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1. Introduction: The Connection between the Representation Theory
of S§(n) and That of U(n), and Other Preliminaries

In the first chapter of Volume I (/) the Killing-Cartan program for the
classification of all compact simple Lie groups and the elementary theory of
their representations was reviewed. In this chapter we consider in some detail
the representation theory of the unitary groups, U(n), deriving a system of
basis vectors (the Gel'fand basis) and the matrix elements for the infinitesimal
operators which span the Lic algebras. of these groups. We shall give a brief
introduction to the theory of tensor operators defined on the unitary groups
(2a-f). Our presentation will be based largely on the results contained in the
literature (34, b, ¢).

The unitary groups, most particularly SU(3) and SU(6), have recently
become objects of interest to physicists because of their usefulness in the
study of elementary particle symmetries. (It needs no emphasis that SU(2),
the quantum angular momentum group, is of fundamental importance.) The
U(m) groups, as a family, have a further importance in that all of the classical
groups can be embedded as subgroups; this property is very much more
useful for Lie groups than the corresponding embedding of all finite giloups
in the symmetric group, S(n).

In our exposition we shall adopt the following procedure: We shall first
give an informal proof (due to Wigner and Stone) of the Peter-Weyl theorem,

*Present address: Department of Physics, University of Colorado, Boulder, Colorado.
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2 W. J. HOLMAN, III, AND L. C. BIEDENHARN

which has the corollary that all the irreducible unitary representations of a
compact matrix group are generated by Kronecker products of a single
faithful representation of the group, which, for convepience, we shall take to
be the defining representation, that is, the set of all X n unitary matrices in
the case of U(n), . . .. The problem of‘the reductith of the Kronecker prod-
ucts of the defining representation is then solved with the assistance of the
representation theory of the finite symmetric groups. Hence, we follow the
Wigner—Stone proof with:a brief review of this thesyy using the treatment of
Hamermesh (). We then proceed with a derivation of the characters of the
irreducible unitary representations of U(s) and a ptoof of the Weyl branching
law and the Weyl dimension formula, We thus follow the classial, or global
method of Hermann Weyl in dealing only with finite elements of the group,
rather than a purely algebraic, or infinitesimal approach, which starts from_ '
the main theorems of Cartan, enunciated at the end of the work of Kleima
et al. (), and uses invariant operators to classify irreducible representations
and to label the states of a given representation by meafs of the Weyl
branching law. In the literature of group theory there is often no sharp
distinction made between the infinitesimal and the global approaches; the
classic researches of Schur, Cartan, and Weyl employed both techniques
where expedient. The algebraic method is: quite well adapted to the dis-
cussion of invariants and similar aspects of group-theoretic analysis for which -
an explicit basis is not required, but it becomes quite cumbersome in further
research. Hence a study of the representation theory of the U(r) groups, the
principal object of the present work, would normally employ cither method
wherever advantageous and so make our distinction arbitrary. We have made
it in view of its applicability to the noncompact groups U(p, g), for which the
algebraic method—in contrast to the global technigues—may still be applied
successfully in many problems (5). Perhaps the sharpest distinction between’
the purely algebraic-constructive approach and the global methods lies in the
application of the symmetric group to the articulation of the structure of the
unitary groups.

We shall develop this method, then proceed to a determination of the
characters of the irreducible unitary representations of U(n) and a proof-of
the Weyl branching law, which will provide us with sufficient invariants to
label the U(n) irreducible representations and also with a system of labels «
for the states of these representations. We shall then provide a realizatipn
of the -representations by means of a boson calculus, discussing the U(2)
case at length, then proceeding to the general case of U(n). We shall add
Racah’s determination of invariant operators and state labels, a determina-
tion which is trivial in view of the results of Weyl’s branching law, byt which
is of interest in that it takes place from the standpoint of the algebraic-
constructive method rather than from global considerations. Finally, we shall
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treat the determination of the matrix elements of the operators of the SU(n)
Lie algebra, a determination which we shall complete only in the context of a
general treatment of tensor operators on the U(m) groups. Since the SU(n)
groups are all simply connected, the representation theory of the groups is
completely determined by that of their Lie algebras.

