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CHAPTER |

Fundamentals

1.1 Introduction

This book is an introduction to the study of numerical methods for unconstrained
optimization. In order to understand the nature of unconstrained optimization and to
gain some idea of its importance in industrial and scientific contexts, we consider four
problems. The first problem serves to distinguish constrained optimization trom
unconstrained optimization and the other three problems are intended to give some

_idea, however slight, of the many uses to which unconstrained optimizaton can be put.

Problem 1. A Manufactun‘ng Process

Suppose that in a factory a chemical is manufactured in bulk by using a given pro-
cess. The cost of manufacturing unit weight of the chemical depends upon the amount
of each constituent raw material required, and upon various parameters associated
with the manufacturing process such as temperatures and pressures at various points in
the plant. By empirical or theoretical means the cost of manufacturing unit weight of
‘the chemical is expressible as a function f of a number of parametersx,, . ... x, which
are measures of weights of raw materials, temperatures, pressures. and the like. In gen-
eral, the ranges of values of the parameters x,, . . .-, X, are dictated by engineering and
economic considerations and cannot be arbitrary; for example, the weights of raw
materials required cannot be negative. We say that constraints are imposed upon the
values of x,, . ., x,,. [t is clearly of interest to the manufacturer of the chemical to
find values of x;, . . ., x,,, within the limitations imposed by the constraints, for which
the cost fixy, . . ., x,) of manufacturing unit weight of the chemical has the smallest
possible value. He has therefore to solve the following optimization problem.

Find values x}, . . . ,x: of x,,....xp, which satisfy a given set of constraints, such
that f(x], . .., x;) < f(x,,...,x,) for all values of x,, . .., x,, which satisfy the con-
straints; that is, minimize f subject to the given set of constraints.

. The function f to be minimized is called the objective function. Typical constraints
are of the form o

g <x;<b; G=1,....n) (1.1.1)

where the @; and the b, are given real numbers.

More generally, a problem in constrained optimization is of the following form.
Problem 1°

Minimize

flxg, ..., x,) {1.1.2a)

Subject to :

Gilxe, .. 1x) =0 (i=1,....0) (1.1.2b)

Yixy, ... x)) S0 (G=1,....m) (1.1.2¢)
(x;,....%x,) C D C R" ‘ (1.1.2d)

in which ¢; and y; are given real functions of n real variables, where I <n R" is the



set of all n-tuples of real numbers, and D is a subset of R" such as the subset defined
by (1.1.1) [3

Iti 1S convenient to introduce vector notation in which x. ¢(x), and w(x) are column
vectors defined by

xy $1(x) va(x)
x = : o(x) = . wix) = ) (1.1.3a)
x, 0 | Urm(x)
of
x = xis o xa ] 00 = (000 00]T
WO = [Wx). . (0] (1.1.3b)
: lt‘is also convenient to introduce vector inequalities. Let
a'= lay. ... . a,,]"‘ = [by,....b,]"
Then we write a = b if md only ifa; 2 D; (i = 1,.. . n). By using the vector notation

we may express the general constrained optimization problem as tollows.
Problem 1

Minimize v
fix) (1.1.4a)
- Subject to A
o(x) =0 (1.1.4b)
w(x) <0 (1.1.4¢)
x€DCR" (1.1.44d)

O

The constraints (1.1.2b) or (1.1.4b) are equality constréints. while the constraints
(1.1.2c) or (1.1 .4c) are inequality constiaints, and (1.1.2d) or (1.1.4d) are ser con-
straints. Any point x which satisfies (1.1.2b),(I.1.2¢). and (l 1.2d) or (1.1.4b).

(1.1.4c), and (1.1.44d} is called a feasible point.
~ The problem (1.1.2) or (1.1.4) is usually referred to as the gererai nonlinear pro-
gramming problem. An example is as follows.
Minimize
- [25 - (XJ _ 5)1 . (xz B 5)2]1/2
' Subject to
5X2 - 4X1 < 0
5%, +dx, —40 <0
x; 20, x,=20

This problem is trivial in that it can be solved by noticing that geomemcally the sur-
face

(x1 = 5P 4+ (x5 +y? = 25

isa sphere with centre (5.5, Q) and radius 5 and that the surfaces
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5x2—;’-lx, =0
S5x,+4x, —40 = 0

are planes parallel to the y-axis which intersect the surface of the sphere and each
othier at the points (5, 4,+/24) and (5, 4, —+/24). Hence the minimum value of the
objectave functlon which satisfies the given constraints is —+/24 and this occurs at
xi=5x;=4.

