Second Revised Edition

Systems Programming

and
Operating Systems

D.M. Dhamdhere

Systems Programming
and

Operating Systems

Second Revised Edition

EEBEFIZITHNRIERS
£ 2 lREIThR

D M Dhamdhere
Professor and Head
Department of Computer Science & Engineering
Indian Institute of Technology
Mumbai

BEXRFHBEH

McGraw-Hill Companies, Inc.

() id=xF 158 &

Svstems Programming and Operating Systems, Second Revised Edition
D. M. Dhamdhere

Copyright © 1999, 1993, 1996 by Tata McGraw-Hill Publishing Company Limited.
Original English Language Edition Published by The McGraw-Hill Companies, Inc.
All Rights Reserved.

For sale in Mainland China only.

A BB EIRRH McGraw-Hill K2/ 7 BERUHS 16K 4 th RRLAE o 55) CF GLAR 45 51
FICE BRI HIATBUOCA £ M B MR Hi R A o

kW IEE ST T, TO UM R EHAHREHOETRS

AHHEWE FEASHTAH B WIS, EARTETEHE,

b E i AR FVERE R BHC 5. 01-2000-4116

BB &4 B (CIP) iR

AGRRFR R RS 1 %8 2 B/O B8 (Dhamdhere, D. M.) # . ~ EVR. -
JE50: WHAFHIREL 2001 .3

(KT EYHE B AR T)

ISBN 7-302-04314-0

o & D35 I.OREEFBEFRIT-EXOBERZEEMA)-HELT N
. TP311

bR A K E CIP BE 7 (2000)58 14574 5

HARE . EHERES A AL E S R EFBRE B4 100084)
http:// www. tup. tsinghua. edu. cn

ENRIE . R FHR

KATE . FEHESIEILR AT

: 787X960 1/16 EI5K: 42.5

: 2001 £ 5 A% 1 AR 2001 4F 5 A% 1 KAl

: ISBN 7-302-04314-0/TP « 2536

: 0001~3000

: 56.00 JC

M5 & H
=S & dn 5B

H AR & B9 iE

ARV BT R BT A EC: B AR s i 22— B PR 55 R
il 14 7 B2 B B A B K R A SCHE R 2o E S LR SRR e R S Bl HE 4
[L EPR YA R CAEE M AU 4 S AN AT 2T B S
TSI ARE ST , B B A2, i T TR A 3 i 2 BRI AT BE RIS BRRE 1. A4
Fibt R E R E A K E IR R A — R ME Bl RIBENAE b 2B 2R
BB, W, fERPPEME T X TR A B K . FLEm BRI %l 5
BERZA B AE R IR TR R, HEL F XA TRA - EMENTE
M SFRAME A BFESH B, AW X T ERE R, ARG E T - EMNTE
PUBHE DT RGBT RA) E 2 80, HEAT AN AR, AL ARG 50 35 2 th RS m) R 54
F I FEAUH [BRSTHE A B 51 AT B S22, AR AT IR O T 80 A5 HifE & 0t
= BB B P AE R BRI

FRATTHRIM po A A= A4 f5 S EAROM OS8R I R B R AT] G N R K
PR i FeALHEE B SME B iH BALEE B, LR EAT Ot R AL 5 A GEE)
RO MBUS B4, IS S S AR AL 1 B

WK T
R T HLECE A5 GEENIRD Y AL 4L
1999.6

Preface to the Second Revised Edition

I started work on the second revised edition soon after the second edition was published.
The primary motivation was to improve readability and focus, clarity of the fundamental
concepts and utility of the examples. This involved a thorough editing of the text, with
numerous improvements on each page. Some errors and ambiguities noticed while editing
were also corrected.
Apart from these improvements there are plenty of additions to all chapters. The sig-
nificant ones amongst these are,
» Evolution of OS Functions (Chapter 9): A new section on resource allocation and
user interface functions.
* Processes (Chapter 10): A much enlarged section on threads.
* Memory Management (Chapter 15): A new section on the reuse of memory.
» 10 Organization and 10 Programming (Chapter 16): A new section on IO initia-
ton.
1 hope the readers will like the new format and compact style. As before, I look forward
to comments from the readers.