First of all we shall establish the Wigner—Stone vérsion of the Peter—Weyl ‘

theorem (6): For a compact group G which is isomorphic to a set of finite-
dimensional matrices there exists a set of finite-dimensional matrix represent-
ations whose elements form a complete set of functions defined over the group
manifold. ‘

The well-known orthogonality theorem for the irreducible unitary repre-
sentations of compact Lic groups assigns a property to any two glven irre-
ducible representations, whereas the completeness theorem requires the
construction of a set of inequivalent irreducible representations, then proves
their completeness. The procedure of Wigner and Stone is shghtly different:
Given one faithful matrix representation (which may be that realization
which furnishes the abstract definition of the gropp, but which does not have
to be irreducible) we may build up all the des:rcd representations by forming
Kronecker products -of this one and then reducmg the products. Taking D
to be the original faithful representation, we construct the Kronecker
products DX D, DX DX D,.... At each stage only finite-dimensional
representations occur, and hence we nce¢deal only with the problems of the
reduction of finite matrices. The functioris qn the group manifold defined by
these products will not all be linearly indepgndent, but by the usual Schmidt
process, beginning with the elements D,;, we may define an orthonormal set
of vectors v(g), where g represents an element of the group, in other words,
point on the group manifold; that is,

L

[w@u@oten =5, . -

where-du(g) represents the invariant Haar measure on the manifold.

The property of completeness is the assertion that a function f(g) ortho-
gonal to all s(g) is necessarily equal to zero for all &. We obtain a proof by
assuming the contrary, then establisbing a comradiction.

For simplicity we assume that D is real. This assumption leads to no loss
of generality begause if D is complex we may always construct an isomorphic
real representation of twice the original dimension.

Letius assume that jI(g) is not equal to Zero when g =.g,, that is, f(go) # 0,

and, moreover, that f(g) is orthogonal to all v,(g):

[ r@nen =0, atouw. a2

-~

T
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Consider now the function
g, A),= N()) exp(—2 g [Dif8) — Di{g0)P), (1.3)

where the function N(}) is normalized by the requirement that
[ dutorg. » = 1. .4

The function (g, A) has the property that in the limit A — oo it becomes
proportional to the Dirac delta function 8(g — g,). Since, however, the
nction exp(—x?) has a uniformly convergent power series in any closed
omain of x, it follows that (g, \) may be expanded in terms of matrix
clements D;{g) and all their powers. This is equivalent to the statement that
u(g, A) may be expanded linearly in terms of the p(g). Thus; if f(g) is ortho-
gonal to all v(g), then it is orthogonal to w(g, A) for all A, that is,

[ e, D@y =0, al A .9
By taking the limit A — co, however, we find

lim [Gule)uce, V(6) = [ Al ABNE ~ ) = Sz, (1.6

~ and by hypothesis f(g,) # 0. This is the desired contradiction, and it shows
that the only vector orthogonal to all v(g) is the null vector. Since the matrix
elements of the irreducible unitary representations form a complete set of
functions on the group manifold, the corollary follows immediately that we
may obtain every irreducible representation for a compact group from a
faithful -representation (and its complex comjugate) by taking Kronecker
products and reducing these to irreducible constituents. This is the-result
which we shall need in the f‘ollowmg discuwon of the represcnumons of the
unitary groups.

