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Preface

The importance of group theory and its utility in applications to various
branches of physics and chemistry is now so well established and universally
recognized that its explicit use needs neither apology nor justification. Matters
have moved a long way since the time, just thirty years ago, when Condon and
Shortley, in the intfoductjon to their famous book, “The Theory of Atomic
Spectr’, justified their doing “group theory without group theory” by the
statemdht that “.". . the theory of groups . . . is not . . . part of the dordinary
mathenfatical equipment of physicists.” The somewhat adverse, or at least
sceptical, attitude toward group theory illustrated: by the telling there of the
well-known anecdote concernin g the Weyl-Dirac exchange,* has been replaced
by an uninhibited and enthusiastic espousal. This is apparent from the
steadily increasing number of excellent textbooks published in this field
that seek to instruct ever widening audiences in the nature and use of this
tool. There is, however, a gap between the material treated there and the
research literature and it is this gap that the present treatise is designed to fiJi.
The articles, by noted workers in the various argas of group theory, each review
asubstantialfield and bring the reader from thelevel of a general understanding
of the subject to that of the more advanced literature. -

The serious student and beginning research worker in a particular branch
should find the article or articles in his specialty very helpful in acquainting
him with the background and literature and bringing him up to the frontiers
of current research; indeed, even the seasoned specialist in a particular branch
will still learn something new. The editor hopes also to have the treatise serve
another useful function: to entice the specialist in one area into becoming
acquainted with another. Such ventures into novel fields might be facilitated
by the recognition that similar basic techniques are applied throughout; e.g.,
the use of the Wigner-Eckart theorem can be recognized as a unifying thread
running through much of the treatise. ‘ o

The applications of group theory can be subdivided generally into two
broad areas: one, where the underlying dynamical laws (of interactions) and
therefore all the resulting symmetries are known exactly; the other, where

*After a seminar on spin variables and exchange energy-hich Dirac gave at Princeton
in 1928, Weyl protested that Dirac had promised to derive the results without use of group
theory, Dirac replied: “I said I would obtain the results without previous knowledge of
group theory” (Condon and Shortley, “The T heory of Atomic Spectra”, pp. 10-11. Cam-
bridge Univ. Press, 1953).
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these are as yet unknown and only the kinematical symmetrics (i.e, those of
the underlying space-time continuum} can serve as a certain guide.

In the first area, group theoretical techniques are used essentially to exploit
the known symmetries, either to simplify numerical calculations or to draw
exact, qualitative conclusions. All (extra-nuclear) atomic and molecular
phenomena are believed to belong to this category; the central chapters in
this book deal with such applications, which, until relatively recently, formed
the bulk of all uses of group theory.

In the second major area, application of group theory proceeds essentially
in the opposite direction: It is used to discover as much as possible of the
underlying symmetries and, through them, learn about the physical laws of
interaction. This area, which includes all aspects of nuclear structure and
elementary particle theory, has mushroomed in importance and volume of
research to an extraordinary degree in recent times; the articles in the second
half of the treatise are devoted toiit. ‘

In part as a consequence of these developments, physical scientists have
been forced to concern themselves more profoundly with mathematical
aspects of the theory of groups that previously could be left aside; questions
of topology, representations of noncompact groups, more powerful methods
for generating representations as well as'a systematic study of Lie groups and
their algebras in general belong in this category. They are treated in the
earlier chapters of this book.

Considerations of both space and timing have forced omission from this
volume of articles dealing with several important arcas of applied group theory
like molecular spectra, hidden symmetry and “accidental” degeneracy, group
theory and computers, and others. These will be included in a second volume,
currently in preparation. '

Complete uniformity and consistency of notation is an ideal to be striven
for but difficult to attain; it is especially hard to achieve when, as in the present
case, many different and widely separated specialities are discussed, each of
which usually has a well-established notational system of its own which may
not be reconcilable with an equally well-established one in another area. In
the present book uniformity has been carried as far as possible, subject to
these restrictions, except where it would impair clarity.

The glossary of symbols included is expected to be of help; a few general
remarks about notation follow: different mathematical entities are generally
distinguished by different type fonts: vectors in bold face (A, H, M, u, a, Z),
matrices in bold face sans serif (A, M, R, u), operators in script (¥, 5, #)
(though certain special Hamiltonians are indicated by italic sans serif H);
spaces, fields, etc., by bold face German (€, $, R, B). The asterisk (*) denotes
the complex conjugate, the dagger (1) the adjoint, and the tilde (~) the trans-
pose. Different product signs are used as follows: x, number product; X,
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vector cross product; X, the general (Cartesian) product of sets, the (outer)
direct product of groups and representations; [X], the inner direct product of
groups and representations (of the same group), and A, the semidirect pro-
duct; @ denotes the direct sum.

