7, is a much better approximation, and eqs. (2.16) and (2.17)
show some justification for eq. (2.15) directly from Schrodinger’s radial
equation (2.11).

The central field U(r) in a many-electron system with the ionic charge
+(Zy—1)e is —2Z,y/x for large r, while it is approximately —2Z/r for small
values of 1, close to the nucleus. Since the central field increases from Coulomb
behaviour with Zg at large r to Coulomb behaviour with Z at small r (neglect-
ing the small effects of external screening), it is possible to expand U in a
Taylor series of r~1, starting with the central field outside the atom at large r.

U= —250 22 (2.16)

Correspondingly, the energies w are situated somewhere in the interval
—Z3[n? and —Z?/n?, the internal shells with small <r> being close to the
* former, more negative limit, and very external orbitals with large <r> being
close to hydrogenic behaviour with Z,.

If we restrict our Taylor expansion eq. (2.16) to the two first terms, we can
directly give the solution in the Schrodinger equation (2.11), because Z,
cancels a part of the pseudo-potential /(41)/r* of angular kinetic energy,
eq. (2.10), and the resulting solution R has the form eq. (2.15) with the

constants given by az= Zo/(l,+1)
= *

Z,= I+ 1)~ L, +1) (2.17)
wa= —aZ=—Z2 /([ 1)

It is seen how, for a definite Z,, the higher values of / correspond to larger
I, and therefore less negative values of the energy w. This argument is
generally valid without the specific approximation expressed in eq. (2.16)
for any central field becoming more negative for small r than —2Z,/r, and
gives the definite order of n, Ishell energies w:

ls€ 2s<2p
3s<3p<id
4s <4p <4d <4f
5s <<5p <5d < 5f <5g

(2.18)

Rydberg was the first (in 1906-13) to relate facts of atomic spectroscopy to
the structure of the periodic table of elements; and N. Bohr further connected
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Moseley’s determination of the atomic numbers Z with the evidence from the
alkali metal spectra [indicating empirically eq. (2.18)] demonstrating the
composition of the closed-shell configurations corresponding to inert gases in
the periodic table:

He(Z=2): 1s?
Ne(Z=10): 1s*2s%2p®
Ar(Z=18): 1s*2s%2p®3s®3p®
Kr(Z=36): 15%25*2p3s23p®3d1°4s24p® —[Ar]3d1°4s?4ps (2.19)
Xe(Z=54): [Kr]4d*5s?5p®
Em(Z==86): [Xc]4f?45d1%6s26p®
(Z=118):[Em]5f146d'°7s%7p®

where we denote the previous closed-shell configurations [Ar], etc., for saving
space. It is worth noting the absence of inequality signs in eq. (2.18) between
(given n, high /) and (n+1, low /). The relative order of such two orbitals
depends on the detailed nature of U(r) and in particular on the ionic charge
Z,—1. Thus, in practice, there is never any doubt that 2p has lower energy
than 3s, though it was not proved from eq. (2.17). On the other hand, for
neutral atoms with Z,=1, 4s has lower energy than 3d at the point, Z=19
(potassium), where these orbitals become important for the electron con-
figuration of the ground state. Actually, 4s<3d only in an interval starting
around carbon (Z=~6) and finishing at copper (Z=29), while 3d<4s for
smaller Z (approaching the behaviour in hydregen) and for Z larger than 30
(where both 3d and 4s are internal shelis). If one considers ionic charges +-¢,
the interval for 3d<:4s is much more narrow, and for Z,==3, it is reduced to
near coincidence in silicon (Z=14) and phosphorus (Z=135). For ionic
charges higher than +-2e, the orbital 3d is always more stable than 4s.
Hence, we have seen that the question whether 3d has lower energy than 4s
does not have a clear-cut answer, if we do not specify the ionic charge and the
atomic number.

Similar difficulties arise with the sets of orbitals 5f, 6d, and 7s for more
than 86 electrons, which tend to arrange in the hydrogenic order 5f<6d<7s
for highionic charges (say Th+++ or U+) and in the opposite order 7s<<6d <5f
in neutral Ra, Ac, and Th.