The second prolegomeaon which we shall need is a brief review of the
representation theory of the symmetric group. The group-of: permutatlom-of
n objects is of order !, and any given element may be expressed-in the follow-
ing notation. Let us label the s objects in their initial ordering as (1, 2, .. ., n),
that is, with the positive integers in consecutive order; then a permutation of
these objects will take them into a uew order (i;, iz, . . ., &), in which the i, are
composed of the first.n positive integers in the sequence to which they have
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been taken by our chosen element of the permutation group. This element of
the permutation group is uniquely specified by the initial and final orderings
of the n objects on which the group acts. So, we write the element in the form

C 23-~n)
b dg g e i)

where we have written the initial ordering above and the final below. The law
of composition for the group then becomes :

‘12-yn h B - By (1 2 - om
(i1 ig --- ‘n_)(kl kg --- kn)—(kl kg --- ‘kn) R 1.7

Every element of the permutation group is composed of one or more (up to
n) cycles. Consider the permutation of degree eight,

we see that the numbers 1, 2, 3 are pa'mutod among themselves, as are the
numbers 4, 5 and the numbers 6, 7. Each subset of numbers which are per-
muted cyclically among themselves is called a cycle. In this example there is
one three-cycle, composed of the numbers 1, 2,3, two two-cycles, composed
of 4, 5 and 6, 7, respectively, and one one-cycle, the number 8. We can then-
abbreviate this permutation by writing it in terms of its cycles in the following
manner: (123)(45)(67)(8). Having no clements in common, of course, the
cycles are commutative with one anothes, :

Let us suppose that we have resolved a given member of the permutation
group on n objects, S,, into its cycles, and let the number of one-cycles be v,
of two-cycles be »g, of f-cycies be v, and so forth. Smoethntotal number of
objécts to be permuted is n, we must have

h#%‘m+w-n (1.8)

A permutat:on wluch when resolved into independent cycles has », one-
cycles, v, two-cycles, ...,v, ncycles is said to have the cycle structure
(1%, 2%, ..., n"). All the permutations which have the same cycle structure
form an equivalence class within the group S,. Likewisc, each solution of
(1.8) for positive integers v,, v,, ..., v, defines a class in S,, and hence the
number of classes is just the number of such solutions. If we let
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ntvatootm=A

vatvgtct =23 : (L.9)
) Vn =- ’\na
then

A1+Ag +~"+:\,,=n (1.]0)
and

AM2A2-2020 (L.11)

This decomposition of n into a sum of » integers e called a partition of h.
Each solution of (1.8), then, uniquely specifies an equivalence class and a
partition of n into (A, A, ..., A,). Conversely, given a partition (1.10), we
also have a cycle structure and an equivalence class‘of permutations.

At this point we shall y state the theorem that for a finite group the
number of nonequivalem.aifeducible representations is equal to the number
of equivalence classes in the group; for proof, we refer to Hamermesh ¢, p.
110). Hence, it is possible to construct a one-to-one correspondence between
the partitions of # and the irreducible representations of the permutation
group on n objects. ‘ '

We shall now introduce the concept of the regular representation of a finite
group. If we label the elements of S, ass;, 1 < i < n!, then multiplication of
the elements s,,..., s, on the left by s, merely permutes the s, .. vs Smy
among themselves. Considering s,, .. ., s, as coordinates in an (n!)-dimen-
sional space, we can represent the element s, by a' permutation of the n! co-
ordinates. Thus if 5,5, = 5, (/ = 1,..., n!), we define the regular representa-
tion as the correspondence of s, with the n! x n! matrix Dy(s,) = 8,,. In this
representation the diagonal elements of all matrices are zero except for the 5,
which has the property that 5,3, = s, that is, for the identity element. Each
irreducible representation of the group is contained in the reeular renre-
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Ifa subalgebra B has the property that for any u € B, su is also in B for any
s € A, where A is the whole algebra, then Bis called a left ideal.