The nonlinear programming problems which are encountered in industrial, econ-
omic, administrative and scientific contexts are seldom as trivial as the preceding
problem, and cannot usually be solved analyticaily or geometrically. A number of
numerical methods exist, however, for solving nonlinear programming probiems but a
satisfactory account of them is beyond the scope of this book.

" Problem 2: Fitting Data

Suppose that some variable y is thought to depend upon a variable ¢ through a
formula of the form

v = Y(x) ' (1.1.5)

where Y :R"' x R" > R! is a known function of ¢ and of a vector x of n parameters.
(To denote that fis a reai-valued function of n real variables x,. . . . , x, we write

f:R" > R', and to denote that ¢ is a vector-valued function with / components. of the
" nreal variables x,, . .. , x,, we write ¢ :R" > R!, If F is a vector-valued function with n
real components, of both a vectot with [ real components and a vector with m real
components, we write F:R! x R™ = R™) This situation arises frequently when a
physically observable quantity y is predicted on theoretical grounds to depend upon a
variable ¢ in a certain way, but the theory, being incomplete, gives only the functional
form of the dependence, which contains a number of parameters, the values of which
are unknown. For example, if the length y of a rod of copper is regarded as a function
of its temperature 7, then a satisfactory f_‘ormula for v is

y = Y(t;x) = yo(l + x,t + x,1%) (1.1.6)

where y,, which is supposed to be known, is the length of the rod when ¢ = 0 and
Xy, X,, are parameters which are supposed to be unknown. [f a number of measure-
ments of y were made corresponding to an equal number of known values of ¢ then
the formula (1.1.6) could be *fitted’ to the experimental data consisting of the values
of y and the corresponding values of 1, and the values of x; and x, which ensuie the
‘best fit’ to the data could be obtained.

In the general case corresponding to (1.1.5) suppose that for m values ry. . . ., Ly of
t, measurements ¥,, . . . . ¥, of v are made. In practice, even if the formula (1.1.5)
exactly represents the physical situation, the measured values of y are usually subject
to experimental errors, so that a value x* of x such that ¥(¢;; x*)is exactly equal to
the measured value y; of y for all valuesof i (f = 1, . . ., m)is unlikely to exist. 11,
however, we take m = n and let /:R™ = R! be defined by

fx) = 3 Vs -pl? (xERY (1.1.7)
=1

then we should expect to be able to *fit’ (1.1.5) to the experimental data y; (i=
1,...,m)by minimizing the objective function f. For obvious reasons, a value x" of x
obtamed by minimizing /" defined by (1.1.7) is said to give a least squares fit 1o the
experimental data. The gencral nonlinear least squares problem is as follows.

3



Problem 2.
Minimize
f(x)
Subjegt to
xER"
where /' R™ > RV is defined by (1.1.7) O

Problem 2 is a special case of the general unconstrained optimization problem,
which has the form '

Minimize

f1x) (l.i 8a)
Subject to |
x €R" -~ (1.1.8b)

where /:R" > R! is a given objective function. [

The least squares problem corresponding to(1.1.6} is linear because Y is a linear
function of x, and x,. In many least squares problems of practical interest Y is not
lincar in x and the corresponding least squares problem cannot usually be solved
analytically . A large number of numerical methods for solving such problems exist,
~ however. and some of these are described in Chapter 7.