It wouid be highly presumptucus for the editor to commend the authors
for the quality of their contributions; however, 1 would like to thank them
publicly and most sincerely for the spirit in which they cooperated in matters
of selection of subject matter or emphasis, notation, style, etc., often sacrificing
or modifying individual preferences for the sake of greater unity for the work
as a whole. This made the task of the editor a much more enjoyable and less
harassing one than it might otherwise have been.

It is also a great pleasure to thank the publisher, Academic Press, Inc.,
and the printers for the patience, devotion, diligence, and consummate skill
with which they handled the uncommonly complex manuscripts. In spite of
this diligence and skill misprints and errors undoubtedly still exist and the
editor expresses his gratitude in advance to any reader who will point them out.

The dedication of this volume to the late G. Racah is a mark of appreciation
for the monumental contribution he has made to group theory and its appli-
cations and a token of the esteem in which his person and his work is held
by the editor and the contributors. It also symbolizes the sorrow and sense
of loss which his tragic and untimely death caused. His contribution to this
volume, which had been solicited, would have added luster and its absence
leaves a void. On a more personal note, Professor Racah was the first to teach
me theoretical physics and to Stimulate my interest in it and in group theory,
1 owe him a debt of gratitude which cannot adequately be expressed, much
less repaid.

ERNEST M. LOEBL
Brooklyn, New York
April 1968
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I. Introduction

A Lie group is defined as a topological group whose identity element has a
neighbdrhood that is homeomorphic to a subset of an r-dimensional Euclidean
space, where r is then called the order or dimension of the Lie group (/). Thus,
a Lie group combines in one entity two distinct structures, a topological
structure and a group-theoretic structure. The topological properties of the
Lie group have far-reaching implications for the algebraic, or group-theoretic,
structure. These implications are largely contained in the theorem that states
that a Lie group (and in fact any topological group) is homogeneous, that is,
for any given pair of points X, Y in the group manifold G there exists a homeo-
morphism f: G — G such that f(X) = Y. Thus, we need state and examine the
local propérties of a Lie group only in the neighborhood of a single point, e.g.,
the identity element; the homogeneity of the manifold then enables us to
derive the same properties at any other point. Let us consider an analytic
function F(X) defined over the group manifold and examine F(X) in a small
neighborhood of the identity X = 0 where it takes the form

F(X) = F(0) + jz; i

[BF 0.4 )]

P x=Fo+ ,-é:, X, F(Xlxmo (1.1)

* Present address: Twente Institute of Technology, Enschede, Th2 Netherlands.
1



p) D. KLEIMA, W. J. HOLMAN, HI, AND L. C. BIEDENHARN

where the x; are linearly independent differential operators over the parameter
space. These differential operators act as. the generators of infinitesimal
transformations and obey the commutation relations :

[xi’xj]z(ijk)xki (12)

which serve to define the structure constants (ij*). In order to assure that an
" infinitesimal transformation of the group can be integrated to obtain a finite
transformation, it can be shown that the generators must also obey the Jacobi
condition '

(i 2 oxad + [ xad x4+ (e, 6], x;1 = 0. (1.3)

This set of generators, then, which is closed under the operation of commuta-
tion, and the set of all their linear combinations is called the Lie algebra of the
group, and there exists a Lie algebra for every Lie group. The conditions (1.2)
and (1.3) can be expressed as conditions on the structure constants:

(i) = —(ji*), (1.4)
‘(ijk) (kI™) + i) (kj™ + (1% (ki™) =0 (Jacobi condition).  (1.5)

Lie further demonstrated that if we are given any r3 constants (ij*) that
satisfy the relations (1.4) and (1.5), then we can integrate the generators that
specify the infinitesimal transformations of a group and so determine the
group itself, that is, the structure constants alone determine a group of con-
tinuous transformations. This group, however, is determined only up to alocal .
isomorphism; the integration of the generators gives us a represgntation of
the universal covering group, while other groups that are multiply connected
~may have the same local properties, that is, the same Lie algebra and the same
structure constants.

In the study of Lie groups, then, we achieve an enormous simplification by
restricting our attention to the Lie algebra and its representations. We need
deal only with a finite number of elements, the Lie algebra, rather than a
continuous infinity in order to establish a system of basis vectors for a repre-
sentation space for the group. The algebra, because of its integrability,
determines all the structures that have the desired properties of transformation
under the finite elements of the group. In particular, we can determine all the
irreducible unitary representations of a group by performing only the much
easier construction of all the Hermitian representations and sets of basis
vectors for the Lie algebra. Hence it is worth our while to study Lie algebras
in some detail.

