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Foreword

The field of systems programming primarily grew out of the efforts of
many programmers and managers whose creative energy went into pro-
ducing practical, utilitarian systems programs needed by the rapidly grow-
ing computer industry. Programming was practiced as an art where each
programmer invented his own solutions to problems with little guidance
beyond that provided by his immediate associates. In 1968, the late
Ascher Opler, then at IBM, recognized that it was necessary to bring
programming knowledge together in a form that would bé accessible to all
systems programmers. Surveying the state of the art, he decided that
enough useful material existed to justify a significant publication effort.
On his recommendation, IBM decided to sponsor The Systems Pro-
gramming Series as a long term project tq eollect, organize, and publish
principles and techniques that would have lasting value throughout the
industry. ‘

The Series consists of an open-ended collection of text-reference
books. The contents of each book represent the individual author’s view .
of the subject area and do not necessarily reflect the views of the IBM
Corporation. Each is organized for course use but is detailed enough for
reference. Further, the Series is organized in three levels: broad introduc-’
tory matefial in the foundation volumes, more specialized material in the
software volumes, and very specialized theory in the computer science
volumes. As such, the Series meets the needs of the novice, the experi-
enced programmer, and the computer scientist.

The Editorial Board
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1

Computer
Performance Evaluation:
‘An Introduction

1.1 THE EVOLUTION OF COMPUTERS

The evolution of computers from their infancy three decades ago to their
sophistication and pervasiveness in our society has been startling; it is
certainly one of the fastest technological developments in human history.
In this introductory section, we glance at major developments in the
history of digital computers. It is customary to divide the era of compu-
ters into ‘“generations” (Denning, 1971; Rosen, 1969). The first-
generation machines (from approximately 1940 to 1950), represented by
the ENIAC, used vacuum tubes for arithmetic operations; the time per
operation ranged from 0.1 to 1.0 msec. Main-memory components con-
sisted of electrostatic tubes and delay lines. These were augmented
Sy auxiliary memory such as paper tapes, punched cards, and delay
lines.

The second-generation (1950-1964) computer systems, such as the
iEM 7040 and 7094, adopted transistor technology for logicai operations:
Their time per operation ranged from 1 to 10 microseconds. Magnetic
drums and magnetic core appeared as main memory with access time also
ranging from 1 to 10 psec. Magnetic tapes, disks, and drums became
available as auxiliary memory. The development of the first software
systems—assemblers, relocatable loaders, and FORTRAN-—made sig-
nificant impacts on the use of computers. Floating-point arithmetic,
interrupt facilities, and special-purpose 1/O equipments were developed,
and software services, such as subroutine libraries, batch monitors, and
1/0 control routines, enhanced the efficiency of digital computers.
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With the introduction of the IBM System/360 and CDC 6600, the
era of third-generation computer systems began. Integrated circuits were
used in the CPU: These achieved speeds on the order of 0.1 to 1.0 usec
per operation. Storage capacity also expanded, in both main memory and
auxiliary memory. But at least an equally 1mportant advance in the
third-generation computing systems was made in software, that is, in the
introduction of powerful and sophisticated ‘operating systéems. An operat.
ing system is a collection of computer system software that is responsible
for allocating and controlling the use of the hardware, program, and dat
resources. The operating systems were designed to affect the capability of
allowing seyeral programs (or tasks) to run simultaneously by sharing
resources. The sharing 1s, of course, motivated by the effective use of
expensive computer resources, thereby i increasing the system’s productiv-
ity and users’ satisfaction. The operating systems were also developed
to relieve users and programmers of the detailed and tedious tasks
involved with the system operation, such as converting data to the
formats required by the hardware of the various devices. An operating
system called OS/360 was designed to serve all the IBM System/360
models for a variety of applications.

