EShE 2 S FREK ‘
SRRESEREFTHM

PVRIECRE HiAR S T

Compilers:
Principles, Techniques, and Tools

Alfred V. Aho
Ravi Sethi
Jeffrey D. Ullman

A RHEBEB H R

www.pptph.com.cn

EYME B be ke SR SHA RS S0kt

SRR RMSIR
(ER3ChiX)

Compilers: Principles, Techniques, and Tools

Alfred V. Aho
Ravi Sethi
Jeftrey D. Ullman

ZARB B M AT [Pearson Education i} k5 & F

FINE 2 F B i fis B2 S HORILT Bop
HERE BREIR
(R

¢ = Alfred V.Aho Ravi Sethi Jeffrey D.Ullman
TEwE % Ik

ARBBRHARAE R ST AEHEXRSBEEH 145
Hi4% 100061 TR 315@ pptph.com.cn

Rt http s //www.pptph . com.cn

EHML 01067120212 01067129211 (fEE)

A DR B ikt A PR A Wl A

AL 5 KA SR EDIR] T B R
FePIERIE R AT EH

FE.720x 980 1/16

Bl .50.75
FH1 009 TF 202 2 A% IR
EI% .1 - 4 000 2002 F 2 AJLEE 1 KA

EERAFESID ES.01 - 2001 - 4831 &
ISBN 7-115-09916-2/TP 2649

FHr163.00 T

ZHNMFPRRREE FSFULERFR BE:(010)67129223

EBegGE (cIp) Kig

GERBEAST A/ (%) ME (Aho,AV.), (F) £ (Sethi, R), (¥) &
/RE (Ullman, JD.) #. —ItF: ARMREBEE, 2002.2

W5} 2 2 RERRE BRI SHARRFHH

ISBN 7-115-09916-2

1 .4... 1.OM... @QE... Q... [L.HEFERFRBFRI—EZEK—HH—
B IV.TP314

 HARAEBE CIP iz (2001) 35 089601 5
it B 7 BR

English Reprint Edition Copyright © 2001 by PEARSON EDUCATION NCORTH ASIA LIMITED
and PEOPLE’S POSTS & TELECOMMUNICATIONS PUBLISHING HOUSE.
Compilers: Principles, Techniques, and Tools /
By Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman . // -~

Copyright © 1986 /,_":j ‘r\'! i P Q f7

All Rights Reserved. T I

Published by arrangement with Addison Wesley, Pearson Education, Inc.

This edition is anthorized for sale only in People’s Republic of China (excluding the Special
Administrative Region of Hong Kong and Macau).

EERARIGL B 01-2001-4831 5

NaRE

fE A SR RS Bk EE, AP EAFERERRERINES
VEAR R T BT R X) — 2) B _E T A B YRE S EE B AR
Flas. AP 12 E: BE-ENATHREENEEGEN, F-F45
BT =MW EREAEREEEREX N RiES, TEAEHES
M — SRR TIRME, B2 T HEERT. ENREL B
R B EAR A S TR, XEFRERZNAT IO,
FUEFAER T EERSTHEAR, NEEFLERNERTRE
BRI E RSP AN LR 5 BRABENAT BERISHEE
hiEEEE, AR ERS AR REEMEREE: BN
ERH T RAE SR UG E RN FEEM, FRER TR RS
—HAT T AR ELEITR T XRNABRFEITR ST
REAL,: FNFENFREE S IHE TR, BT SEESShnA
HMERS A, FAEERT BARRBENER, G5EERN
on-the-fly fRIBE RT3 ARIEX AR B T Peephole
AR A RS B TERRBEATER. BT X TEIERS
WOTERTER G, TF X TUMETERNMREET T B+
—EIR T EREFLINL R ges = EH— 2L hr) E; B+
“ERE-EERABR SRR — LR EFERE IR,

FHAE R ERVHENL T AR R A g R R E A BE,
B HAEHENRETFRIARSE,

th kit 5t B

2001 E, HEMEOKT (T “TR7 SRS ERSHEEFRMERSHEN
B, EZXHEHEER, LR HREREFHRSE “MHESEM, 2HES
B” FERRT, AT & AERREME, AT - KA SERANEE
. RMEERFBEANGERRE, BilaKREMBER TS THFLEN
B, —SEMARRIE, FEBEETNTYEFRBITRECTRNRERE
MIFE., SRR, EmEREBMNIETE. S50, FERES
RIEAMFSHEARMEYRIZEEARKERKEM . ERES L GRE) B8R
WEE, BTEARE. SRR, SEE/MBEM . BEERTIHEMBRE
BCEE, hnsan s 8 e, R3S EB R .

