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INTRODUCTION

§ 1. The concept of heat, like all other physical concepts,
originates in a sense-perception, but it acquires its
physical significance only on the basis of a complete
separation of the events in the sense-organs from the
external events which excite the sensation. So heat,
regarded physically, has no more to do with the sense
of hotness than colour, in the physical sense, has to do
with the perception of colour.

Tke external events that excite our thermal sense are
manifold in their variety. They may have their seat
either in material bodies with which we come into con-
tact, or they may consist of electromagnetic waves which
impinge on our organs of sense. According as the case
muy be, then, we speak of the heat in bodies or of radiant
heat. These two types are quite different and are in
general independent of each other. For example, very
intense radiant heat can propagate itself through very cold
air without heating the air to the slightest degree. We
shall treat these two kinds of heat in succession.

As a starting point we here, as in the case of electricity,
again choose the only trustworthy foundation on which
we can build a new structure, namely, the Principle of the
Conservation of Energy. 'This is usually called the First
Law of Thermodynamics in the theory of heat. This
principle forms the link between heat theory and mechanics
and so serves as a basis for what is called Thermodynamics.

§ 2. But the Principle of the Conservation of Energy
does not in itself suffice for building up a complete
theory of heat. Thisis rendered possible only by adducing
another principle, the Second Law of Thermodynamics,
the content of which depends on & special peculiarity of
thermal processes which distinguishes them in a character-
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2 THEORY OF HEAT

istic way from mechanical and electromagnetic processes,
and which, therefore, places the theory of heat in a special
position as compared with other physical theories. That ig
also the reason why the treatment of the theory of heat
forms the concluding volume of the present work.

For, let us imagine any (not too small) physical con-
figuration, that is, any bodies in any electromagnetic field,
which is completely cut off from its surroundings, so that
the energy of the configuration remains constant (I, § 120).
Within this configuration certain events will then occur
the course of which is unigquely determined if we start out
from a definite initial state. The following phenomenon
then manifests itself. So long as only the laws of mechanics
and electrodynamics are assumed to hold, the events will
never come to an end and will retain their character for
all time. Indeed, it may be proved that a state which
has once existed can in the course of time occur any
number of times again, if not in absolutely exactly the
same way, at least to any desired degree of approximation
(cf. § 131 below). But as soon as heat—mno matter
whether it be heat contained in bodies or radiant heat—
enters into the question in any way the sequence of events
finally, even if only asymptotically, approaches a definite
end, in that the configuration tends to a state in which
every mechanical or thermal change has ceased in the
macroscopic sense (§ 115); this state is therefore called
the state of thermal equilibrium. Hence all occurrences
in which heat plays a part are in a certain sense uni-
directional, in contrast with mechanical and electro-
magnetic events, which can equally well take place in the
reverse direction, since for them the sign of the time factor
is of no consequence. The essential feature of the second
law of thermodynamics is that it furnishes a numerical
criterion for the direction of the changes that occur in
physical nature (§ 47).

In the first two parts of this book we shall deal with the
heat in bodies, and afterwards, from the third part onwards,
also with radiant heat.
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CHAPTER I
TEMPERATURE. MOLAR WEIGHT

§ 3. The first requirement of a theory of heat consists in
defining in numerical terms the thermal state of a body
concerning which our sensation when touching the body
gives us only very imperfect information. To accomplish
this we may make use of the experience that every body,
if kept at constant pressure (say atmospheric pressure),
changes its volume when heated, and so we can define the
thermal state of a body by the amount of its volume at a
particular instant. Instead of this, however, we may,
to define its thermal state, also adduce any other property
of the body which depends on the thermal state, for
example, its thermo-electric e.m.f. or its galvanic resistance.

To be able to compare the thermal states of two different
bodies numerically we require a further law derived from
experience, which represents a special case of the general
principle discussed in § 2 and which runs as follows : if two
or more bodies (at rest) exert a thermal action on each
other then, in contradistinction to mutual mechanical or
electromagnetic actions, a state of thermal equilibrium
always establishes itself, in which all change ceases.
Using an expression which has been borrowed from
mechanics, we then say that the bodies are in thermal
equilibrium.

From this there immediately follows the important
theorem : if a body A4 is in thermal equilibrium with two
other bodies B and C, then B and C are themselves also
in thermal equilibrium with each other. For if we make

the bodies 4, B and C form a connected ring so that each
5



6 THEORY OF HEAT CHAY.

of the three bodies makes contact with the other two,
then, by our assumption, thermal equilibrium also exists
at the contact of (AB) as well as at that of (A0), and
consequently also at the points of contact of (BC). For
otherwise no general thermal equilibrium would be possible
at all and this would contradict the principle above laid
down.