Problem 3: Sclving Differential Equations

Many applications of mathematics 1o physical problems result in the need to solve
ditferential or integral equations. The following mathematical problem 1s typical.
Problem 3 ‘

Solve the boundary value problem

FlieovoyWo oo ¥y = o : (1.1.92)
where F: {a. b} x R x .. . x R! > RVisa given function and
' ' dk
vy = Ef—}’ vy (k=1..... r)

subject to a given set of r boundarv conditions chosen from
vi@g) = A yb)y =B (1.1.9b)
By = 4, by = B, (k=1t... .. » O (1.1.9¢)
Suppose that ¢,,: [a. b} €R' > R (k =.1,2. .. )are given functions which are r

times continuously differentiable on {a, b]. It the ¢, are suitable we could attempt 10
find a soiution Y(£; x™) of the boundary value problem (1.1.9) by defining ¥(¢: x) by
n

YUx) = Y xu@ilt) (@<t <b) (1:1.10)
k=1 .

for some integer 7 2 | in such a way that Y(z: x) satisfies the given set of r boundary
conditions selected from (1.1.9b) and (1.1.9¢) for all values of x. and then determining
X" by requiring that

oo ve. x™. . — Y{(t:2
(r.Y2.x7) ar (r:x7))



be in some sense as close as possible to zero throughout [a, b]. For example, we could
choosea =1, <t <...<t,=b(s>n)and define f:R" - R! by

s r 2 7 .
Jix) = ), [F (gi, Y(ti;x).ad—t Yt x). ... "adt—’ Y(t;; x))} (1.1.11)

i=1

Then x* € R™ could be determined by minimizing f without constraints since it is sup-
posed that we have chosen the ¢y, so that the r boundary conditions are satisfied for all
values of x. ’

If the boundary value problem (i.1.9) has a solution and if the ¢, form a complete
set it is reasonable to suppose that as # is increased, Y(¢; x) becomes in some sense
closer to the solution. Kowalik and Osborne (1968) mention a specific problem of this
sort. By using this approach, integral equations and partial differential equations may
be solved in principle.

Problem 4 The Calculus of Variations

Let u:la, b} CR' = R' be continuously differentiable on [a. b} and let F: {a, b} x
R' x R' - R be such that F(¢.-u(t), u""(¢)) is a continuous function of 7 on [a, b}.
Let ‘

i) = [ P, i) dr (1.1.12)

and let S be the set of functions u which are continuously differentiable on [a, b] and
for which u(a) = A. u(b) = B. where A and B are given. Then the solution of the fol-
lowing problem is of great importance in Physics and in Engineering.
Problem 4
Find »" € S such that l(u") < I(u) (1 € S), where I is defined by (1.1 A2y O
Problem 4 is the basic problem of variational calculus. It can be shown that the
function u satisfies a certain differential equation subject to the boundary conditions
u(a) = A.u(b) = B. but in general the differential equation is nonlinear. It is therefore
of interest to consider a more direct approach to the solution of Problem 4.
Letu,..... u,, be n continuously differentiable functions on {a, ] and suppose
that w(@) = u;(b) =0 (i =1, .. ., n). Suppose also that u,, ... . u, are linearly
independent so that

n

Y auy(t) = 0 @<t<b)
k=1 :

implies thata, =0 (k =1,...,n). Let

S (A—B)  (aB— Ab)
¢t x) 'E. xpli(1) + (a_b)r+ @b)

@<1<b) (1.1.13)

Then

$la;x) = A4 ¢b;x) = B
Let

fix) = 1(g(r;x))

lf‘we can obtain x* such that Ax*) < f{(x) (x € R™) then we have an approximation to
u given by



ualt) = ¢lx")
As nincreases it is rC.lS()ndth to suppose that u, is in some sense an increasingly good
approximation to u”.

If /(1) cannot be evaluated analytically then it may be estimated by using a numeri-
cal quadrature formula so that Problem 4 may still be solved in principle by minimiz-
ing /. Burley (1974) has given several elementary examples of pioblems similar to
Problems 3 and 4.

The three applications of unconstrained optimization considered in this section
illustrate only a small part of the whole field of applications, but it is hoped that the
reader will gain from studying them a little insight into the nature of unconstrained
optimization and its great importance in industrial and scientific contexts. A descrip-
tion of some applications of nonlinear programming to a wide diversity of problems
has been given by Bracken and McCormick (1968). Scc also Dixon (1976).