D M DHAMDHERE

Preface to the Second Edition

This edition presents a more logical arrangement of topics in Systems Programming and
Operating Systems than the first edition. This has been achieved by restructuring the fol-
lowing material into smaller chapters with specific focus:

¢ Language processors: Three new chapters on Overview of language processors,
Data structures for language processors, and Scanning and parsing techniques have
been added. These are followed by chapters on Assemblers, Macro processors,
Compilers and interpreters, and Linkers.

* Process management: Process management is structured into chapters on Proc-
esses, Scheduling, Deadlocks, Process synchronization, and Interprocess commu-
nication.

* Information management: Information management is now organized in the form
of chapters on IO organization and IO programming, File systems, and Protection
and security.

Apart from this, some parts of the text have been completely rewritten and new defini-
tions, examples, figures, sections added and exercises and bibliographies updated. New
sections on user interfaces, resource instance and resource request models and distributed
control algorithms have been added in the chapters on Software tools, Deadlocks and
Distributed operating systems, respectively.

I hope instiuctors and students will like the new look of the book. Feedback from readers,
preferably by email (dmd@cse.iitb.ernet.in), are welcome. I thank my wife and family for
their forbearance.

D M DHAMDHERE

Preface to the First Edition

This book has grown out of an earlier book Introduction to System Software published in
1986, which addressed the recommended curricula in Systems Programming (courses 14
of ACM curriculum 68 and CS-11 of ACM curriculum 77), and Operating Systems and
Computer Architecture (courses CS-6, 7 of ACM curriculum 77 and SE-6, 7 of IEEE
curriculum 77). The present book offers a much expanded coverage of the same subject
area and also incorporates the recommendations of the ACM-IEEE joint curriculum task
force (Computing Curriculum 1991). The contents have also been updated to keep pace
with the developments in the field, and the changing emphasis in the teaching of these
courses. An example is the way courses titled Systems Programming are taught today. As
against the ‘mostly theory’ approach of the previous decade, today the emphasis is on a
familiarity with the necessary theory and available software tools. The instructors of these
courses have the hard task of finding instructional material on both these aspects. One of
the aims of this book is to cater for this requirement through the incorporation of a large
number of examples and case studies of the widely used operating systems and softwarc
tools available in the field. Treatment of the standard components of system software, viz.
assemblers and loaders, is now aimed at the IBM PC. Due to the wide availability of the
IBM PC, this makes it possible for students to appreciate the finer aspects in the design of
these software components. Case studies of UNIX and UNIX based tools, viz. LEX and
YACQC, are similarly motivated.

Organization of the book

This book is organized in two parts—Systems Programming and Operating Systems. The
part on Systems Programming introduces the fundamental models of the processing of an
HLL program for execution on a computer system, after which separate chapters deal
with different kinds of software processors, viz. assemblers, compilers, interpreters and
loaders. Each chapter contains examples and case studies so as to offer a comprehensive
coverage of the subject matter.

Part IT of the book is devoted to an in-depth study of operating systems. The introductory
chapter of this part, Chapter 7, identifies the fundamental functions and techniques common
to all operating systems. Chapters 8, 9 and 10 offer a detailed treatment of the processor
management, storage management and information management functions of the operating
systems. These chapters contain motivating discussions, case studies and a set of exercises
which would encourage a student to delve deeper into the subject area. Chapter 11 is
devoted to an important area of the study of operating systems, that of concurrent
programming. Evolution of the primitives and contemporary language features for
concurrent programming is presented so as to develop an insight into the essentials of

viii Preface to the First Edition

concurrent programming. A case study of a disk manager consolidates the material covered
in this chapter. Chapter 12, which is on distributed operating systems, motivates the
additional functionalities that de-volve on the operating system due to the distributed
environment. This chapter is intended as a primer on distributed operating systems. A
detailed treatment has not been possible due to space constraints.

Using this book

This book can be used for the courses on Systems programming (or System software)
at the undergraduate and postgraduate levels, and for an undergraduate course on Operating
systems. For the former, Part I of the book, together with Chapter 7 from Part II, contains
the necessary material. Additionally, parts of Chapter 12 could be used as read-for-yourself
material. Fora course on operating systems, Part Il of the book contains the necessary
material.

In the courses based on this book, use of concurrently running design-and-imple-
mentation projects should be mandatory. Typical project topics would be the development
of compilers and interpreters using LEX and YACC, concurrent programming projects,
development of OS device drivers, etc. '

Apart from use as a text, this book can also be used in the professional computer envi-
ronment as a reference book or as a text for the enhancement of skills, for new entrants to
the field as well as for software managers.

