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Preface

This book is a descendant of Principles of Compiler Design by Alfred V. Aho
and Jeffrey D. Ullman. Like its ancestor, it is intended as a text for a first
course in compiler design. The emphasis is on solving problems universally
encountered in designing a language translator, regardless of the source or tar-
get machine.

Although few people are likely to build or even maintain a compiler for a
major programming language, the reader can profitably apply the ideas and
techniques discussed in this book to general software design. For example,
the string matching techniques for building lexical analyzers have also been
used in text editors, information retrieval systems, and pattern recognition
programs. Context-free grammars and syntax-directed definitions have been
used to build many little languages such as the typesetting and figure drawing
systems that produced this book. The techniques of code optimization have

been used in program verifiers and in programs that produce ‘‘structured”
programs from unstructured ones.

Use of the Book

The major topics in compiler design are covered in depth. The first chapter
introduces the basic structure of a compiler and is essential to the rest of the
book.

Chapter 2 presents a translator from infix to postfix expressions, built using
some of the basic techniques described in this book. Many of the remaining
chapters amplify the material in Chapter 2.

Chapter 3 covers lexical analysis, regular expressions, finite-state machines,
and scanner-generator tools. The material in this chapter is broadly applicable
to text-processing.

Chapter 4 covers the major parsing techniques in depth, ranging from the
recursive-descent methods that are suitable for hand implementation to the
computationally more intensive LR techniques that have been used in parser
generators.

Chapter 5 introduces the principal ideas in syntax-directed translation. This
chapter is used in the remainder of the book for both specifying and imple-
menting translations.

Chapter 6 presents the main ideas for performing static semantic checking,
Type checking and unification are discussed in detail.
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Chapter 7 discusses storage organizations used to support the run-time
environment of a program.

Chapter 8 begins with a discussion of intermediate languages and then
shows how common programming language constructs can be translated into
intermediate code.

Chapter 9 covers target code generation. Included are the basic ‘‘on-the-
fly”’ code generation methods, as well as optimal methods for generating code
for expressions. Peephole optimization and code-generator generators are also
covered.

Chapter 10 is a comprehensive treatment of code optimization. Data-flow
analysis methods are covered in detail, as well as the principal methods for
_ global optimization.

Chapter 11 discusses some pragmatic issues that arise in implementing a
compiler. Software engineering and testing are particularly important in com-
piler construction.

Chapter 12 presents case studies of compilers that have been constructed
using some of the techniques presented in this book.

Appendix A describes a simple language, a “‘subset” of Pascal, that can be
used as the basis of an implementation project.

The authors have taught both introductory and advanced courses, at the
undergraduate and graduate levels, from the material in this book at AT&T
Bell Laboratories, Columbia, Princeton, and Stanford.

An introductory compiler course might cover material from the following
sections of this book:

introduction Chapter 1 and Sections 2.1-2.5
lexical analysis 26,3.1-34
symbol tables 2.17,7.6
parsing 24,4.144
syntax-directed

translation 2.5,5.1-55
type checking 6.1-6.2
run-time organization 7.1-7.3
intermediate

code generation 8.1-8.3
code gencration 9.1-94
code optimization 10.1-10.2

Information needed for a programming project like the one in Appendix A is
introduced in Chapter 2.

A course stressing tools in compiler construction might include the discus-
sion of lexical analyzer generators in Sections 3.5, of parser generators in Sec-
tions 4.8 and 4.9, of code-generator generators in Section 9.12, and material
on techniques for compiler construction from Chapter 11.

An advanced course might stress the algorithms used in lexical analyzer
generators and parser generators discussed in Chapters 3 and 4, the material
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on type equivalence, overloading, polymorphism, and unification in Chapter
6, the material on run-time storage organization in Chapter 7, the pattern-
directed code generation methods discussed in Chapter 9, and material on
code optimization from Chapter 10.

Exercises

As before, we rate exercises with stars. Exercises without stars test under-
standing of definttions, singly starred exercises are intended for more
advanced courses, and doubly starred exercises are food for thought.
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CHAPTER 1

Introduction
to Compiling

The principles and techniques of compiler writing are so pervasive that the
ideas found in this book will be used many times in the career of a computer
scientist. Compiler writing spans programming languages, machine architec-
ture, language theory, algorithms, and software engineering. Fortunately, a
few basic compiler-writing techniques can be used to construct translators for
a wide variety of languages and machines. In this chapter, we introduce the
subject of compiling by describing the components of a compiler, the environ-

ment in which compilers do their job, and some software tools that make it
casier to build compilers.

1.1 COMPILERS

Simply stated, a compiler is a program that reads a program written in one
language - the source langnage — and translates it into an equivalent program
in another language — the target language (see Fig. 1.1). As an important part

of this translation process, the compiler reports to its user the presence of
errors in the source program.

source . target
~———»{ compiler —»
program program
error
messages

Fig. 1.1. A compiler.

At first glance, the variety of compilers may appear overwhelming. There
are thousands of source languages, ranging from traditional programming
languages such as Fortran and Pascal to specialized languages that have arisen
in virtually every area of computer application. Target languages are equally
as varied; a target language may be another programming language, or the
machine language of any computer between a microprocessor and a
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supercomputer. Compilers are sometimes classified as single-pass, multi-pass,
load-and-go, debugging, or optimizing, depending on how they have been con-
structed or on what function they arc supposed to perform. Despite this
apparent complexity, the basic tasks that any compiler must perform are
essentially the same. By understanding these tasks, we can construct com-
pilers for a wide variety of sourcc languages and target machines using the
same basic techniques.

Our knowledge about how to organize and write compilers has increased
vastly since the first compilers started to appear in the carly 1950°s. 1t is diffi-
cult to give an exact date for the first compiler becausc initially a great deal of
experimentation and implementation was done indcpendently by several
groups. Much of the carly work on compiling dealt with the translation of
arithmetic formulas into machine code.

Throughout the 1950°s, compilers were considered notoriously difficult pro-
grams to write. The first Fortran compiler, for example, took 18 staff-years
to implement (Backus et al. [1957]). Wc have since discovered systematic
techniques for handling many of the important tasks that occur during compi-
lation. Good implementation languages, programming environments, and
software tools have also been developed. With these advances, a substantial

compiler can be implemented even as a student project in a one-semester
compiler-design course.

The Analysis-Synthesis Model of Compilation

There are two parts to compilation: analysis and synthesis. The analysis part
breaks up the source program into constitucnt pieces and creates an intermedi-
ate representation of the source program. The synthesis part constructs the
desired target program f{rom the intcrmediate representation. Of the two
parts, synthesis requires the most specialized techniques. We shall consider
analysis informally in Scction 1.2 and outline the way target code is syn-
thesized in a standard compiler in Section 1.3.

During analysis, the operations implied by the source program are deter-
mined and recorded in a hierarchical structurc called a tree. Often, a special
kind of tree called a syntax tree is used, in which cach node represents an
operation and the children of a node represent the arguments of the operation.
For example, a syntax tree for an assignment statement is shown in Fig. 1.2.

) ‘/ \
position +
. - -/ \
initial *
/ \
rate 60

Fig. 1.2. Syntax tree for position:=initial +rate =60,