In the regular representation a left ideal /; i$ an invariant subspace since
sI; = I, for any clement s of the algebra 4. Since the regular representation is
fully reducible, the space 4 must be a direct sum of left ideals, that is, 4 =
Sai I, where sI, = l, foralli i. Every clement of the algebra 4 can 'be uniquely
expressed as the sum of onc element in each‘\ of the left ideals I;; only the
élement zero is common toall L. The‘mutnoa of the regular representation
D(s) are reducible’ to 2@ DiYs), ‘where D™(s) is the matrix of the linear
transformation induced in J; by left multiplication with s.

The unit element e of the group S, is contained in the group algebra 4
and has the property that es = se = sforall s€ 4. If A4 is the direct sum of
two left ideals, 4 = I, + I, then the unit element e can be uniquely ex-
pressed as a sum e = €; + €3, €; ‘el;, ey € L. Similarly, any element s of 4
can be uniquely expressed as s = s, + 53 = se' = S(e; + &) = se; + se;.
Since I, and I, are left ideals, s, = se;, s, = se;. If s isin I,, then s = s,,
83 = 0, and as a résult sv= se,, seg = 0.

“ The element e, is ldempotent, that is 3 = e,, and it is a generator of the
ideal I, since se, isin I, for all sin 4. If s is in I, then se, = s. The same re-
marks apply for ezin I5. Also e;e; = €z¢, = 0.

The left ideals I, and I, may in turn contain subalgebras which are left
ideals. If an ideal I contains no proper subideal, it provxdes us with an
frreducible representation of the algebra 4. Such an ideal is said to be
minimal. Continuing this process, we may express the algebra A as a direct
sum of minimal left ideals,

A=L®  ®L.

The left ideal I, is generated by the 1dempotent e, and &} = ¢, ge, = O for
i # j. From the previous argument it is clear that we find the generators ¢; by
resolving the unit element e into components in the spaces L,....I,. An
idempotent which cannot be resolved into a sum of 1demp6tznts satlsfymg
el = e and ee, = 0, i # j, is called primitive. An idempotent e is primitive
if and only if the ideal I = Ae is minimal.

Any idempotent at all in the group algebra of S, will generate a left ideal
which gives a representatnon contained in the regular representation. In
particular, let us consider the element p = Z, 5;, where the sum runs over all
the elements of the greup S,. Now for any permutation sy, $ip = = 3, 5.8 = p.
Hence, p* = 3,55 = nlp, and p is a generator. The quantity (1/s!)p
is idempotent. Multiplying p on the left by the quantity R = 3, «8,,
we get Rp = (3, o)p; thus the left ideal Ap generated by p consists of the
multiples of p. Thisis a one-dlmcnslonal vector space. Left multiplication by a
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permutation s does not change ap, so our representation assigns the number
1 to every group clement and is the identity representation.
Similarly g = 3 8;5,, where 3, is the signature of the permutation s, (8, = 1
for s an even permutation and 8; = —1 for s, odd), is idempotent up to q
Sactor, since 5,g = 3, 83,5 = 8,9, so that ¢® = nlg. Likewise (1/n)q is
ldempotent The generator g then generates a one-dimensional ideal which
consists of multiples of g. Left multiplication by an clement s, then provides
- us with the alternating representation which associates with each element of
the group its signature. This representation is irreducible.
We obtain the remaining irreducible representations in the following
manner: For any partition of n, A, +---+ A =n M 2 A 2.2 A,
r £ n, we draw a diagram of the following kind which will be called a
“tableau.” We draw a row of A, boxes, (or nodes) then under it a row"of A,
boxes, and under this row another row of A; boxes, and so on, until we draw
the final row of A, boxes. We arrange these rows with their left-hand ends
directly under one another. The right end of each row then either lies directly
above the right end of the row beneath it or extends beyond it. Each such
Young Sframe then corresponds to a particular cycle structure, that is, a
particular equivalence class. We then get the Young tableau from this frame
by filfing the squares with the numbers 1,...,n in any order. For such a
tableau we now consider two special kinds of permutations, Pand Q. P will i
denote any permuthtion which interchanges only the numbers of each row
among themselves, then the rows can be said to be invariant under the P, |
which are called “horizontal permutations.” The Q are defined similarly as -“
permutations which interchange goly, the nnmhers of poch coluson omree