The fact that this theorem is by no means obvious can
be recognized particularly clearly if we apply it to the
question of electrical equilibrinm, for which it does not
hold. For if we bring a copper rod which is in electrical
equilibrinm with dilute sulphuric acid into contact with a
zing rod which is in electrical equilibrium with the same
sulphuric acid, equilibrium does not exist at the point of
contact, but rather electricity flows from the copper to
the zine. '

§ 4. It is because the above law holds for heat that we
are able to compare the thermal states of any two bodies
B and C with each other without bringing them into
direct contact. We need only bring each body individually
into contact with the arbitrarily chosen body A, which
serves as a measuring instrument (for example, a quantity
of mercury ending in & narrow tube), and define its thermal
state by the prevailing volume of A4, or still more
appositely by the difference between this volume and some
arbitrarily fixed “ normal volume,”’ namely, that volume
which the body 4 occupies when it is in thermal equili-
brium with melting ice. If the unit of this volume
difference is chosen so that 100 is indicated when A4 is in
thermal equilibrium with the steam of boiling water under
atmospheric pressure, then it is called the temperature 6
(in degrees Centigrade) with respect to the body A re-
garded as the thermometric substance. Two hodies at:
the same temperature are thus always in thermal equili-
brium, and conversely.

§ 5. The temperature data of two different thermo-
metric substances in general never agree except at 0° and
100°. Hence, to complete the definition of temperature
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there is no alternative but to make an expedient choice
from among all substances and to use one of them to
define the conventional temperature 6. It suggests itself
to choose a gas for this purpose, since different gases,
perticularly at low densities, exhibit a very approximate
agreement in their temperature data over 'a considerable
range of temperature when used as thermometric
substances. Even the absclute value of their expansion
is almost the same for all gases, in so far as equal volumes
when equally heated expand by the same amount, the
pressure being assumed constant. The amount of this

expansion is of the volume for the temperature

1
273-2
rise from 0° C. to 1° C. In the sequel we shall therefore
refer the temperature # to the gas thermometer, in
particular to the hydrogen thermometer.

In spite of the advantages mentioned the temperature
6 here introduced has in principle only a conventional and
provisional significance. On the basis of the second law
of thermodynamies we shall later, however, find it possible
to define the so-called absolute temperature (§ 45) to which
& real objective significance may be attached in so far as
it is quite independent of the mechanical or electrical
properties of individual bodies.

§ 6. In the following pages we shall occupy ourselves
principally with homogeneous isotropic bodies of arbitrary
shape, which have a uniform temperature and density in
their interior and are subject to a uniform pressure acting
everywhere normally to their surfaces and consequently
themselves exert the same pressure outwards [ef. II (211)].
We shall take no account of surface phenomena. The
state of such a body is determined by its chemical nature,
its mass M, its volume ¥V and its temperature 6. Thus
all other properties of the state are dependent in a definite
way on those just given; above all, the pressure p and
the energy % depend on them. We shall discuss the
former property in the present chapter and the latter in
the next.
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Since the pressure of a body clearly depends only on
its internal constitution but not on its external shapé and
its mass, it follows that, besides depending on the temper-
ature 6, the quantity p depends only on the ratio of the
mass M to the volume V, that is, on the density or
regpectively, on the inverse ratio, the volume of unit’
mass :

v

ﬂ = . . . . . . (1)
which, following accepted usage, we call the specific
volume of the body. So there exists a definite relation-

ship, characteristic of every substance :

p=f6. . . . . . (2
which is called the equation of state of the substance. The
function f is always positive for gases; for liquid and solid
substances it may also have negative values in some
circumstances.

§ 7. The equation of state assumes its simplest form in
the case of gases when their density is not too great. For
by II (285) we have :

T )
pv (o}

where @ depends only on the chemical nature of the gas
and on the temperature # (Boyle’s Law, also known on the
Continent as the Law of Boyle and Mariotte). On the
other hand, by the definition of § 4, the temperature 6 is
proportional to the difference between the volume » and
the *‘ normal volume ”’ v,, that is:

g =(w—o).P. . . . . (4)
where P depends only on the pressure p. Accordingly we
have by (3):

T
p
if ®, denotes the value which the temperature function
@ assumes for 6 = 0.
Finally we use the empirical fact also introduced above
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in § 5, that the amount of the expansion for an increase of
temperature from 0° to 1° is almost the same fraction :

i
2—731'2 = 0-00366 = . ‘. . . (6)
of the volume at 0° (Law of Gay-Lussac). Thus if we set
6 =1, then v — v, = av,, and equation (4) becomes :

1=0C7)0.P. . . . . . (7)

By eliminating p, P, v, and v from the equations (3), (4),
(5) and (7) we get the temperature function :