In all of the problems considered in this section, no efficient general analytical
methods for minimizing the objective functions exist. A great deal of effort has, how-
ever, been expended since 1960 in constructing efficient numerical methods for solv-
ing unconstrained and constrained minimization problems. Many of these methods are
easy to implement on a computer using a high level language such as FORTRAN or
ALGOL and much can be said about their behaviour without resorting to advanced
mathematical analysis. Certain numerical methods for optimization have proved
repeatedly to be not only robust but also efficient; that is to say, they seldom fail to
oblain a sufficiently accurate estimate of the solution of a given optimization problem
and do so with tolerably few evaluations of the objective function and of its deriva-
tives if the latter are required. This is not to say. however. that these methods are uni-
versally applicable. There is no panacea for all optimization problems.

In the subsequent chapters of this book some methods for unconstrained optimiz-
ation are described in sufficient detail to permit them to be implemented on a com-
puter. Computer programs are not given, because many have been published, and some
of these are readily available {rom sources which are given where appropriate inthe
text. The reader is. however, urged to write programs and to run them in order to gain
that insight into the methods which are described in this book which can be acquired
only from numerical experience.

1.2 Fundamental Linear Algebra

In this section some fundamental ideas from linear algebra which are used sub-
sequently are collected. and some notation is described. For greater detail than it is
possible to give here the reader should consult. for example, Hadley (1969). Noble
(1969), or Franklin (1968). It is not necessary for the reader to understand the con-
tent of this section in detail if it is required only to use the methods which are
described in subsequent chapters. but an understanding of this section is, howesver,
necessary 1o appreciate the theory which underties these methods.

By R" is meant the set of n x 1 vectors x = [xy, . . . .x,}¥ in which x; €R'
(i =1,....n)where R is the set of real numbers. if we admit the usual rules for add-
ingn x I vectors X, y € R™ and multiplying them by real numbers &, namely
x+y = [x1+y,,...,xn+yn] - {12
and
ax = [ax;....,ax,)T , (1.2.2)



then R™ together with the operations defined by (1.2.1) and (1.2.2) constitute a linear
space. We shall subsequently referto the linear space as R”. A function {|.l:R" > R!
such that

ixil > 0 (VxER"

(ixll= 0)e(x = 0)

floxlf = lalixli (VX ER";Ya<R!')
and ‘

Ix+yll < fixf+lyll  (Vx.y €R™)

is called a vector norm on R". Commonly used vector norms on R™ are the maximum
norm {.[y defined by .

lxl = max {ix;!) | (23

the raxicab norm ||l defined by

i = 3 Il 24

i=i

and the Euclidean norm || {[g defined by

n A2 |
lixtg = ( )} x.-’), (1.2.5)

\i=1

where X=Ixy... .. x, )T
It can be shown that all vector norms on R™ are equivalent in the sense that if {|.{ 4
and || llg are any two such noms then there exist a. § € (0. eo) such that

aixila < lixlig < Bixlly {(VYxER)

The linear space R" together with a vector nom {. [l on R" is calted a normed linear

space; we denote it by {f" i}
The smlarpmduct xTy of the vectors x. y € R™ is defined by

L
=) &y (1.2.6)
i=1

In the normed linear space {R™. |}.flg } we have Schwarz’ inequality. namely
IxTyl < fixiig Wvlg  (Vx.vE€R") (1.27)

with equality if an only if there exists A € R! such that y = Ax.
The vectors X. y € R” are orthogona! if and oaly if

xTy =0 (1.2.8)
and the vector X € R™ is normalized (1o unity) if and only if

xx =1 (1.29)

The set of vectors ix; C R™}i = ). . m;m < n}is an aorthonormal setif and
only if

X,«rx., =8 M=l m) (1.2.10)



where the Kronecker detta 85 is defined by

5 L =/) a ‘
o= 2.11)
Yo loG#En
The set of vectors X, CR"[i=1.. .., m.m < n}is a linearly independent set if
and only if
m ‘
Sex =0 (1.2.12)
i=1 v
implies that ¢; =0 (i = 1, . . .m). and is linearly dependent otherwise A set of vec-
tors fw; ER™Mi=1...., ni:m > ) spans or generates the linear space R" if an only if

every vector X € R™ is expressible in the form
m
x =Y oy (1.2.13)

A basis for the linear space R™ is a linearly independent set of vectors in R"™ which
spans R". The set of vectors e, €R"|i=1,...,n}where