SRNERERAE 1977 EHBHIEE: ‘B8 EEM, RESIEEMPE
HWHRT.” BEEREMA WTO, FE-IHEFRIR BB, BINBLIR
P Kt A BRI NEKEEERARANA . #MR—MERREK R
B, EAN—BRBEMMERES, TEDRE TREFOHRTENBET
R. FIHESNEREH, TURAREHEOCEHERR, REFZENIEKEM
23RN, RIEBRNEEFRENES BARRKE.

HTEMP R RHNE” M, RERNESHEEMERNEE, A
ERHRH B AR IER R E X RERIE, SEIMMENHMHRAR & BT
H—E BRE SRR FHEM . BB EHE L ETBORE,
RENE ZEEREITRANEM, B IEEBEERXIEEARANEX
¥, XEHMAET, RBRTIHENREEANEFRE, SeORERER
BRI SRR KFELBREERMIENER.

HR E A E 2 E SRR G BRE SHEAMBF BN TSR MK, B
BT, RAEME (www.pptph.comen) EAMET RATE HEBESEHE D f
BREREN, BEEMPSIHEMERERBRNSRNEN LM, #HiFRE.
FERFUTAEEBFER PR LR AN RIBRARN, BIBEREBEENK
AN HOERATN T/, HEE 2 EHFR5I3RE BRI SEREHM .

NG R
2001 £ 12 A

22

il

Alfred V. Aho ! Jeffrey D. Ullman &3+ EHHFZTRA A+ RBNIEE.
Alfred V. Aho 137 AT&T JUR L = v SR BAR 58K, Jeffrey D. Ullman BL243E
EATHEKE T ENREROET. B4 1977 F, 145 7T (Principles of
Compiler Design) —33, 1986 4E Alfred V. Aho. Ravi Sethi fl Jeffrey D. Ullman &
ZANAET (Compilers: Principles, Techniques, and Tools), Xt 4iiF 8% 1% i1 JRHE
BT TRERBEF N T RERER. IHAETHEXERNRFRIEH R
B, BWHEHNBAFENETENRZPANR. B, EMNRAEIEES
BReiEREHERI. XHAHRE/IRFFEES HREM PR EGEIA R
B KB AREE. M 20 tH 30 ERFHZE S, REMEHR T — LB iR,
FRRERHERBREM, ENAEREWAAE L FERRTEIRES.

AH3t 12 &

B—ENATREBROEALH, TREXSHHKMIMOERM.

BoELAHT IR REABRRBEEREANRFER, TEEHED
B — SRR TISREE. HRFENH SR FRARE T XMAE.

B=FHR THERES. EURER. FREZPIMAMBERSTR, XF
HREARTT N T AL,

FNEFARR T FENSMHER, NEESFLERANEATRERIES
A4 AR AT LR B

BHENME TEHHSBETHEERM. A BRI T HD SR
FICIBE.) .

BAFRB TERHSEURENFERME. RO ENRBN S
ITT AT

FBLEITR T RN A ERFETT N IR AN

BENFENFERESIHe T, BB T HREE S S T8 R iE
K.

BAEERT B ABAER. B5EAR on-the-fly RISERTE, BE A
FRIERAERAVE KA i3, A FEST Peephole AL TS A B2 th 2 BT T U
R,
BETERRKBRALNESR. BT XTEERMNTEZNEDRE, EHXT
AT 2R RAIEER T 2.
B+ TERFR LML RPAIREE RN — SRS, KETE

1

P AR FENE T EASHNER.