In the late 1960s and 1970s, the third-generation computer systems
moved into what we may call the “late third” generation or what some
people designate as the “fourth” generation. These systéms are charac-
terized by faster machines utilizing more advanced LSI (large-scale inte-
gration) technology and semiconductor memory. The advances in storage
technology are most noteworthy in this phase of computer system evolu-
tion. Additional memory devices, including flexible media and magnetic
recording, have been developed over a broad range of accessing speeds
and costs-per-unit capacity. An optimum combination of these tech-
nologies from the viewpoint of performance-cost tradeoffs has resulted i
storage structures of many levels, collectwe!y referred to as storage
hierarchies (or memory hierarchies). A typical storage hierarchy consists.
of cache (buffer storage interposed between the processing unit and
main storage), main storage (also called the backing store), drum, disk,
and tape storage, and possibly including on-line archival mass storage.
The memory requirements of programs have often outpaced the growth
of storage capacity, placing on users the great burden of allocating storage
space within the storage hierarchy. Thus, highly automated procedures
have been devised for the allocation of storage spaces to the individual
tasks and for the transfer of pieces of the programs and data from one
level to another in the hierarchy. Progress in conventional storage de-
vices, both semiconductor and magnetic types, continues to make them
even faster and cheaper. In the future, such devices as charge-cqupled
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devices, magnetic bubbles, beam-addressed optical storage;, and holo-
graphic storage will further eplarge the list of available technologies.

Dynamic address translation, based on paging or segmentation (or
combinations thereof), came into vogue in the mid-1960s as a major
advancement in memory management. A storage hierarchy supported by
such a memory management policy has come to be known as a virtual
storage or virtual memory. The MULTICS (Multiplexed Information and

Computing Service) system jointly developed by MIT and GE, and the
~ IBM System/370 virtual-storage operating systems represent systems that
employ the virtual storage concept. The architectural concept of virtual
storage has been extended further into the notion of virtual machines,
which can accommodate simultaneously several operating systems by
dynamically sharing the resources of a single real machine. CP-67 (which
was developed for the System/360 Model 67) and its successor, VM-370,
are examples of operating systems that support multiple virtual machines.

Also in the late 1960s and early 1970s a number of multiprocessing
systems came into “existence. The wider use of multiprocessing was
spurred on by economies of scale in the production of processors, by the
flexibility to obtain the desired processing power through the addition of
processing units, and by the prospect of uninterrupted (although de-
graded) performance in the event of failure. Parallel computers, such as
the IBM 2938 array processor, the ILLIAC IV, the CDC STAR-100, and
the Texas Instruments ASC (Advanced Scientific Computer), have
evolved as alternative architecture for faster computation in specific
environments. :

Recent advances in computer architecture and hardware/software
technologies have not énly introduced a number of new computer appli-
cations, but have also impacted the ways in which information processing
rakes place. On-line teleprocessing and interactive use of a system with a
large data base is now widespread. As the emphasis in the inforn.ation
processing industry shifts from the conventional mathematical computa-
tions to information management, the data base has become increasingly
central to an overall system design.

The growth of computer applications and the effort for improved
yuman/machine interface are stimulating the development of new
peripheral devices and data entry technologies. The fast growth of infor-
mation processing and management has also led to the development of
computer-communication networks, as represented by the ARPANET
{Advanced Research Projects Agency Network) and its descendants. We
can regard networking as an extension of the resource-sharing concept
exploited in the multiprogrammed and time-shared systems: Resources of
host computers (their computing powers, data bases, and functions) at
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geographically distributed locations arc accessible to a program or user
through terrestrial, radio, and satellite links. The bursty nature of mes-
sage traffic from computers or user terminals has required new ways of
sharing or multiplexing transmission links. The combination of time-
division multiplexing with packet-switching techniques is a notable exam-
ple. In paralel with the continuing growth of large-scale general-purpose
computing systems, minicomputers and, more recently, microcomputers
(or microprocessors) have emerged, creating new applications of informa-
tion management and processing. '

1.2 THE ROLE OF PERFORMANCE EVALUATION
AND PREDICTION

The issue of performance evaluation and prediction has concerned users
throughout the history of computer evolution. In fact, as in any other
technologicel development, the issue is most acute when the technology i<
young; the persistent pursuit of products with improved cost-performance
characteristics then constantly leads to designs with untried and uncertain
features.

The need for computer performance evaluation and prediction existe
from the initial conception of a system’s architectural design to its daily
operation after installation. In the early planning phase of a new compu-
ter system product, the manufacturer usually musi make two types of
prediction. The first type is to forecast the nature of applications and the
levels of “svstem workloads” of these applications. Here the term work -
load means. informally, the amount of service requirements placed on the
system. We shall elaborate more on workload characterization in Sectior
1.4. The second type of prediction is concerned with the choice between
architectural design alternatives, based on hardware and software tech-
nologies that will be available in the development period of the planned
system. Here the criterion of selection is what we call “cost-performance
tradeoff.” The accuracy of such prediction rests to a considerable extent
on our capability of mapping the performance characteristics of the
system components into the overali system-level performance characteris-
tics. Such translation procedures are by no means straightforward or well
established.