® . '
e = [0,....0.1,0....,0] =1l...., 1) (1.2.14)
in which e; has all components equal to zero save the ith which is equal to unity,
clearly forms a basis for R" since if x = [xy. .. .. xp]” then
X = Y xg (1.2.1%)
i=1

It can be shown that every basis for R" contains exactly n vectors, and that every
set of n orthogonal vectors in R™ excluding 0 forms a basis for R™. An orthonormal
basis for R" is a set of » orthonormal vectors. For example, {e,, . . ., €,} defined by
(1.2.14) is an orthonormal basis for R". ' _

Given any basis for R", an orthonormal basis for R" may be constructed by using

the Gram-Schmidt procedure. Let {u,. .. .. u,} be a basis for R" and let v;, w;
G=1,.... n) be generated recursively from
Vi
= = 1.2.16¢
Y1 U, W) (v{vl)ilz ( d)
i v,
vV, — u;— z (Wkuk)wk W, = T 10 (l =2..... n) (12.]6b)
k=1 (viv;)

Then it is easy to show (Exercise 1.2.7) that
wiw; = 8; (j=1..... n) (1.2.17)

so that Wi, w,,}is an orthonormal basis for R™.

A set S C R" is a subspace of the linear space R” if and orly if for each pait x', x"
of vectors in S the vector ax’ + Bx” is also in S where a. § are any real numbers. As
with R". the dimensionality m of a subspace § of R" is the number of vectors in any
basis for §. Clearly m <na. let {u; ER™Mi=1..... m} be a basis for the m-dimen-
sional subspace S of R”. Then clearly an orthonormal basis for S can be constructed by
using the Gram--Schmidt procedure (1.2.16), where J runs from 2 to m.

8



Let S be a subspace of R" and let X € R™ be given. Then the set V defined by
¥V = {VER"lv=%+y ¥yES}

is calied a linear variety. It is convenient to use the notation
LV =x+S

~_In conformity with the notation used to represent column vectors. the rranspose
AT of the m x n matrix A withelementsa; (i=1,...,m;j=1,...,n)isthenxm
matrix B with elements b;; (i = 1,. .. .n:j=1,...,m)such that

by =a; (=1,....nj=1.....m)
An 1 x n matrix A is syrﬁmetric if and only if

AT = A (1.2.18)
and is skew-symmetric or anti-symmetric if and only if

AT = —A (1.2.19)

Any n x n matrix A may be expressed as the sum of a symmetric matrix Band a
skew-symmetric matrix C where

B=iA+AT) C=4Aa—-AT) (1.2.20)

If A and B are any n x n matrices, then it follows from the definitions of matrix
multiplication and transpose that '

(aB)T = BTAT (1.2.21)
We write

A= [af:,] G=1,....mj=1,...,n)
to denote that A is an m x 1 matrix with elements g;;, and we write

A = Diaglay;. - ... nn)

to denote that A is the diagonal # x n matrix with diagonal elements a;; (i = i,....n).
It is assumed that the reader is familiar with the more elementary properties of the
" determinant. Det(A). of an 1 x n matrix A, and with the elementary properties of the
inverse A~! of A. In particular, if A and B are #1 x n matrices then

Det(AT) = Det(A) (1.2.22

and

Det(AB) = Det(A) DeuB)_ (1.2.23)

Also, A is singular, so that A™! does not exist, if and only if Det(A) = 0,and if Aand B
are nonsingular then

(ABY™* = BPATY (1.2.24)
It is also assumed that the reader is familiar with the idea of partitioning of
matrices. For example, if A is an mm < matrix with elements g (7= 1....,m;
j=1,....n)and columns a; (j = ... .n) then we write

to denote the partitioning of A into columns. More generally. to denote partitioning of

f)



A into submatrices A;; (i = 1,....p<m:j=1,....4 <n)we use asimilar notation.
For example, if p = 2 and ¢ = 3 we write

Ayt A T A
A: ..-_-'r_-.._‘-_-_
Ay Ap L Ap
A real symmetric 7 x n matrix A has n orthonormal eigenvectors u; (7 =1.... . n)
~ corresponding to n real eigenvalues \; (i =1, ... . n) (which need not be distinct) so
that
Aui = ?\iu,- (izl,...,ﬂ) (1225)
and
uly, = 8; (Lj=1.....n) (1.2.26)
An 1 x n matrix B is orthogonal if and only if
BBT = BB = 1 (1.2.27)

It is easy to see that if A n an n x n real symmetric matrix then there exists an orthog-
onal matrix P suc.h that PTAP is a diagonal matrix. Indeed, P is the matrix with
columns u;,. .., u, where the u; are the normalized eigenvectors of A which satisfy
(1.2.25) and (1.2.26).