@=0,(1+af) . . . . . (8

where now the constant ®, depends only on the chemical
nature of the gas. If we designate it by C, the equation of

state (3) of a gas assumes the form:

p=%(1+19)=9#(1+a8). )

The numerical value of C is determined, as soon as the
specific volume v of the gas is known, for any pair of values
of 8 and p, for example, 0° and atmospheric pressure;
the values of C for different gases at the same temperature
and under the same pressure are then obviously in the same
ratio as the specific volumes », or inversely as the densities,

1
Pt We may therefore say : at the same temperature and

under the same pressure the densities of all gases bear
perfectly definite ratios to one another. A gas is therefore
often also characterized by the constant ratio of its density
to the density of a normal gas at the same temperature
and predsure (specific density with respect to air or
hydrogen). Thus if we denote the quantities referred to
hydrogen, for example, by means of a suffix H, the specific
density of a gas with respect to hydrogen is :

1.y _Ca o (10)

v vn C

The following are the actual specific densities of various
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gases with respect to hydrogen : oxygen 16, nitrogen 14,
air 14-4, water-vapour 9, ammonia 8-5, hydrogen peroxide
17.

§ 8. The equation of state (2) of a substance allows all
questions concerning the behaviour of the substance with
regard to arbitrary changes of temperature, volume and
pressure to be answered completely. Attention must be
paid to the way in which the quantities are chosen as
independent and dependent variables. If, firsf, the
pressure p is kept constant the changes are called isobaric
or isopiestic. The term °* volume coefficient of ex-
pansion ” is then given to the ratio of the increase of
volume for an increase of 1° to the volume at 0°, that is,
to the quantity K”flp—,~z'?. For a gas we have by the

L)
equation of state (9) that'

CM CM
V9+1 - Vﬂ _‘Z’)"L d Vo —“;‘,

so that the “ volume coefficient of expansion’ for all
gases is equal to «. If, in the second place, the volume is
kept constant we speak of isochoric or isosteric changes.
The pressure coefficient of expansion is then the ratio of
the increase of pressure for a temperature increase of 1°

to the pressure at 0°, that is, the quantity P "*11) Pe,

For a gas we have by the equation of state (9) that
Posy — Po = %‘5 and py = S, thus the pressure coefficient

of expansion for all gases likewise becomes equal to «.
If, thirdly, the temperature is kept constant, the changes
are called isothermal and the name “ isothermal coefficient
of elasticity ” is given to the ratio of an infinitely small
increase of the pressure to the resulting contraction per
unit volume; thus it is the quantity :

- ()

V
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For a gas we have, by the equation of state (9) :

=
and hence the coefficient of elasticity of the gas is g( 14 of),

that is, it is equal to the pressure p. The value of the
reciprocal of the coefficient of elasticity is called the
* coefficient of compressibility.”

The three coefficients which characterize the behaviour
of a substance in isobaric, isochoric and isothermal changes
are not independent of one another, but are connected in
the case of any arbitrary substance by a fixed relation-
ship. For by differentiating the equation of state we get
generally v

ap =(Z) a0 + @%’)n.dv

If we now set dp = 0, we obtain the relation which holds
for an isobaric change between the differcntials d8 and
dv; expressed in corresponding notation this relation is :
(e
ov cd
x5) = — wm—— . . . . (1)
(89 ] ( op\
\ai)/ 9

Accordingly, for every state of a body it is possible to
caloulate one of the three quantities, volume coefficient of
expansion, pressure coefficient of expansion and coefficient
of compressibility from the other two. . ,

§ 9. Gas Mixtures. If different but arbitrarily great
quantities of one and the same gas at the same temperature
and pressure which are initially separated by partitions
are suddenly brought into contact with one another by the
removal of the partitions, the volume of the total system
obviouslyremainsequal to the sum of the separate volumes.
Further, if the gases brought into contact are different in
character, experiment shows that in this case too, provided
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the temperature is kept constant and uniform and the
pressure is kept uniform, the total volume remains
permanently equal to the sum of the originally separate
volumes, although at the same time a slow process of
mixing, diffusion, takes place which is ended only when
the composition of the mixture in every part of the space
occupied by the gases is the same, that is, when the
mixture has become physically homogeneous.

We may regard the resulting mixture as constituted in
one or other of two ways. Either we may assume that in
the process of mixing each individual gas divides up
into an enormously large number of small parts, each of
which, however, retains its volume and its pressure, and
that these small parts of the different gases mix together
during diffusion without penetrating into one another.
Then each individual gas would, after the completion of
the diffusion process, still retain its old volume (partial
volume) and all the individual gases would have the same
common pressure. Or else—and this is the view which,
as we shall later find (§ 12), can alone be justified—we
may assume that the individual gases also change in the
smallest parts of their volumes and inter-penetrate one
another, so that when diffusion is completed each in-
dividual gas, so far as one may.still speak of such, occupies
the whole volume of the mixture and fills it uniformly
densely. Then, corresponding to the resulting dilution,
the pressure of the individual gas has sunk to a smaller
value, that of its partial pressure.