B SR -EER AP REARR R L5 %A

MTER—AREMEE, BibAH EZER TR iR I,
MARBEEMESHERNE L. 26 12 ERNELERIEE T RIFER PR
HXASE, BELAREEHSEE. RERE. BITNFHAR. EERBFRE
k.

BENJLEHRA NS FREEM, ABERNHERNER, L -28mTx
WIEFFRBARG LN . FAEEEIRFERBREN, SESHEIHNRAR:
“HHETRMFRBARD, ETRFFGAM? 7 MAERAETRXEEZ
A, RN TER, ABERIATE K, GHTHEER: HZEES
MBI TR EE. §ELH 30~40 MIFRNE, HHENEEF 24
BT, 65ANBZE! ZEEREIBRGRERISTERX, EFEFEH. X
BHBRARER. BSHER, THERMRRNERAENEESHFS T
BB, XEEERHERRVEERME T R BN EN.

NEHR e MR B, SIBEXARENERS. RAEGZPERANT
R SRR R IR R B AR AR R 1R A

AEAE A R EN L AR A 43 R AR, Rl ftAET
ENHRGTFRMARSH,

BTAANZRRE, MR, ReeFArsE Hl EAERSHES,
BERITAFIRLE.

Ay %

LT #%
AELEARE T EHBE LR PO EE
BEBAERTENR 2S5 EARBZRIBZRSRIEEZRR

Preface

This book is a descendant of Principles of Compiler Design by Alfred V. Aho
and Jeffrey D. Ullman. Like its ancestor, it is intended as a text for a first
course in compiler design. The emphasis is on solving problems universally
encountered in designing a language translator, regardless of the source or tar-
get machine.

Although few people are likely to build or even maintain a compiler for a
major programming language, the reader can profitably apply the ideas and
techniques discussed in this book to general software design. For example,
the string matching techniques for building lexical analyzers have also been
used in text editors, information retrieval systems, and pattern recognition
programs. Context-free grammars and syntax-directed definitions have been
used to build many little languages such as the typesetting and figure drawing
systems that produced this book. The techniques of code optimization have

been used in program verifiers and in programs that produce ‘‘structured”
programs from unstructured ones.

Use of the Book

The major topics in compiler design are covered in depth. The first chapter
introduces the basic structure of a compiler and is essential to the rest of the
book.

Chapter 2 presents a translator from infix to postfix expressions, built using
some of the basic techniques described in this book. Many of the remaining
chapters amplify the material in Chapter 2.

Chapter 3 covers lexical analysis, regular expressions, finite-state machines,
and scanner-generator tools. The material in this chapter is broadly applicable
to text-processing.

Chapter 4 covers the major parsing techniques in depth, ranging from the
recursive-descent methods that are suitable for hand implementation to the
computationally more intensive LR techniques that have been used in parser
generators.

Chapter 5 introduces the principal ideas in syntax-directed translation. This
chapter is used in the remainder of the book for both specifying and imple-
menting translations.

Chapter 6 presents the main ideas for performing static semantic checking,
Type checking and unification are discussed in detail.

PREFACE

Chapter 7 discusses storage organizations used to support the run-time
environment of a program.

Chapter 8 begins with a discussion of intermediate languages and then
shows how common programming language constructs can be translated into
intermediate code.

Chapter 9 covers target code generation. Included are the basic ‘‘on-the-
fly”’ code generation methods, as well as optimal methods for generating code
for expressions. Peephole optimization and code-generator generators are also
covered.

Chapter 10 is a comprehensive treatment of code optimization. Data-flow
analysis methods are covered in detail, as well as the principal methods for
_ global optimization.

Chapter 11 discusses some pragmatic issues that arise in implementing a
compiler. Software engineering and testing are particularly important in com-
piler construction.

Chapter 12 presents case studies of compilers that have been constructed
using some of the techniques presented in this book.

Appendix A describes a simple language, a “‘subset” of Pascal, that can be
used as the basis of an implementation project.