We may use eq. (1.12) to construct a model of this behaviour at the begin-
ning of each transition group. We say a model, because we neglect the effects
of rearrangement of orbitals with consequent changes of the pertinent
parameters (sce page 4) and we make the approximation that the inter-
electronic repulsion energy in the configuration [Ar]3d®4s® can be written

a(a—1)J(3d, 3d)/24-ab J(3d, 4s)-+-b(b—1)J(4s, 4s)/2 (2.20)

and we avoid thinking too much about the problem of one-electron energies
[sec eq. (1.14)] and define energies —eyq and —eg Of a single electron
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moving in the central field of the closed-shell configuration [Ar]. If we con-
sider the element vanadium (Z=-23), appropriate numerical values of the
parameters are eyq=3500 kK, e4,=350 kK, J(3d, 3d)==£20 kK, J(3d, 4s)
==J(4s, 45)=70 kK, and we obtain the following energies in kK compared to
the closed-shellion V+5:

q= 3da 3da-14s  3da-tde?

1 — 500 --330 —

2 880 —780 —630 .21
3 —1140 —1090 —990

4 1280 —~1280 —1230

5 —1300 —1350 —1350.

There is no doubt that the radial functionsin V+% and V° are so different that
the assumption of invariant ¢ and J parameters is not entirely fulfilled. How-
ever, eq. (2.21) shows something very important for the understanding of the
energy levels in the beginning of a transition group: though the 3d orbital in
the whole series of ionic charges considered is attracted150 kK by the [Ar]
core than the 4s orbital, the ground configuration of V? is 3d*s? and of V+
3d% but very nearly coincident with the lowest terms of 3d%4s, whereas it is
3d® of V++ and 3d® of V+++. In other words, the relative size of the inter-
electronic repulsion parameters J(3d, 3d) compared to J(3d, 4s) and J(4s, 4s)
may have as a consequence that the 4s electrons are needed for the stability of
the ionic charges 0 and -1, but removed at first by ionization, leaving [Ar]3dd1
as the lowest configuration for ionic charges at least +2.

This also shows how difficult it is to give a sensible definition of experi-
mentally determined orbital energies. Slater has proposed considering the
baricentres of the configurations which are split into more energy levels, This
is very reasonable, but leads to some rather peculiar but unavoidable con-
sequences. Before considering this problem, we must explain several features
of the multiplet term structure of configurations involving partly filled shells.

The number of states of a configuration is the number of orthogenal
wavefunictions ¥ it is possible to write. This number is one, if all the shells or
subshells (i.e. the sets of degenerate orbitals) are fully occupied. If one shell
or subshell with the degeneracy number e contains only one electron, the
number of states is 2¢, but they are degenerate, forming one energy level, if we
continue to neglect electrodynamic and relativistic effects. The same is true
for (2¢—1) electrons in a single partly filled shell, that is one electron less than
the maximum number possible. If q eiectrons occur in a single partly filled
shell or subshell, the number of states is

( q ) L 2O (2.22)
22/ 7 qi2e—q)!

This binomial expression is symmetric with respect to q and (2—q). Itis a
much more fundamental rule, Pauli’s hole equivalence, that not only the
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number of states but also the symmetry types occurring of the energy levels,
and their number, are identical for q electrons and q ““holes” in a set of
degenerate orbitals.

As long as we only consider electrostatic, and not electrodynamic effects
we have the approximation of Russell-Saunders coupling, and the symmetry
types of the total ¥ are of two types: the total spin S and the symmetry type
L in spherical symmetry or I'; in lower symmetries. In analogy to eq. (2.2),
the values of L have trivial names, viz. .

L=0 1 2 3 4 5 6 7 8 9 10...
S P DF GHI KL MN... @2

and it has become customary to write 2541 as left-hand superscript to the
name of L or T'y. Thus, *F means a term with L=:3 and §=:1. S assumes in-
tegral non-negative values in systems with an even number of electrons and
has then trivial names related to 25+1! and pronounced singlet (§=0),
triplet (1), quintet (2), septet (3), . . ., whereas systems with an odd number
of electrons have S equal to a positive number being the sum of an integer
and a half. The trivial names are doublet (§=1/2), quartet (3/2), sextet (5/2),
octet (7/2), . . . . The number of states participating in a multiplet term is
(2S+1)(2.4-1). The term consists of one or more energy levels, which, in the
latter case, can be separated by electrodynamic effects in the atom. An energy
levelis a number of absolutely degenerate states that can only be separated
by interaction with an external electric or magnetic field decreasing the
symmetry of the system, or by similar fields arising from the properties of the
nucleus (hyperfine structure).