In the present chapter we shall restrict our attention to the problem of the
classification of the compact real semisimple Lie algebras and review the work
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originally done by Killing (2) and Cartan (3). In a continuation of this chapter,
which will be published in a subsequent volume, we shall apply this apparatus
to a systematic treatment of the representation theory of the groups of n-
dimensional unitary matrices and to a determination of all {ensor operators
in U(n), using the techniques of the boson calculus and the Gel'fand and
Weyl systems of basis vectors (4).

A Lie algebra is defined abstractly as a linear space of elements x; with
coefficients in any field (for our purposes the real or complex numbers) and a
product defined by the foregoing relations (1.2) that satisfies (1) the condition
of antisymmetry (or equivalently [x,x] = 0); (2) the Jacobi condition (1.3);
and, of course, (3) the usual conditions of linearity:

[axi’xj] = alx;, xj]’
[xi 4+ x50 %] = [x:5 Xk + [xp xx)- (1.6)

Hence a Lie algebra is a particular instance of a nonassociative algebra; the
Jacobi condition holds instead of the property of associativity. The property
of antisymmetry and that provided by the Jacobi condition are expressed by
conditions on the structure constants given earlier by (1.4) and (1.5).

We wish to show now that there exists a Lie algebra for every set of structure
constants that satisfy these conditions, and we shall do this by the explicit
construction of a model. A linear correspondence x — X of a Lie algebra L
into a set of linear transformations X of a vector space S is called a representa-
tion of the Lie algebra if [x,y] — XY — YX, where x, y € L and X and Y are
transformations of S. We shall write XY — YX = [X, Y]. These linear trans-
formations, or matrices, are called representations, and the vector space S is
called the carrier space of the representation. The vectors in the carrier space
then span the representation space, and the set of matrices X itself is loosely
called a representation. Since physics is concerned with Lie groups that are
themselves groups of linear transformations and therefore representations of
themselves, the concept of matrix representation of Lie groups and their Lie
algebras is of fundamental importance.

We remark now that the particular linear mappings of L into L that we define
as x — x’ = [y,x], where x, y € L, and that we shall denote as x’ = {y,x] =
(ad y) x, have the property

(ady,ady, — ady,ad y)) x = [y1, [y2, x]] = [¥2, [y1, X1
= [[y1,y2)s x] = (ad[y1, y2D) x, (1.7)

which can be written as

[ad y,ad y,] = ad[ y, y2]. (1.7a)

t
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(We have made use here of the Jacobi condition.) It follows from (1.7a), then,
that the linear transformations ad » are a (faithful) representation of L, which
we call ad L, the adjoint representation. The reader should note that the idea
of a representation of the Lie algebra by transformations induced in the
algebra itself as a carrier space, though easy to grasp and seemingly trivial, is
nonetheless very important and underlies the entire treatment to follow. In
fact, the theory of the classification of semisimple Lie algebras is nothing more
than the theory of the adjoint representation. :

When we introduce a coordinate system in L, it becomes possible to specify
matrix elements of ad y explicitly. Let x; be the generators of L which we now
take to define the basis (specified by the index i) and let x = r'x, be an arbitrary
element of L. Then

(ad x;) x = ri[x;, x;] = ri(ji*) x,,, (1.8)

and we note that the » and the x; transform contragrediently to each other.
The matrix elements of the adjoint representation are then seen to be simply
the structure constants of L which are specified by our chosen basis

These, then, are the desired matrices for our model, since we can write the
Jacobi identity for the structure constants as

—(§%) (ad Xy +(ad x;)u (ad %)), + (—ad x))pe (ad x,), = 0, (1 -10)

and this relation proves that structure constants that satisfy antisymmetry and
the Jacobi condition ““belong” to a Lie algebra.

The transformations of the adjoint representation of the Lie algebra (which,
by Lie’s fundamental theorem, can be integrated to yield the adjoint group),
can be regarded as acting either on the abstract elements x or on the coordinates
r!, and we shall write indiscriminately f(r') = f(x) for a fixed basis, i.e., the
generators x;. More complicated functions of x than linea} ones, in fact poly-
nomials, are defined indirectly (through x = r'x,) as functions of r'. [Note that
only the operation of “commutation,” Eq. (1.2), is defined for the elements X,
and no other; in a representation, however, there exist two multiplication

.operations: one is the ordinary associative matrix multiplication AB, and the
- other, the commutation operation [4, B] = AB — BA, is expressed in terms of
the former, but only this operation has a counterpart in the abstract Lie

algebra.]
From Eq. (1.7) it follows that

[ad y, ad x] = ad((ad y) x),
[2d ,[ad y, ad x]] = ad((ad y) (ad ) x) = ad((ad y)? x), (L11)
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hence we may apply the Baker-Campbell-Hausdorff formula

] 62 '
exp(6A)Bexp(—04) =B + 1 B+ 5 (A 14,81+ -+ (1.12)
to obtain the transformations of the adjoint group:

- [exp(fad »)1(ad x) [exp(—0 ad y)] = ad(exp(f ad y) x). (1.13)

The essential point of Lie’s theory is that the conditions that are necessary for
the integrability of a Lie algebra, namely, antisymmetry and the Jacobi
condition, are also in general sufficient for integration in the neighborhood
of the identity. The integration of representations is not a problem and
proceeds directly by matrix exponentiatiop.

