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Chapter 1

INTRODUCTION

1.1 SOME FUNDAMENTAL ASPECTS OF THE FLOW OF POLYMER SOLUTIONS

1.1.1 Fluic flow

If an external stress, o, is exerted on a fluid, deformation
sets in and goes on until the stress is removed. A steady state can
be reached in which the rate of deformation is constant because the
deformation process is retarded by internal frictional forces (refs
1,2). ' Co
» In this book, the plane simple-shear type of flow of polymer
solutions will be dealt with in which there is a non-zero component
of velocity in only a single direction. Let us define a Cartesian
coordinate system with axes x, y and z, and put a real fluid between
two infinite parallel plates a distance h”™ apart which are per-
pendicular to the y axis and of which only one is moving with
a constant velocity in the x direction (Fig. 1.1a). There exists
a transverse velocity gradient (shear-rate), ¥, in the fluid.

y 1Y

————

X —]
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h S ;7 X
Z
(c) (b)
Fig. 1.1. The velocity profile of laminar flow between two parallel plates (a)

and in capillary (b).

The velocity, v, is given by eqn (1.1)

v = (¥y;0;0). (1.1)

The higher the internal friction in the fluid, the higher is the
stress which must be applied to maintain the velocity gradient. In
this case the shear-stress is related to the shear-rate by eaqn (1.2)
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o =0, = nldv,/dy) = ny (1.2)
where n is the viscosity coefficient or, simply, viscosity.

This simple shear-flow is achieved, e.g., in Couette cylinder
viscometers (Couette flow), in capillary viscometers (Fig. 1.1b),
and in cone~and-plate instruments (refs 1,2). Experiments in which
the shear-rate is constant during one measurement yield the steady-
state viscosity. If the shear-rate harmonically oscillates with an
angular frequency, one obtains the dynamic viscosity. '

1.1.2 The steady-state flow of polymer solutions

In a schematic representation of the dependence of ? on o for
steady-state experiments (ref. 2), Newtonian flow is represented by
a straight line passing through the origin of the co&rdinate system;
the viscosity coefficient is then a constant. If the dependence is
non-linear so that n depends on the shear-rate, we are concerned
with non-Newtonian flow. There are several types of such behaviour.

For pseudoplastic and dilatant floﬁ, the dependence of } on @
is linear at very low and at very high shear-rates (the first and
the second Mewtonian regions) while it is non-linear in the inter-
mediate part. In the Newtonian regions, the viscosity coefficients
(n, for the first, and n, for the second Newtonian region) are con-
stant but not equal. If, in the intermediate part, the ratio o/y is
a decreasing function of § so that the wviscosity coefficient (or,
better, the apparent viscosity coefficient) decreases with increasing
Q {(i.e. dn/d? < 0), we are concerned with pseudoplastic flow; if
dn/dy > 0, the flow is dilatant.

If flow does not set on until the yield value, Oy of the
shear-stress has been overcome, it is called plastic flow. At
o < Gy the deformation of the system is elastic. If the dependence
of Yy on ¢ is linear at o > O, We have Binghamian plastic flow. The
ratio (c-co)/Q is constant and is referred to as the plasticity,
npl. If, on the other hand, the dependence is non-linear, the ratio
(d—ao)/§ (the apparent plasticity) is not constant. We then have
non-Binghamian plastic flow.

Time~-dependent rheological properties are often observed with
polymer solutions. We distinguish between thixotropy and rheopexy
(negative thixotropy) (refs 1,2). In the former case, the viécosity
diminishes with time, in the latter, it increases.

If viscoéity measureménts are performed at low concentrations,
an important quantity called the intrinsic viscosity (limiting



viscosity number) can be evaluated. It is defineé by eqn (1.3)

= 11 -n ) . 1.3
[nl C:g[(n ng) /ngel (1.3)

where n is the solution viscosity, Ng the solvent viscosity, énd c
the polymer concentration®. The intrinsic viscosity is a character-
istic function for the single molecule in solution. It depends on
the molar mass, structure and conformation of the polymer molecules,
on the solvent power, on temperature, and very often on the shear-
rate and - ir dynamic experiments - on the frequency.