The authors have taught both introductory and advanced courses, at the
undergraduate and graduate levels, from the material in this book at AT&T
Bell Laboratories, Columbia, Princeton, and Stanford.

An introductory compiler course might cover material from the following
sections of this book:

introduction Chapter 1 and Sections 2.1-2.5
lexical analysis 26,3.1-34
symbol tables 2.17,7.6
parsing 24,4.144
syntax-directed

translation 2.5,5.1-55
type checking 6.1-6.2
run-time organization 7.1-7.3
intermediate

code generation 8.1-8.3
code gencration 9.1-94
code optimization 10.1-10.2

Information needed for a programming project like the one in Appendix A is
introduced in Chapter 2.

A course stressing tools in compiler construction might include the discus-
sion of lexical analyzer generators in Sections 3.5, of parser generators in Sec-
tions 4.8 and 4.9, of code-generator generators in Section 9.12, and material
on techniques for compiler construction from Chapter 11.

An advanced course might stress the algorithms used in lexical analyzer
generators and parser generators discussed in Chapters 3 and 4, the material

PREFACE 3

on type equivalence, overloading, polymorphism, and unification in Chapter
6, the material on run-time storage organization in Chapter 7, the pattern-
directed code generation methods discussed in Chapter 9, and material on
code optimization from Chapter 10.

Exercises

As before, we rate exercises with stars. Exercises without stars test under-
standing of definttions, singly starred exercises are intended for more
advanced courses, and doubly starred exercises are food for thought.

Acknowledgments

At various stages in the writing of this book, a number of people have given
us invaluable comments on the manuscript. In this regard we owe a debt of
gratitude to Bill Appelbe, Nelson Beebe, Jon Bentley, Lois Bogess, Rodney
Farrow, Stu Feldman, Charles Fischer, Chris Fraser, Art Gittelman, Eric
Grosse, Dave Hanson, Fritz Henglein, Robert Henry, Gerard Holzmann,
Steve Johnson, Brian Kernighan, Ken Kubota, Daniel Lehmann, Dave Mac-
Queen, Dianne Maki, Alan Martin, Doug Mcllroy, Charles McLaughlin, John
Mitchell, Elliott Organick, Robert Paige, Phil Pfeiffer, Rob Pike, Kari-Jouko
Raiha, Dennis Ritchie, Sriram Sankar, Paul Stoecker, Bjarne Stroustrup, Tom
Szymanski, Kim Tracy, Peter Weinberger, Jennifer Widom, and Reinhard
Wilhelm.

This book was phototypeset by the authors using the excellent software
available on the UNIX system. The typesetting command read

pic files i tbl | eqn | troff -ms

pic is Brian Kernighan’s language fot typesetting figures, we owe Brian a
special debt of gratitude for accommodating our special and extensive figure-
drawing needs so cheerfully. tbl is Mike Lesk’s language for laying out
tables. eqn is Brian Kernighan and Lorinda Cherry’s language for typesetting
mathematics. troff is Joe Ossana’s program for formatting text for a photo-
typesetter, which in our case was a Mergenthaler Linotron 202/N. The ms
package of troff macros was written by Mike Lesk. In addition, we
managed the text using make due to Stu Feldman. Cross references within
the text-were maintained using awk created by Al Aho, Brian Kernighan, and
Peter Weinberger, and sed created by Lee McMahon.

The authors would particularly like to acknowledge Patricia Solomon for
helping prepare the manuscript for photocomposition. Her cheerfulness and
expert typing were greatly appreciated. J. D. Ullman was supported by an
Einstein Fellowship of the Israeli Academy of Arts and Sciences during part of
the time in which this book was written. Finally, the authors would like to

thank AT&T Bell Laboratories for its support during the preparation of the
manuscript. A.V.A..R.S.JLD. U

Contents

Chapter 1 Introduction to Compiling 1
1.1 ComPIlErsc.oiviiiiiiiniii e |
1.2 Analysis of the source programccocciininnna. 4
1.3 The phases of a compileroooiiiiin. 10
1.4 Cousins of the compileroo 16
1.5 The grouping of phasesc.ccovviiiiiiiiiiiiininn., 20
1.6 Compiler-construction toolsoce. 22