We turn now to the problem of the explicit classification of Lie algebras and
their representations. First we introduce some definitions: the subset x; of
generators span a Lie subalgebra L if and only 1f [x, x3] € L. In terms of the
structure constants, (@, 5) = 0 unless k = ¢ also designates a member of the
subalgebra. The condition for an invariant subalgebra is [x;, x,] € L for any
Xy € L. We can also write, in this case, [L, x] e L. Note that an invariant
subalgebra is therefore an ideal in L under the commutation operation. The
condition for the invariance of a subalgebra in terms of the structure constants
is then (a@b*) = 0 unless & = & denotes a member of the subalgebra. Further,
L is an Abelian subalgebra if (a6*) = 0 for all 4, b, k, and is an invariant Abelian
subalgebra if both conditions hold; that is, if (d/*)#0 only if x;€L, xe L.

A Lie algebra that possesses no invariant subalgebras at all is called simple,
and simple Lie algebras belong to simple Lie groups. It is important here to
note that a simple Lie group is one that possesses no invariant Lie subgroups;
it may possess invariant finite subgroups, since these have no elements in a
sufficiently small neighborhood of the identity except the identity itself. A Lie
algebra (group) that possesses no invariant Abelian subalgebra (invariant
Abelian Lie subgroup) is talled semisimple. Of course, the property of sim-

plicity implies that of semisimplicity. It will be seen later that a semisimple Liel
algebra (group) can be repr;sented as a direct sum (direct product) of simple
Lie algebras (groups)

In order to establish a criterion for semisimplicity, which was first introduced
by Cartan, let us construct the tensor (to be interpreted later as a metnc
tensor):

g =tr(ad x,ad x,) = Z (ai®) (bk"). (1.14)
Cartan’s criterion states that a Lie algebra is semisimple if and only if g, is
nonsingular.

Proof. The proof of necessity is easy. Suppose that L is not semisimple and



6 D. KLEIMA, W. J. HOLMAN, IlI, AND L. C. BIEDENHARN

henc. has an Abelian invariant subalgebra L whose elements are x;. Then

g = X (@i*) (k) = 5 (ai ) (bkYy = T (@*)(bkTy =0,  (1.I°
ik ik

ik

where we have used the conditions on the structure constants that characterize
an Abelian invariant subalgebra. This expression vanishes; hence g,, has an
entire row g, of zeros and thus is singular. The proof of the sufficiency of the
Cartan criterion is more difficult and makes use of Cartan’s second criterion
of solvability, which we shall discuss in Section 1V. We shall defer considera-
tion of the sufficiency proof until Section IV, then, when we shall have
developed the necessary tools. At present we shall merely prove the trivial
theorem: If g, is singular, then L has an invariant subalgebra; that is, L is not -
simple.

~ Proof. We can construct the linear space L* of all x* = w"x, such that
tr(ad x*ad x,) = w* tr(ad x,ad x,) = w?g,, =0 for all x,eL. Since g, is
singular, L* is not empty. For any x,, x, € L we can write

tr(ad[x,, x*]ad x,) = tr([ad x., ad x*) ad x;) = tr(ad x*[ad x;, ad x.])
= (bc?) tr(ad x*adx,) =0, ~(1.16)

by the definition of x*. Hence all [x,, x*] belong to L* and L* is an invariant
subalgebra. Note that for any two elements x*, y* € L* we have in particular

tr(ad x* ad y*) =0, (1.17)

a fact that we shall need later in our treatment of the second solvability
criterion of Cartan. .

In this study we shall restrict our attention to compact Lie algebras defined
over the field of real numbers. We say that a Lie algebra is compact if it is
isomorphic to the Lie algebra of a Lie group whose manifold is a compact set.
It can be shown that for a compact Lie group all irreducible matrix representa-
tions are finite-dimensional and equivalent to unitary representations (Peter-
Weyl the>rem); hence all representations of their Lie algebras are similarly
finite-dimensional and equivalent to Hermitian representations. These
properties are not shared by noncompact groups. For noncompact groups allf
the faithful irreducible unitary representations are infinite-dimensional and
there exists a nondenumerable infinity of them, that is, there exist series of
irreducible unitary representations that are labeled by continuous values of the
invariants. For compact groups, on the otherhand, all irreducible unitary repre-
sentations are finite-dimensional and occur only in discrete series. For both

t Except of course the identity representation.