Let A be an 1 x 12 matrix and let x be an n x 1 vector: Then, irrespective of whether
A is symmetric,

n n
xTAx = Z 2 X4, X;

W
—
S~

[}
—

so that
xTAx = xTBx

where the symmetric matrix B is defined in (1.2.20). Therefore when considering
quadratic forms x"Ax we may always suppose that the corrgsponding matrix A is
symmetric. '

An 1 x n matrix A is positive definite it and only if

xTAx > 0 (WxER" x#0) ‘ (1.2.28a)
and is positive semi-definite if and only if '

xTAx > 0 (Vx € R™) (1.2.29a)
Similarly A is stegative definite if and only if

xTAXx < 0 (VXER". x#0) (1.2.28b)
and A is negative semi-definite if and only if

xTAx €0 (VXERMY) (1.2.29b) -

-Setting x = e; where e; is defined by (1.2.14),it follows immediately from

(1.2.28a) that if A is positive definite thena; >0 ( = , n). Similar results hold

when A is positive semi-definite, negative semi-deﬁnitc. dnd negdtlve definite, respect-
ively. ’
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It can be shown that if A is symmetric positive definite, then there exists a sym-
metric positive definite matrix. M such that

M? = A (1.2.30)
Furthermore, a matrix A is positive definite if and only if all of its eigenvalues are ‘
positive.

Let B be an m x n matrix. Then the rank of B, which we write r(B), is the maximum
number of linearly independent columns of B. The n x n matrix A is nonsingular if
and only if r(A) = n. Hence if r(A) = n, then Au = @ if and only if u = 0. Furthermore
if Cis an m x n real matrix with (C) =n then Cu = 0 if and only if uw =0, while if
1(C) < n, then Cu = 0 has a nonzero solution. If m < r then necessarily r(C) <n and
so Cu = § always has a nonzero solution if m < n. Finally in connection with the con-
cept of rank, we note that if A and B are any two matrices such that the product AB
exists, then

r(AR) < min {r(A}, t(B)} (1.2.31)

- Let {R”, {I.ll} be a normed linear space, and let A be any »n x n matrix. Then the
matrix norm |.|j corresponding to the vector norm |1.|| is defined by

1Al = max "[f ’l‘l" - (12.32)
which implies that

IAX) < Al (YxE€R™) (1.2.33)
and that if A and B are any n x n matrices then ,

HAB < fAJl fiB) : (1234

Note that the same symbol 1I.{] is used for a vector norm and its corresponding matrix
norm, but in practice no confusion results becanse which norm is intended is always
clear from the context in which it appears.

The matrix norms corresponding to the vector norms |L.liy, Il.ll7, and [.ljg-are given

by
n 7 : .
Al = maén{ S lay! (1.2.35)
i=1
o ) v | ‘
”A”T = lgljaén iz:l!aij! . (1236)
' /2 ,
= 2.37
HAllg lgx'aén {7\ }) , (1.2.37)
in which A is an # x #.matrix with elernents a;; (1 ] =1,...,n)and A, ..., A, are

the n real eigenvalues of the matrix A¥A, where A® is the Hermitian con]ugate matrix
of A defined by

= (A)T

A denotmg the complex conjugdte of A, so that A has elements a; {, ,' L) If
A is real symmetnc then A = A and so the eigenvalues of A¥A are u?, ..., u,z, where

It



Uy, ..., u, are the eigenvalues of A, which are all real. Hence when A is an # x 1 real
symmetric matrix then

lAle = max {lul) (1.2.38)

Finally, let ||.]| be any matrix norm. Then we have the following lemma, which is
used in Chapter 7.