The motivation for writing this book comes from the experience in teaching various
courses in the area of system software. I thank all my students for their vital contribution
to this book.

DM DHAMDHERE

Contents

Preface 1o the Second Revised Edition
Preface to the Second Edition
Preface to the First Edition

Part I: SYSTEMS PROGRAMMING

1 Language Processors
1.1 Introduction !
1.2 Language Processing Activities 3
1.3 Fundamentals of Language Processing 9
1.4 Fundamentals of Language Specification /9
1.5 Language Processor Development Tools 3]
Bibliography 34

2 Data Structures for Language Processing
2.1 Search Data Structures 38

2.2 Allocation Data Structures 52
Bibliography 57

3 Scanning and Parsing
3.1 Scanning 59
32 Parsing 64

Bibliography 85

4 Assemblers
4.1 Elements of Assembly Language Programming 86
4.2 ASimple Assembly Scheme 91
4.3 Pass Structure of Assemblers 94
4.4 Designof a Two Pass Assembler 95
4.5 A Single Pass Assembler for IBMPC 11/
Bibliography 130

5 Macros and Macro Processors
5.1 Macro Definition and Call /32
5.2 Macro Expansion /33

vi

Vil

36

59

86

131

Contents

5.3 Nested Macro Calls 137

5.4 Advanced Macro Facilities /38

5.5 Design of a Macro Preprocessor /45
Bibliography 161

Compilers and Interpreters 162
6.1 Aspects of Compilation /62
6.2 Memory Allocation 165
6.3 Compilation of Expressions /80
6.4 Compilation of Control Structures 192
6.5 Code Optimization /99
6.6 Interpreters 272
Bibliography 218

Linkers 221

7.1 Relocation and Linking Concepts 223
7.2 Designofal.inker 228
7.3 Self-Relocating Programs 232
7.4 A Linker forMS DOS 233
7.5 Linking for Overlays 245
7.6 Loaders 248
Bibliography 248

Software Tools 249

8.1 Software Tools for Program Development 250
8.2 Editors 257
8.2 Debug Monitors 260
8.4 Programming Environments 262
8.5 UserInterfaces 264
Bibliography 269

Part 1I: OPERATING SYSTEMS

Evolution of OS Functions 273

9.1 OSFunctions 273
9.2 Evolution of OS Functions 276
9.3 Batch Processing Systems 277
9.4 Multiprogramming Systems 287
9.5 Time Sharing Systems 305
9.6 Real Time Operating Systems 37/
9.7 OS Structure 3173

Bibliography 317

Processes 320

10.1 Process Definition 320
10.2 Process Control 322

Contents xi

10.3 Interacting Processes 327
10.4 Implementation of Interacting Processes 332
10.5 Threads 336

Bibliography 342

11 Scheduling 343

11.1 Scheduling Policies 343

11.2 Job Scheauling 351

11.3 Process Scheduling 353

11.4 Process Management in Unix 365

11.5 Scheduling in MultiprocessorOS 366
Bibliography 368

12 Deadlocks 371

12.1 Definitions 371

12.2 Resource Status Modelling 372

12.3 Handling Deadlocks 377

12.4 Deadlock Detection and Resolution 383

12.5 Deadlock Avoidance 386

12.6 Mixed Approach to Deadlock Handling 393
Bibliography 395

13 Process Synchronization 396

13.1 Implementing Control Synchronization 396
13.2 Critical Sections 399 :
13.3 Classical Process Synchronization Problems 408
13.4 Evolution of Language Features for Process Synchronization 41/
13.5 Semaphores 413
13.6 Critical Regions 419
13.7 Conditional Critical Regions 422
13.8 Monitors 426
13.9 Concurrent Programmingin Ada 437
Bibliography 443

14 Interprocess Communication 447
14.1 Interprocess Messages 447
14.2 Implementation Issues 448
14.3 Mailboxes 454
14.4 Interprocess Messages in Unix 456
14.5 Interprocess Messages in Mach 458
Bibliography 459