The dimension of [n] is volume per unit mass so that this
guantity has been aptly termed the "effective hydrodynamic specific
" volume" of the polymer in solution. It may be thought of as the sum
of effective hydrodynamic volumes of the separate, non-interacting
molecules that make up a gram of polymer. L

In general, polymer solutions exhibit shear—raté—dependent
viscosity, particularly at high Q. This effect may arise from the
properties of individual molecules and/or from intermolecular inter-~
actions. If only intermolecular interactions are involved, the
effect vanishes at infinite dilution, and the intrinsic viscosity
is independent of %. If the effect persists at infinite dilution,
the intrinsic viscosity is a function of Y.

Plastic flow and time-effects are observed only at finite
concentrations, while the pseudoplastic type occurs also at infinite
dilution.

1.1.3 The origin of additional frictional forces in solutions
The frictional force acting on the moying plate of area A
(Fig. 1.1a) is

F £ OA = nva, (1.4)

and the velocity of the displacement of the plate is
v =Yh™ . (1.5)

The work, W, dissipated per unit.time and unit volume is

*If the concentration c¢ is expressed in g/cm3 (as will be done in this book),

the dimension of [n] is cm3/g. Very often, the intrinsic viscosity is expressed
in d1/g.



W= Fu/hA = Ry . ' (1.6)
It follows from eqn (1.6) that the increase in viscosity observed
with polymer solutions is due to a greater amount of work necessary
.to maintain the velocity gradient constant, or - in other words -
to overcome the frictional forces exerted by the dissolved molé-
cules on the fluid.

The origin of the additional frictional forces can be qnder—
stood on the basis of the following consideration. Let us introduce -
a spherical particle (of radius ra) in the flowing fluid. The
particle endeavours to accommodate itself to the motion of the fluid
as completely as possible. The centre of mass of the particle will
assume the translational speed of the surrounding fluid, and the
particle will experience uniform translation. It is convenient to
introduce a Cartesian system of coordinates such that it takes part
in the translaticnal motion of the centre of mass, i.e. to identify
the origin of the system with the centre of mass of the particle,
and to study the behaviour of_the particle with respect to this
system. .

Different parts of the particle are situated in different
layers of the fluid which move with different velocities. The
liquid tries to carry the particle so that the velocity at any point
of the particle be the same as would be the velocity of the fluid
in that point in the absence of the particle. That would be possible
if the distances of these points could increase without limit. How-
ever, cohesive forces oppose this effect. The particle cannot follow
the ﬁotion of the fluid exactly, and perturbs the flow. Here is the r
origin of the frictional forces.

These forces give rise to a torque which rotates the particle.
The latter acquires an angular velocity @ of such magnitude ’ *

Q=% (1.7)

Nj =

that the total torque is zero. The velocities at different points
of the surface of the particle (points A,B,C,D in Fig. 1.2) differ
in direction but not in absolute uwalue, the latter being

- =1 )
u=0r, =5 yr, . - (1.8) »
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In the absence of.the particle, the velocity of the fluid, vo,
would be zero at points C and D, and it would be equal to ﬁra at
points A and B. Thus, there is a difference between the velocity
of the points on the surface of the particle and the velocity which
these points would have in the unperturbed f£luid. For the points
A,B,C, and D, the absolute value of this difference is

o

Au = [v7 - ul = % YX_ o , (1.9)

for other points, it assumes other values but is always proportional
to yra

1.1.4 The steady-~state viscosity of polymer solutions

1.1.4.1 General considerations

Theoretical interpretation of the flow properties of polymer
solutions is based on the following ideas:

(i) The solvent is incompressible and its viscosity is
Newtonian. The molecular structure of the solvent may be neglected,
and the solvent is regarded‘as a continuous medium which exerts
forces upon polymer moleceles in the same way that a fluid exerts
forces upon small suspended particles.

(1i) The macromolecules are represented by corresponding
models to behave in a manner similar to that of the actual material
(see 1.1.4.2).

(11i) The elements of the polymer chain are considered té be
centres of resistance to flow, perturbing the fluid velocity at .



the points of location of other elements. This effect leads to the
intramolecular hydrodynamic interaction. At finite concentrations,
there occurs the intermolecular hydrodynamic interaction. In con-
centrated sblutions, the actual frictional forces are a consequence
not only of frictional forces of isolated segments but also of
long-range coupling of entangled chains.