Bibliographic notesccocviiiiiiniiiininni 23

Chapter 2 A Simple One-Pass Compiler 25
21 OVELVIEW ..ot 25
2.2 Syntax definitioncoovvviiiiiiiiinii 26
2.3 Syntax-directed translation ... 33
2.4 Parsing ...c.ooiiviiiiiie i 40
2.5 A translator for simple expressionsociennnen 48
2.6 Lexical analysis ... 54
2.7 Incorporating a symbol table 60
2.8 Abstract stack machines 62
2.9 Putting the techniques togetherc.ooeiin 69

EXercisescoviiiiiiiiiiiiiiii 78
Bibliographic notescccccoiiiiiiiiiiinii e 81

Chapter 3 Lexical Analysis 83
3.1 The role of the lexical analyzer 84
3.2 Input bufferingovvviieviiiimnienicenrrirenr e raaee 88
3.3 Specification of tokenscociiviiiiiiiii e 92
3.4 Recognition of tokensooevviiiiiiiniiiinicniiin, 98
3.5 A language for specifying lexical analyzers 105
3.6 Finite automatac.ccoviiiiiiniiiii e 113
3.7 From a regular expression to an NFA 121
3.8 Design of a lexical analyzer generator 128
3.9 Optimization of DFA-based pattern matchers 134

EXEICISES .o.iintiiiit ettt et ce e e e e e 146
Bibliographic notesccocoviiiiiiiiciinin e 157

e

CONTENTS

Chapter 4 Syntax Analysis 159
4.1 The role of the parsercccooveviiiiiiiiiiinianins 160

4.2 Context-free grammarsc.ocovveremeieneiimnmieeiieerirananns 165

4.3 Writing a grammarcoevevineinenicnnercnienneniiienins 172

4.4 Top-dOwn Parsingcccooviviiuiniimiimiraeiraeneeniiaeian, 181

4.5 BOttom-up Parsingc..ccceoemeeviiniisraaiieiiiecnnsisieoiiens 195

4.6 Operator-precedence parsingc.ccoeeveeeiininniniieiiens 203

4.7 LR Parserscoiiiiiiiiiii i e 215

4.8 Using ambiguous grammarscccoevneecinrinenieanines 247

4.9 Parser Seneratorso.ccoeeieiimniieneirnraentenrecaraneenians 257
EXErCISEs ..oouieiiiiiit e 267
Bibliographic notescooiiiiiiiiiiiiiiii e 277

Chapter 5§ Syntax-Directed Translation 279
5.1 Syntax-directed definitionsoooci 280

5.2 Construction of Syntax treesoocveeeiiicnicniiicnieniniens 287

5.3 Bottom-up evaluation of S-attributed definitions 293

5.4 L-attributed definitions ... 296

5.5 Top-down translationc.coovevvviveiniiaiinniinncn. 302

5.6 Bottom-up evaluation of inherited attributes 308

5.7 Recursive evaluatorsccoeviviiiiiiimiiniiiineen, 316

5.8 Space for attribute values at compile time 320

5.9 Assigning space at compiler-construction time 323

5.10 Analysis of syntax-directed definitionsooiaie 329
EXErCISESoovoririiiiiiieneeiciiiiiiie e, e 336
Bibliographic notesccovviiiiniiiiiin e 340

Chapter 6 Type Checking 343
6.1 Type SYSIEMSc.ooiiiiininiiiiniiiiiaiarerree e et 344

6.2 Specification of a simple type checkerc..c.oeiin. 348

6.3 Equivalence of type expressionsccovveveieeinnen. 352

6.4 Type CONVErSIONS ...o..vuvininieiiiiiiiiiiiiiriieieeinr e 359

6.5 Overloading of functions and operators 361

6.6 Polymorphic functionscooiiiiiiiiiiiiiiin 364

6.7 An algorithm for unification ... 376
EXEICISes ...oooiiiiiiiiiiniiiiii e e 381
Bibliographic notesooiiiiiiii 386

Chapter 7 Run-Time Environments 389
7.1 Source language iSSUEScoereeiiiiiniiiiiiiiiiis 389