15 Memory Management 460

15.1 Memory Allocation Preliminaries 467
15.2 Contiguous Memory Allocation 471

xii

Contents

16

17

18

19

15.3 Noncontiguous Memory Allocation 479

15.4 Virtual Memory Using Paging 482

15.5 Virtual Memory Using Segmentation 57/
Bibliography 518

10 Organization and 10 Programming 521
16.1 IO Organization 522
16.2 IO Devices 526
16.3 Physical I0CS (PIOCS) 529
16.4 Fundamental File Organizations 542
16.5 Advanced 10 Programming 544
16.6 Logical IOCS 552
16.7 File Processing in Unix 560
Bibliography 560

File Systems 561
17.1 Directory Structures 563
17.2 File Protection 569
17.3 Allocation of Disk Space 569
17.4 Implementing File Access 57/
17.5 File Sharing 576
17.6 File System Reliability 578
17.7 The Unix File System 584
Bibliography 587

Protection and Security 588

18.1 Encryption of Data 588
18.2 Protection and Security Mechanisms 591
18.3 Protectton of User Files 592
18.4 Capabilities 596
Bibliography 603

Distributed Operating Systems 604
19.1 Definition and Examples 605
19.2 Design Issues in Distributed Operating Systems 608
19.3 Networking Issues 61/
19.4 Communication Protocols 615
19.5 System State and Event Precedence 619
19.6 Resource Allocation 622
19.7 Algorithms for Distributed Control 624
19.8 File Systems 633
19.9 Reliability 637
19.10 Security 643
Bibliography 649

Index 653

CHAPTER 1

Language Processors

1.1 INTRODUCTION

Language processing activities arise due to the differences between the manner in
which a software designer describes the ideas concerning the behaviour of a soft-
ware and the manner in which these ideas are implemented in a2 computer system.
The designer expresses the ideas in terms related to the application domain of the
software. To implement these ideas, their description has to be interpreted in terms
related to the execution domain of the computer system. We use the term semantics
to represent the rules of meaning of a domain, and the term semantic gap to represent
the difference between the semantics of two domains. Fig. 1.1 depicts the semantic
gap between the application and execution domains.

Semantic

0 0

A;‘)iplica;ion Execution
omain domain

Fig. 1.1 Semantic gap

The semantic gap has many consequences, some of the important ones being
large development times, large development efforts, and poor quality of software.
These issues are tackled by Software engineering through the use of methodologies
and programming languages (PLs). The software engineering steps aimed at the use
of a PL can be grouped into

1. Specification, design and coding steps
2. PL implementation steps.

2 Systems Programming & Operating Systems

Software implementation using a PL introduces a new domain. the PL domain.
The semantic gap between the application domain and the execution domain is
bridged by the software engineering steps. The first step bridges the gap between
the application and PL domains, while the second step bridges the gap between the
PL and execution domains. We refer to the gap between the application and PL do-
mains as the specification-and-design gap or simply the specification gap, and the
gap between the PL and execution domains as the execution gap (see Fig. 1.2). The
specification gap is bridged by the software development team, while the execution
gap is bridged by the designer of the programming language processor, viz. a trans-
lator or an interpreter.

Spec1ﬁcatnon Executlon

O 0 0

Ap()jphcat:on PL Execution
main domain domain

Fig. 1.2 Specification and execution gaps

It is important to note the advantages of introducing the PL domain. The gap to be
bridged by the software designer is now between the application domain and the PL
domain rather than between the application domain and the execution domain. This
reduces the severity of the consequences of semantic gap mentioned earlier. Further,
apart from bridging the gap between the PL and execution domains, the language
processor provides a diagnostic capability which detects and indicates errors in its
input. This helps in improving the quality of the software. (We shall discuss the
diagnostic function of language processors in Chapters 3 and 6.)

We define the terms specification gap and execution gap as follows: Specification
gap is the semantic gap between two specifications of the same task. Execution gap
is the gap between the semantics of programs (that perform the same task) written in
different programming languages. We assume that each domain has a specification
language (SL). A specification written in an SL is a program in SL. The specitication
language of the PL domain is the PL itself. The specification language of the execu-
tion domain is the machine language of the computer system. We restrict the use of
the term execution gap to situations where one of the two specification languages is
closer to the machine language of a computer system. In other situations, the term
specification gap is more appropriate.

Language processors

Definition 1.1 (Language processor) A Janguage processor is a software which
bridges a specification or execution gap.