If we denote the individual gases by numerical suffixes,
while the volume V, the temperature § and the pressure
p of the mixture are written without a suffix, the partial
volumes of the individual gases in the mixture are (if we
adopt the first view), by (9) :

_ o,
p

(1 +af), 7, = 222221

vV, - 7

where :

+af). . (12)

Vi+Vya+ ...=V . . . (13)
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and the partial pressures (if wo take the second view) are :
01 1 02M o

Py = (1 + «0), Pa=— (1+a8). . . (14)
By addition we ha.ve
Vv, v
Pr+Pet ... = VP+V2'p+...=p. (15)

which is Dalton’s Law. It states that in a mixture of
gases the pressure is equal to the sum of the partial
pressures of all the individual component gases. We
further see that :

p1:p2: P =01M1:02M2: e . = V1:V2: - e (16)

That is, the partial pressures, on the second view, are in
the ratio of the partial volumes on the first view.

The composition of a gag-mixture is defined either by
the ratios of the masses M,, My, . . . or by the ratios
[which, by (16), are constant] of the partial pressures or,
respectively, by the partial volumes of the individual
components. Accordingly we speak of either percentages
by weight or percentages by volume. For example,
atmospheric air contains about 23-1% of oxygen and
76:9% of nitrogen by weight but 20-99% of oxygen and
79-1%, of nitrogen by volume.

The equation of state of a gas mixture is, by (12) and
(13):

_OM, +CoM, +

¥ o (14al) . . (17)
or:
=01M1+031}12+ L _A_g(lﬂe)

Thus it corresponds perfectly with the equation of state

(9) of a simple gas whose characteristic constant is :

O\M, +CeMy+ . .. (18)
-M 1+ My +

Hence an mvesmgatlon of the equation of state can never

decide whether a gas is chemically simple or whether it is

formed of a mixture of different simple gases.

C =
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§ 10. The equation of state (9) holds for all gases and
vapours if their densities are sufficiently low. But if
their densities exceed a certain order of magnitude.certain
deviations always occur and the equation of state must
then be given a more general form. In the course of time
a whole series of different equations of state has been
given which fulfil their purpose more or less well. The
first and simplest of them is due to van der Waals; it ig
of particular interest because it also applies to the liquid
state. Van der Waals’ equation runs :

(1 +
e
where @ and b are other constants which depend on the
nature of the substance. For great values of v the
equation reduces to (9), as it should do.

The functional dependence of the pressure p on the
volume » and the temperature § may be conveniently
depicted by drawing * isothermal” curves; for any
arbitrary constant temperature 6 two associated values of
v and p are plotted as abscissa and ordinate of a point in
a plane. The complete family of all isothermals then
gives a complete picture of the equation of state. By the
equation of state (9) all isothermals are clearly rectangular -
hyperbolas which have the co-ordinate axes for their
asymptotes. For pv= const. holds for them. By van
der Waals’equation (19), on the other hand, the isothermals
assume quite different forms, whose character is indicated
in Fig. 1. In general, as can be seen from (19), there are
actually three values of v for each value of p. Hence an
isothermal will in general be intersected at three points by
a straight line parallel to the v-axis. But two of them
may be imaginary, as actually occurs for high values of
. At high temperatures (for example, 8 in the figure)
there is thus for a given pressure only a single real volume,
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represented in the figure, for example, by «, B, y, only the
smallest (x) and the greatest (y) can signify a stable state
of the substance, such as can be produced in physical
nature. For in the case of the intermediate volume (B)
the pressure along the isothermal clearly increases as
the volume increases; that is, the compressibility is
negative. Such a state is only of theoretical importance.

The point « corresponds to the liquid state; the point
y corresponds to the gaseous state at the temperature 6
and at the pressure p represented by the common ordinate

>

Fic. 1.

of «, B and y. But, again, in general only one of these
two states o and y is stable (in the figure it is the state «).
For if the gaseous substance, which, say, is enclosed in a
cylinder with a movable piston, is compressed, the temper-
ature # heing kept constant during the process, the
successivo states will be denoted in the first place by the
points to the right on the isothermal 6. As the volume
decreases the graph point moves continually further to
the left along the isothermal until it reaches a perfectly
definite point C. On further isothermal compression,
however, the point does not go beyond C; rather the
substance partially condenses, that is, it resolves into &