7.2 Storage Organizationcccceceirieiieiininirieiiciineineins 396

7.3 Storage-allocation strategiesccoeeviiiieiiiiiiiinnine. 401

7.4 Access to nonlocal names

CONTENTS . 3

7.5 Parameter PasSiNgovvivrevtrnniiiinsiinineineennenrnenennnnns, 424
7.6 Symbol tables ... 429
7.7 Language facilities for dynamic storage allocation 440
7.8 Dynamic storage allocation techniques 442
7.9 Storage allocation in Fortrancocevviiniiinnennan.. 446
EXEICISES ..ouiveiinininii e 455
Bibliographic notesc..oocciiiiiin 461
Chapter 8 Intermediate Code Generation 463
8.1 Intermediate languagescccoeoiiiiiiiiiiiiniinenn. 464
8.2 Declarationscocoviiieiiiiiiiiiie i 473
8.3 Assignment Statementscooeiiiiiiniiiainiiiiennn.. 478
8.4 Boolean expressionsccceoiiiiiiiiiiiiii i, 488
8.5 Case Statementsccccoviiieirrieiiiiieriireieiainenas 497
8.6 Backpatchingc.coooeiiiiiiiiiiiiiiiie e 500
8.7 Procedure callscoooveiiiiiiiiiiii e, 506
EXEICISES ...ooeiiniiiiiiiiii e e 508
Bibliographic notesccccooveeeiieiiieiiieniiieiieia., 511
Chapter 9 Code Generation 513
9.1 Issues in the design of a code generator 514
9.2 The target machinecooiiviiiiiiiiiiiciii e, 519
9.3 Run-time storage management et 522
9.4 Basic blocks and flow graphs ... 528
9.5 Next-use informationocoiiiiiiiiiin 534
9.6 A simple code generatorcocoveiieiiiiiiiiiiiinionn., 535
9.7 Register allocation and assignment eeienan 541
9.8 The dag representation of basic blocks [T 546
9.9 Peephole optimizationccocoiiiiiiiiiiniiiii e 554
9.10 Generating code from dagsoooiiiiiiiiiniii 557
9.11 Dynamic programming code-generation algorithm 567
9.12 Code-generator generatorscccvveerviveninneernennnnnnnn. 572
EXErcises ..ot 580
Bibliographic notescoccviiiiiiiiiiiiiiiii 583
Chapter 10 Code Optimization 585
10.1 Introduction e e te e e et e aae e 586
10.2 The principal sources of optimization 592
10.3 Optimization of basic blocksccoiiiiiiiiiniiniens 598
10.4 Loops in flow graphscoovveriiiiininniinineiniiinns 602
10.5 Introduction to global data-flow analysis 608

10.6 lterative solution of data-flow equations

10.7 Code-improving transformationscooeveeenneee. 633
10.8 Dealing with aliases

CONTENTS

10.9 Data-flow analysis of structured flow graphs 660
10.10 Efficient data-flow algorithmscins 671
10.11 A tool for data-flow analysiscocoviemninnveeneinan. 680
10.12 Estimation of typesc.ooiiiiiiiionminrieenniiiin, 694
10.13 Symbolic debugging of optimized codeoooiiiiis 703

EXETCISES .oeiitiieiiiii it e s e 711
Bibliographic notesooiviiiiiiiiiei 718
Chapter 11 Want to Write a Compiler? 723