Once the architectural decisions have been made and the system
-design -and implementation started, the scope of performance prediction
and evaluation becomes more specific. What is the best choice of machine
organization? What is the operating system to support and what are the
functidhns it should provide? The interactions among the operating system
components—algorithms for job scheduling, processor scheduling, and
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storage management—must be understood, and their effects on the per-
formance must be predicted. The techniques used for performance evalua-
“tion and prediction during the design and implemedtation phases range
from simple hand calculation to quite elaborate simulation. Comparing
the predicted performance with the actual achieved performance often
reveals major defects in the design or errors in the system programming.
It is now a widely accepted belief that the performance prediction and
evaluation process should be an integral part of the development efforts
throughout the design and implementation activities.

After a new product is developed, the computer manufacturer
must be ready to predict the performance for specific applications and -

. requirements of potential buyers. The manufacturer must propose an
optimal combination and organization of its hardware and software
products to offer the best solution to a cusfomer’s requirements. This activity
is often referred to as the configuration process. Although the performance
prediction and-evaluation tools and methodologies that are utilized during
the system development phase can be used for the purpose of configura-
tion, there is an additional factor required in this effort. The projected
user environment must be translated into a set of quantitative parameters
that can be used as inputs to a performance prediction model. This is
the workload characterization probiem again, but more precision is called
for in this instance.

When a product system is installed at a customer’s sxte the computer
vendor or service company must see that the system realizes its full
potential and meets the promised performance level. Such system tuning
activities were (and quite frequently ‘still are) traditionally based on
intuition and experience. The complexity and sophistication of contempor-
ary large-scale computers are such that the globaily optimum and stable
operating point can no longer be easily found by mere intuition or
trial-and-error procedures. The system tuning requires a clear under-
standing of the complex interactions among the individual system compo-
nents. A systematic procedure of performing this task is yet to be
developed and awaits our continuing research and development efforts.

1.3 PERFORMANCE MEASURES

In the previous section, we frequently used the term performance without
precisely defining it. In this section, we clarify the term so that we have a
well-understood common ground on which to develop the discussions of
the following chapters.

When we say that “the performance of this computer is great,” it
means perhaps that the quality of service delivered by the system exceceds
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our expectation. But “the measure of service quality” and *‘the extent of
expectation’ vary depending on the individuals involved, be they system
designers, installation managers, or terminal users. If we attempt to
measure the quality of computer performance in the broadest context, we
must consider such issues as user response (as well as the system re-
sponse), ease of use, reliability, user's productivity, and the like as
integral parts of the system’s performance. Such discussions, however, fall
within the realm of ‘nhonquantitative sciences that involve social and
- behavioral sciences. Despite our full awareness that performance analysts
¢annot avoid what are ultimately behavioral questions, the scope of this
text is quite limited: We discuss the computer performance only in terms
of clearly measurable quantities. This is done with the same spirit with
which wé. conventionally define, for instance, the signal-to-noise ratio
and the probability of decodmg errors as measures of performance of
Acommumcatlon systems.

There is certainly more than one choice for the measure of perfor-
manqe We tan classify performance measures into two categories: user-
oriehtéd ‘measures and system-oriented measures. The user-oriented
measures include such quantities as the turnaround time in a batch-system
environment and the response time in a real-time and/or interactive-
system environment. The turnaround time of a job is the length of time
that elapses from the submission of the job until the availability of its
pro&:essed ;esult. Similarly, in an interactive environment, the response
time of a request represents the interval that elapses from the arrival of
the request until its completion at the system. There are several variants
of the response time measure in common use, due to differing definitions
of the moment of the request arrival and the moment of completion. For
instance, we may define the arrival time as the moment when the user
pushes the RETURN key at his or her terminal; the completion time may
be the moment when the first line from the system output is typed out at the
terminal. When terms such as response time are used in making perform-
ance comparisons, they shouid be accompanied by unambiguous definitions.