REPRESENTATIONS AND TENSOR OPERATORS OF U(n) 9

of the Kronecker, product of p defining representations is then given by the
direct product of p such vector spaces AL x AP x ... x AP

APAD A9 = 3 o B gy U ADAD AP (1L13)
- 1

'We now recall from our discussion of the Wigner—Stone theorem that all the
irreducible unitary representations of the group can be generated from the
reduction of Kronecker products of the defining representation. Hence, all
the irreducible representations of U(n) can be extracted from expressions of
the form (1.13). The direct product of the p vector spaces ¥V, . . ., A forms
the set of tensors of rank p. These tensors are defined with respect to the
group U(n). Weyl noted that the transformations induced by the operations of
U(n) commute with the transformations which permute the p vector spaces
among themselves. The transformations of this latter group can be repre-
sented completely in terms of the Young symmetry patterns defined by
the partitions of p. Each pattern uniquely denotes anirreducible representation
of S, and hence also an invariant subspace of the tensor A® x - - - x YD,
We shall illustrate this decomposition of the carrier space for the case p = 2.
For §, there are only two elements, e (the identity) and s (the permutation of
two objects). We denote the secand-rank tensor by Fy,. Then eF; = F,; and
sFy; = Fy. The opcmxor s commutes with the transformations (1.13) in
tensor space:

(sF I)Mx = F fida = uhhulsﬁFiah = “!1‘1“!242R1‘a = “!:hulzh(SF)laix‘ (1.14)

" The Young operators of th‘e'S, group are just (e + s) and (e — s); applied to’

F,; they project out the symmetric and aittisymmetric components of F,.
Since both e and s commute with the transformations of the direct product
U(2) x U(2), these components are invariant; that is, because the Young
operator commutes with the tragnsformation of the product U(2) x U(2) it
projects out invariant subspaces both of the carrier space and of the matrices
of the transformation. Hgnce the Young operator projects the product space
into the invariant subspace defined by the Young tableau; it can be shown
that the reduction of the Kronecker product into invariant subspaces pro-

- vided by these operators corresponds exactly to its reduction into irreducible

representations of -U(n). Then, from Schur’s Lemma we have it that an
irreducible representation of U(n) which is labeled by the partition [A] appears
in the reduction of the direct product AV x ... x A with a multiplicity
equal to the degroe. of the irreducible representation [A] of S,. The degree of
the irreducible representation [A] of U(n) is equal to the multiplicity with
which the irreducible representation [A] of S, occurs in the regular repre-
sentation.
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This subject is completely standard and has received a classic and beauti-
fully lucid treatment in the Princeton lectures of Weyl (7). To fix the notation
we consider the-irreducible representation of the group U(n) defined by the
Young pattern [A] = (A, 2 A3 2. 2 A, 2 0), 3P, A = p. The bases for
this representation are the p-th rank tensors whose-<components are is, . . ., iy,
where 1 < i; £ n. The Young symmetrizer Y, is the operator associated
with the Young tableau (see Fig. 1), and is the sum of products of the opera-