11.1 Planning a compilerccooooiiiiiiiiiniiiiin, 723

11.2 Approaches to compiler development 725

11.3 The compiler-development environmentc..coocenn. 729

11.4 Testing and maintenanceococeciiiiiiiniinnen, 731

Chapter 12 A Look at Some Compilers 733

12.1 EQN, a preprocessor for typesetting mathematics 733

12.2 Compilers for Pascal ... 734

12.3 The C compilers ...c.coovvvvriiiiniiieniiiiii s 73S

12.4 The Fortran H compilersco.ooiiiiiiiiiian. 737

12.5 The Bliss/11 compilercooiiiviiiiiiiii 740

12.6 Modula-2 optimizing compiler ... 742

Appendix A Compiler Project 745

ALl INtroduction ...ooiivrinnieiiiiiriie e 745

A2 A Pascal SUDSEt ..ottt 745

A.3 Program StrucCtUreoccooeiiriinennienniencneieniiee 745

A .4 Lexical CONVERIONSovinirenrriieiiniiiiiitieatineireennnens 748

A.5 Suggested eXercisesoecieiiiiieiiiiiiiiiini 749

A .6 Evolution of the interpreterccoovveiiiveiiainnenenenns 750

A7 EXEENSIONS ...ooviieiiitiiieenreri it ineieirneeneaneaaeanass 751

Bibliography 752
Index ’ 780

CHAPTER 1

Introduction
to Compiling

The principles and techniques of compiler writing are so pervasive that the
ideas found in this book will be used many times in the career of a computer
scientist. Compiler writing spans programming languages, machine architec-
ture, language theory, algorithms, and software engineering. Fortunately, a
few basic compiler-writing techniques can be used to construct translators for
a wide variety of languages and machines. In this chapter, we introduce the
subject of compiling by describing the components of a compiler, the environ-

ment in which compilers do their job, and some software tools that make it
casier to build compilers.

1.1 COMPILERS

Simply stated, a compiler is a program that reads a program written in one
language - the source langnage — and translates it into an equivalent program
in another language — the target language (see Fig. 1.1). As an important part

of this translation process, the compiler reports to its user the presence of
errors in the source program.

source . target
~———»{ compiler —»
program program
error
messages

Fig. 1.1. A compiler.

At first glance, the variety of compilers may appear overwhelming. There
are thousands of source languages, ranging from traditional programming
languages such as Fortran and Pascal to specialized languages that have arisen
in virtually every area of computer application. Target languages are equally
as varied; a target language may be another programming language, or the
machine language of any computer between a microprocessor and a

2 INTRODUCTION TO COMPILING SEC. 1.1

supercomputer. Compilers are sometimes classified as single-pass, multi-pass,
load-and-go, debugging, or optimizing, depending on how they have been con-
structed or on what function they arc supposed to perform. Despite this
apparent complexity, the basic tasks that any compiler must perform are
essentially the same. By understanding these tasks, we can construct com-
pilers for a wide variety of sourcc languages and target machines using the
same basic techniques.

Our knowledge about how to organize and write compilers has increased
vastly since the first compilers started to appear in the carly 1950°s. 1t is diffi-
cult to give an exact date for the first compiler becausc initially a great deal of
experimentation and implementation was done indcpendently by several
groups. Much of the carly work on compiling dealt with the translation of
arithmetic formulas into machine code.

Throughout the 1950°s, compilers were considered notoriously difficult pro-
grams to write. The first Fortran compiler, for example, took 18 staff-years
to implement (Backus et al. [1957]). Wc have since discovered systematic
techniques for handling many of the important tasks that occur during compi-
lation. Good implementation languages, programming environments, and
software tools have also been developed. With these advances, a substantial

compiler can be implemented even as a student project in a one-semester
compiler-design course.

The Analysis-Synthesis Model of Compilation

There are two parts to compilation: analysis and synthesis. The analysis part
breaks up the source program into constitucnt pieces and creates an intermedi-
ate representation of the source program. The synthesis part constructs the
desired target program f{rom the intcrmediate representation. Of the two
parts, synthesis requires the most specialized techniques. We shall consider
analysis informally in Scction 1.2 and outline the way target code is syn-
thesized in a standard compiler in Section 1.3.

During analysis, the operations implied by the source program are deter-
mined and recorded in a hierarchical structurc called a tree. Often, a special
kind of tree called a syntax tree is used, in which cach node represents an
operation and the children of a node represent the arguments of the operation.
For example, a syntax tree for an assignment statement is shown in Fig. 1.2.

) ‘/ \
position +
. - -/ \
initial *
/ \
rate 60

Fig. 1.2. Syntax tree for position:=initial +rate =60,