In interactive systems, we sometimes use the term system reaction
time, which is the interval of time that elapses from the moment an input
arrives in the system until it receives its first time slice of service. It
measures how effective a scheduler is in dispatching service to a newly
arrived input. Turnaround time, response time, and reaction time are all
considered random variables; hence, we can talk about their distributions,
expected values, variances, and the like.* : -

*See Section 2.4.1 for the formal definitions of random variables and these
related terms.

.~ - L’
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Usually we categorize jobs or requests in several different priority
classes and assign to the individual job the priority value of its class. Many
factors may determine the assignment of a priority to a job: the job’s
urgency, its importance, and its resource-demand characteristics. We
often define and compute the turnaround time or response time sepa-
rately for different job classes.

The system-oriented (or installation-oriented) measures are typically
throughput and utilization. Throughput is defined as the average number
of jObS processed per unit time. It measures the degree of productivity
that the system can provide. If jobs arrive at a system according to some
arrival mechanism that is independent of the state of the system, through-
put is equivalent to the average arrival rate, provided that the system can
complete the jobs without creating an ever-increasing backlog. But in this
case throughput is not an adequate measure of performance; rather, it is a
measure of system workload.

The notion of throughput makes sense when either (1) there is
always some work awaiting the system’s service, or (2) the job -arrival
mechanism depends on the system state. Case (1), in the context of
queueing theory, means that the system is unstable in the sense that the
queue, or backlog, will grow without bound. In practice, however, we
may define and measure throughput over a finite interval in which the
input queue is never empty. Throughput thus defined is a proper indicator
~of a system’s capacity. Case (2) applies when we assume a finite number of
job gensr,atlon sources. Suppose that, in an interactive system, there is a
finite number N of terminal users actually logged on. Assume further that
a terminal is blocked while its request is in the system, either waiting for
or receiving service. If‘there are n jobs in the system, only the remaining
N—-n terminals are eligible for generating requests. Thus, the effective
arrival rate is a (linearly) decreasing function of the system state, n:* We
can envision a similar situation in a batch-system environment: There
may be a sufficiently large number of users to keep the system continually
busy. In reality, however, as the system congestion level increases, a user
may be discouraged from submitting a new job. Again, the job arrival
rate will be some decreasing function of the number of outstanding jobs.
This negative feedback loop inherent in the job generation mechanism
makes the system always stable.

The utilization of a resource is the fraction of time that the particular
resource is busy. The CPU utijization .is the most popular measure of
system usage, although it is not necessarily the most important in complex
systems. When the CPU is not idle, it may be in either of two busy states:

* See Sections 3.9 and 3.10 for a full description of such models.
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the problem program state (or simply the problem state) and the supervis-
ory program state {(or the supervisor state). The former represents the
portion of time when the CPU is actually executing the programs written
or called by the users; the latter is the time consumed in executing such
operating system components as the scheduler and various interrupt-
handling romtines. The distinction is commonly assumed to be synony-
mous with that of “useful work™ versus ‘“‘overhead.” Yet it must be noted
that much of the supervisor-state operation provides necessary and useful
service for the user programs; hence the “‘overhead” categorization may
be misleading.

If we assume a system with a single CPU, and if the CPU utilization
figure excludes the supervisor state, then we find the following simple
relationship between throughput A (Jobs per second) and the CPU
utilization pepy:

Pcru = AScpu, (1.1)

where Scpy (seconds per job) represents the average CPU time required
to process a job.

The mean response time, which we denote by 7, is found to. have the
simple relation with throughput

AT = &, (1.2)

in which 7 represents the average number of jobs (waiting or being
‘served) in the system. Both Formulas (1.1) and (1.2) are special cases of
~ the formula L = AW that appear frequently in a more general context.
(See Section 3.6 for details of this formula.)