Lemma 1.2.1]

If 1. A and B are n x n matrices;
2. Ais nonsingular and A7} || < a;
3B~ All<gB;
4. a8 <1,
then B is nonsingular and

(34

(1 —af)

B <
0 -

For a proof of Lemma 1.2.1 see Exercise 1.2.14. -

1.3 Fundamental Analysis

In this section we collect some results from the calculus of functions of several vari-
ables and describe some notation which is used subsequently. For more detail than it is
possible to give here the reader should consult, for example, Russeli (1970), Burkill
(1970), and Mangasarian (1969). As with Section 1.2 it is not necessary to understand
in detail the content of this section if the reader is not primarily interested in the
theery underlying the numerical methods which are descrtbed subsequently in the
text. :
It is very convenient to express many mathematical ideas connected with the theory
of optimization in a geometrical fortn. We speak of x, y € R™ as points in the linear.
space R", and we define a diszance p(x, y) between the points X, y in the normed
linear space {R", |l.||} by

p(x,y) = lIx—yli : (1.3.1)

We generalize the idea of open and closed intervals in R by means of open and
closed balls in {R™, ||.i[}.

Definition 1.3.1

The set of points x € R" such that |jx — &Il <r, where r > 0 is a given real number
and X is a given point in R" is called the closed ball B[X, r] with centre % and radius 7.
Thus ’ ’ '

Blx,r] = XERIx—~HI<r} -
The open ball B(X, r) with centre % and radius r is defined by

B(x,r) = x€R™ Ix— x| <r}
_ n

Using the idea of distance between points in the normed linear space {R", i.lI} we
can generalize the idea of convergence of a sequence {x*}in {R!, |1}, ‘

12



Definition 1.3.2
The sequence {x*} in the normed linear space {R", {I.li} converges to x* €R"if and
only if
li_Enm Ix® —x*j = 0 ‘
k » 0
Because, as we have seen in Section 1.2, all norms on R™ are equivalent, we have
(kh_',“ lix(k) - x*" = 0) “ (kli‘_I,“ “X(k) e X*"' = 0)

where |L.Il and LIl are any two vector norms on R™. Hence convergence of ™} to x”
wWith respect to any norm on R" implies convergence of x®N to x* with respect to any
other norm on R". -

In conformity with the definition of a Cauchy sequence of real numbers, we say
that the sequence {x“’)} in the normed linear space {R", |l.1} is a Cauchy sequence if
and only if given € >0, there exists an integer / such that x4 — x(k)[l < € whenever
j>1and k > I simultaneously. It can be shown that if {x*’}is 2 Cauchy sequence in
R", 1.1} then {x®} has a limit x* € R". ,

We can generalize the idea of continuity of f :R' = R*! as follows.

Definition 1.3.3

A function £:D € R" - R™ is continuous at X € D if and only if
fif(x) — f(i)ﬂ‘“’ Q
whenever
fix — %ll, >0

where .l is a norm on R™ and |l.ll, isanormon R". O
By definition 1.3.3, f:R" = R" is continuous at X ER™ if | fx) — f(%)| - 0 whenever
lIx — x|l = 0, where |l.l| is any norm on R™. '

We shall denote the first partial derivatives of f:R" > R' by 3; Ax) (i =1,...,n)
so that

3, flx) = —é—f(x) G=1,...,n) (1.3.2)
. ax,-
We denote the second partial derivatives of f by 3;9; f(x) (@, i=1,...,n)so that
3% ‘
3,3; f(x) = — =1, ..., 1.3.3
i3, 1) ax,-axjf(x) Gi=1....n) (1.3.3)

Let f:R" > R! have first partial derivatives in R™. Then the gradient vector g(x) of f
at x € R" is defined by -

gx) = [3, /), ..., 3./001". (1.34)

It is sometimes convenient to use the notation Vf(x) for the gradient vector of f at x.
Let /:R™ = R! have second partial derivatives in R". Then the Hessian matrix G(x)
of f at x is defined by

G(x) = [3;3;/(x)] (.j=1,....n) (1.3.5)
If £ has continuous second partial derivatives in R" then

9,3, fx) = 9;9; f(x) Gisi=1,...,n)
13