Language Processors 3

We use the term language processing to describe the activity performed by a lan-
guage processor and assume a diagnostic capability as an implicit part of any form of
language processing. We refer to the program form input to a language processor as
the source program and to its output as the rarget program. The languages in which
these programs are written are called source language and target language. respec-
tively. A language processor typically abandons generation of the target program if
it detects errors in the source program.

A spectrum of language processors is defined to meet practical requirements.

L.

|89

A language transiator bridges an execution gap to the machine language (or
assembly language) of a computer system. An assembler is a language transla-
tor whose source language is assembly language. A compiler is any language
translator which is not an assembler.

A detranslator bridges the same execution gap as the language translator. but
in the reverse direction.

A preprocessor is a language processor which bridges an execution gap but is
not a language translator.

A language migrator bridges the specification gap between two PLs.

Example 1.1 Figure 1.3 shows two language processors. The language processor of part (a)

converts a C++ program into a C program, hence it is a preprocessor. The language
processor of part (b) is a language translator for C++ since it produces a machine
language program. In both cases the source program is in C++. The target programs
are the C program and the machine language program, respectively.

Errors
C++ | C++ |, C
program preprocessor program
(a)
Errors
Machine
C++ _] C++ language
program translator program
(b)

Fig. 1.3 Language processors

Interpreters

An interpreter is a language processor which bridges an execution gap without gener-
ating a machine language program. In the classification arising from Definition 1.1,

4 Systems Programming & Operating Systems

the interpreter is a language translator. This leads to many similarities between trans-
lators and interpreters. From a practical viewpoint many differences also exist be-
tween translators and interpreters.

The absence of a target program implies the absence of an output interface of
the interpreter. Thus the language processing activities of an interpreter cannot be
separated from its program execution activities. Hence we say that an interpreter
‘executes’ a program written in a PL. In essence, the execution gap vanishes totally.
Figure 1.4 is a schematic representation of an interpreter, wherein the interpreter do-
main encompasses the PL. domain as well as the execution domain. Thus, the spec-
ification language of the PL domain is identical with the specification language of
the interpreter domain. Since the interpreter also incorporates the execution domain,
it is as if we have a computer system capable of ‘understanding’ the programming
language. We discuss principles of interpretation in Section 1.2.2.

Interpreter
domain
PL

A%plica;ion) Execution
omain domain domain

Fig. 1.4 Interpreter
Problem oriented and procedure oriented languages

The three consequences of the semantic gap mentioned at the start of this section
are in fact the consequences of a specification gap. Software systems are poor in
quality and require large amounts of time and etfort to develop due to difficulties in
bridging the specification gap. A classical solution is to develop a PL such that the PL
domain is very close or identical to the application domain. PL features now directly
model aspects of the application domain, which leads to a very small specification
gap (see Fig. 1.5). Such PLs can only be used for specific applications, hence they
are called problem oriented languages. They have large execution gaps, however this
is acceptable because the gap is bridged by the translator or interpreter and does not
concern the software designer.

A procedure oriented language provides general purpose facilities required in
most application domains. Such a language is independent of specific application
domains and results in a large specification gap which has to be bridged by an appli-
cation designer.

Language Processors §

Specification Execution
8ap gap
Application ™ Problem Execution
domain oriented domain
language
domain

Fig. 1.5 Problem oriented language domain

1.2 LANGUAGE PROCESSING ACTIVITIES

The fundamental language processing activities can be divided into those that bridge
the specification gap and those that bridge the execution gap We name these activi-
ties as

1. Program generation activities
2. Program execution activities.

A program generation activity aims at automatic generation of a program. The source
language is a specification language of an application domain and the target language
is typically a procedure oriented PL. A program execution activity organizes the
execution of a program written in a PL on a computer system. Its source language
could be a procedure oriented language or a problem oriented language.

1.2.1 Program Generation

Figure 1.6 depicts the program generation activity. The program generator is a soft-
ware system which accepts the specification of a program to be generated, and gen-
erates a program in the target PL. In effect, the program generator introduces a new
domain between the application and PL. domains (see Fig. 1.7). We call this the
program generator domain. The specification gap is now the gap between the appli-
cation domain and the program generator domain. This gap is smaller than the gap
between the application domain and the target PL domain.

Errors
Program Program Program
specification ™ generator " mn
target PL

Fig. 1.6 Program generation

Reduction in the specification gap increases the reliability of the generated pro-
gram. Since the generator domain is close to the application domain, it is easy for
the designer or programmer to write the specification of the program to be generated.