1.4 WORKLOAD CHARACTERIZATION AND
PERFORMANCE EVALUATION TECHNIQUES

As we stated earlier, by the term workload we mean the amount of
service demands imposed.on the system by a set of jobs in a given
application. The job arrival rate, or more generally the job arrival
mechanism, is certainly one factor that determines the system’s workload.
For example, the Poisson arrival assumption, which we shall discuss in
Section 3.3, can be regarded as a part of the workload model. We
remarked in the previous section that the job arrival process should
‘depend on the degree of the system’s congestion. Thus, the system’s
workload and the system’s performance are not independent of each
other.
The job arrival model is only a part of the workload charactenzatlon

We must alsg represent the work demands brought in by the individual



14 Workload Characterization 9

jobs. Since a computer is an entity consisting of multiple resource compo-
nents, the work demands of a job must be represented by at least (1) the
CPU work demand, (2) memory space demand, (3) I/O (input/output)
work demand, and (4) demands on software components. Thus, we must
translate a given application environment into a set of work demands
seen by system resource components. This translation procedure was a
relatively simple matter in the early days when the CPU was the major
critical resource in the system and each job was sequentially executed in
isolation. In the following discussion we first review the conventional
methods of workload characterization and performance evaluation:
specifically, instruction mixes, kernel programs, and benchmarks.

Instruction mixes

One popular method of representing the workloads on the CPU is the
instruction mix. By an instruction mix we mean the distribution of relative
frequencies {f;} of instruction types (for the given instruction set) observed
in a typical application environment of the system in question. An
instruction mix i obtained by running a set of representative programs
and counting the number of occurrences of individual instruction types—
Add/Subtract; Multiply, Divide, Load, Store, Shift, branch operations,
and the like. Since the instruction execution times ¢ of each instruction
type i are known for a given CPU, we can calculate 7, the average execu-
tion time :per operation,

= X, fit, . (1.3)

i

where the sum is taken over all distinet instruction types i. If we choose
the microsecond (usec) as the unit of time {t}, then the quantity 1/r
represents the speed of the CPU measured i in MIPS (Million Instructions
Per Second).

The instruction mix provndes valuable inforination for the design and
implementatlon of a processor: When the design of the CPU adopts
microprogramming, the instruction mix gives a4 good indication whether
to emphasize the performance efficiency or minimize the space occupancy
of a particular instruction. There are, however, a number of shortcomings
and limitations of the instruction mix. First of all, there is a question
of the ‘‘representativeness” of the chosen instruction mix. Since it is
expensive in machine time to produce a new instruction mix figure, we
often rely on the relative frequencies {f;} measured by others. Even if we
have program tracing facilities and can afford the machine time, the
matter of selecting a set of representative programs is not trivial.

Second, the instruction mix {f.} is the first-order statistic; it com-
pletely lacks information on serial dependency and instruction overlap. In



10 Computer Performance Evaluation: An Introduction

a system with buffer store (cache) or pipelined CPU, the effective execu-
tion speed depends on the sequence pattern of the instruction and data
references, not just the relative frequency. Furthermore, because the
instruction mix does not include demand for other system resources, such
as I/O devices, it cannot be used for overall system performance evalua-
tion.

Kernel programs

The second method used to represent loads on a CPU is the kernel
program method. A kernel program is a small program segment that
represents the inner loop of a frequently used program. For instance, in
scientific applications, a matrix inversion routine and a differential equa-
tion solution program may be selected as kernel programs. A payroll
program is an example of a business application. A kernel program is
useful in the early stages of a CPU design for the evaluation of different
instruction sets ‘and different architectural ideas. This is because the
_kernel preserves such important information as the sequence of instruc-
tions and the relative positions of branch instructions. Kernels also allow
evaluation of some software components. For instance, the quality of a
compiler can be evaluated by programming and compiling the kernel and
examining the object code.

Although kernel programs contain significantly richer information
than instruction mixes, there are still a number of limitations on their use.
First, a performance analysis based on kernels requires coding the kernel
program for the machine in question, using the specific. instruction set.
Thus, any such study is usually done using only a small number of kernel
programs Then the question of “representatweness will be a ‘more
critical issue here than with the instruction mix method, in which mea-
surement over a wide range of programs is relatively easy, although

expensive in terms of computer time. Second, although a kernel program .

allows the performance evaluation of CPU/main-memory usage, it does
not normally include adequate information pn I/O operations. Thus,
kernel programs are not adequate for the evaluation of multiprogram-
ming systems.

Benchmarks

A benchmark is a complete program that is written in a’ high-level
language and is considered to be representative of a given class of
application programs. Sort programs and file updating- programs are
popular examples of benchmarks. By running mixed benchmarks on the
system under evaluation, the performance of the entire system in realistiz
circumstances can be estimated. The quality of compilers can also bLe