It is worth remarking that even or odd parity is also a symmetry type, and
may be combined with both even or odd values of L. Many spectroscopists
mark the terms of odd parity with a small circle, e.g. *S° and 2P° of the con-
figuration p* to be discussed below. For well-defined configurations, it is
simply the parity of the sum of the / values which count.

One electron or one hole, i.e. 441 electrons, in the i, / shell produce the

unique term *(/) as mentioned above. Two electrons or two holes produce
2]+ 1 different terms, viz.:

1§, 3p 1D 3F1G, °H, . . ., 32— 1)}(2)). (2.24)
Three electrons or three holes are somewhat more complicated:

P3 . 4S, 2D’ 2p

d?, d7: 4F, ‘P, *G, 2P, 2H, 2D, *F, 2D’ (2.25)

f3_f11. 4] 4F 4§ 4G, 4D, *H,2G, 2K, 2D, ?P, *I, 2L, *H’, 2D, 2F, 2G', 2F’

and it is noted that they frequently produce more than one term of the same
symmetry type L, S. Hund’s rule indicates that the lowest term has the maxi-
mum value of S combined with the highest value of L compatible with this
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condition. Hund’s rule does not indicate the order of the other terms, which
at first sight seems somewhat irregular. Equation (2.25) attempts to arrange
the L values of a given S according to increasing energy.

This is not the place to outline exactly how eq. (2.25) has been found, or
how the similar results arc obtained in general for a partly filled shell. We shall
restrict ourselves to a list of the one or two lowest S values and the highest L
among the following S values:

dé,ds: 5D,SP,3F SH,1, . . .

ds: 8S,4G,*P,*D,*F,®I, . . .

f4,f10. 5[ 5F 58 5G, 5D 3M, . . . (2.26)
f5,£%:  ¢H, °F, °P,*M, ‘I, ‘K, *L, *F, %G, *H, *P,*D, . . .

fo,f8: 7F 5D, 5L, 5G, 5H, 51, 5F, 5K, 5H', 5G’, 5D, 5P, . . .

f7:  8§,P,¢] D, ¢G, °F,*H,*N, . . ..

Before returning to the actual calculation of interelectronic repulsion
energy in simpler cases, such as p4, we need not only the diagonal element
of this energy, eq. (1.11) et seq., but also the rules for some simple non-
diagonal elements. We do not treat here the general principles of perturba-
tion theory and secular determinants, which can be seen in many books, even
in “‘Absorption Spectra . . .’ by the present writer.

If we have two different configurations which differ in more than two
electrons, say Cabc and Cdef, where C is the common part of the two con-
" figurations, the nondiagonal element of the iwo-electron operator 1/rys
vanishes identically. If two configurations Cab and Ccd differ in two spin
orbitals (i.e. orbital and spin characteristics), the nondiagonal element is

+ JP }i ‘-{-‘a ‘Pcd‘rl ‘Lb '{»’dd?z - ff;ll—z \{)a, Ll-‘dd‘rl \[Jb ¢cd¢2] (2, 27)

where the sign of the nondiagonal element depends on the choice of the
phase of the wavefunctions. The integration of each of the two terms vanishes
very frequently, one necessary condition for

J ;-Ll;w $edry Py §adr, 520 is m(w) =m(x) and m(y)=my|z). (2.28)

Another necessary condition is that the two producis {xx and ¢y ¢z have
the same group-theoretical symmetry type I'n.

If two configurations differ by only the occupation of one spin orbital,
Ca and Cb, the nondiagonal ¢lement is no longer as given in eq. (2.27), but
is & summation over all spin orbitals ¢y occurring in the common part C, viz.

[ anasoas [ [Lipentonan) | @29

LY