il. ig e i’\l
YS! T Iag
Dhy_gerf - Iy
Fe. 1

tors denoting permutations of the rows (denoted by P,) multiplied by the -
operators of the permutations of the.columns (denoted by Q,) with the
sign (+) for even and (—) for odd permutations. Thus, Yy, = 3, 8,Q,P.
The order 22 is fixed by definition; we could define Y;,,as 3, P, §,Q,, but
this convention would be distinct. Each of these definitions provides us with
a distinct set of basis elements which span the group algebra of the permuta-
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primarily concerned here with the theory of the symmetric group, we shall not
derive its primitive characters, but assume them known. They can be ob-
tained by a variety of methods, notably Frobenius’ determinantal method
and the graphicalymethod, on which a wide literature exists. We refer the
reader to the works of Hamermesh (4), Weyl (8), Boerner (9), and Robinson
(10), to mention only a few. We shall denote the character of the representa-
tion which belongs to a frame with rows of lengths [A] = [A;, ..., A,] as x{}},
where (v) denotes the equivalence class of the permutations which have v,
‘one-cycles, v, two-cycles, and so forth. The character of the unitary group
U(n) which belongs to the irreducible unitary representation {A] we denote
oY u), where u € U(n). We now refer back to Eq. (1.13) and restrict our
attention to those transformations for which i, £ i, S & <+ £ i, and
these we denote (i) [following Boerner (9)}. We combine into a single sum-
‘mand all terms for which the systems (i) = (jy,...,J,) differ only in a
permutation of indices, that is, all those terms for which APA - - - A has
the same value, recalling that A x AP x ... x AP is totally symmetric.
We can now abbreviate (1.13) as

Ay = 33 Ao, (RS

where Ay, = A{ Ay, --- A, iy S-S i, and o0 = Su,, - --uy,,, where
both the i, and the ji are subject to the restriction i, S--- S i, and Sisa
permutation which operates on the indices j,. The summation 3’ is carried
‘out over a set of permutations s(j) which transform (j) into the same num-
bers in a different order, each order occurring exactly once. If () contains
1 p, times, 2 pg times, . . ., 7 s, times, then there are p!(1!2!-. -»! different
orderings, with 3 p, = p, 0 S p,, S p. The character of the reducible repre-
sentation which is formed by the Kronecker product #ff{ is the sum of diagonal

elements
224 =2, T 115

where the summation on the right is taken over all permutations, each
ordering being given (u,!- - - u,!) times. We can also drop the restriction
ji S---5 j, on the indices (j). No summand of 3, is changed when we
replace (f) by the same numbers in any other order. Replacing the summands
by the sums over all orders, we get each term p!/u,! - - - u,! times, so that we
must divide by this number. The character, then, is given by

%ZZI"{%) =22 i (1.16)

LI &) [¢/
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that is, it is the trace of the transformation with coefficients uff{’ averaged over
the symmetric group S, .

Now let us look more closely at the individual matrix element w;, and its
Kronecker products. Because of the unitarity of u, there must exist a unitary
matrix a which diagonalizes it, that is, brings it to the form

€ 0

= g~ ua = a'ua, (L17)
0 . €

where, again because of the unitarity, the cigenvalues ¢, are equal to

exp(iw,), with w, real, determined up to a modulus 2=. We denote by o, the
trace of u, by o, the trace of ¥ = 3, upay,y, . .. ; thus '

e

=3 e m=3d.,0=F 4 (1.18)

k=1 k=1

It then follows immediately that

g:)u('}{’ = gl10%a--- ol (1.19)

if the permutation s contains », one-cycles, v; two~cycles, . . . . Now, in the
class of permutations which have the cycle structure () = (1", 2%,...,
p¥s) there are h, = p!/v; ! 1"1,12"%. . .y, 1 p's elements. Hence, the average over
Sy gives for our compound character the formula

L neot= > L (7)) 0_)
p_!zh"u11 a”_Zvllvzl---v,!(l) (2) (p > (1.20)

(O] (]

from which we must now project out the primitive characters. Now, by the
- symmetry properties of the p-fold Kronecker product u({f}, we have

Sty = s, (120

where S is a permutation matrix which operates on the upper (or lower)
indices. The matrix S, then, is a representation matrix for the element
s € S,; hence it is equivalent to a direct sum of irreducible representations
Cai(s), each of which occurs with a multiplicity /([A]), where we have labeled
the irreducible representations by their partitions [A}:

S 2 Epp X Cia(s) @ Eyary W Cian(8) D+ - -« (1.22)