(iv)} When exposed to an external field of force, rigid mole-
cules perform translational and rotational motions whereas flexible
molecules also ﬁndergo deformation. These regular changes (in
position, orientation, and in shape) will be disturbed by irregular
motions of molecules and/or of their segments, which are character-
istic of the Brownian motion.

According to the theory of Brownian motion, these effects
{(rotatory diffusion) can be thought of as being brought about by
an additional force with components proportional to the componehts
_ of the gradient of the distribution function which, in its most
general form, gives the probability that the particle at a particu-
lar time will be located at some specified position with a specified
orientation and velocity. Departures of the distribution function
from equilibrium in the velocity field of the flowing solution_
contribute to viscosity. Since this term exhibits relaxation, its
contribution is complex, and the solution can exhibit rigidity,
vanishing for shears of zero frequency ahd approaching an asynmptotic
value at high frequencies.

1.1.4.2 Models of macromoclecules

Most theories of the flow properties of polymer solutions are
based on the bead models.

The chain elements (of finite dimensions) are approximated,
after Burgers (ref. 3), by points of force (beads, frictional
céentres) . A proportionality relation is assumed to hold between
the frictional force and the relative velocity of the beads. The
proportionality constant is the friction coefficient of the bead, [.
The frictional centres are arranged in correspondence with the
arrangement of chain units. A rigid array of frictional centres is
a model for a rigid rod-like particle while a distribution function
of interbead.distance is adopted for random coils or worm-like
chains,

The frictional centres are connected by links which experience
no frictional interaction with the solvent. Rigid bars are used as
links if the chain is not deformable (as with rigid rods) or if the



deformation need not be considered (as with flexible chains at very
low, time-independent shear-rates). If, on the other hand, the
deformation must be taken into account (e.g. with periodically
varying shear-rates), springs are introduced into the model as
links between the beads.

There exist different ways of treating the Brownian motion
effect (refs 4,53). In one group of theories, Brownian motion (with
rigid rods) and micro-Brownian motion (with flexible chains) is not
considered explicitely. The detailed description of Brownian motion
is replaced by a description based on the average velocities of the
beads. To calculate the configurational averages, use is made of
the equilibrium distribution of configurationms.

In the other group of theories, the non~equilibrium distri-
bution function of the frictional centres in the presence of
frictional forces and of Brownian motion is explicitely calculated.
It is obtained from the diffusion equation which describes the
Brownian motion of the molecule under the influence of an external
force field.

In the investigations of thé shear-rate effects, the simple
dumb-bell model is often employed to yield the first gqualitative
or semiquantitative insight (ref. 6). It considers the motion of
the free ends only, which are connected by a rigid rod or by an
elastic spring, and in which the frictional resistance is concen-
trated. This resistance results from the contribution of all the
beads of which the chain is composed, under the assumption that,
in laminar flow, the average velocities of beads symmetrically
located are -exactly opposite.

In recent theories advanced for rigid rods (ref. 7), worm-
like chains (ref. 8), worm-like rings (ref. 9) and once-broken
rods {ref. 10), the macromolecule is represented by a continuous
cylinder (straight or worm-like) of contour length L and diameter
d. It is probably a better approximation to the real polymer
molecules than, the array of discrete beads (ref. 11).

*

1.1.4.3 The viscosity of solutions of non-interacting

polymer molecules. The intrinsic viscosity

Representing the macromolecule by a set of n+1 frictional
centres (beads), and assuming that no interaction takes place
between the macromoclecules, we can calculate the total loss of

energy as the sum of contributions from all the frictional centres.



Making this summation for chains endowed with a degree of flexi-
bility, we must take into account the variability of configurations
assumed by the molecules.
The frictional force exerted by the liquid on the j-th bead

is 'Ej' and its component in the x direction is -ij. The work
done in unit time by the fluid for the j~th bead is —gj.zg (where
g? is the original velocity of the liquid at the point of location
of the j-th segment) or, with regard to eqn (1.1), to Yij 3°
Taking the average over all conficurations (configurational average)
y<Fny]>, summing the contributions from all the beads of the
molecule, and multiplying the sum by the number of polymer mole-
cules in unit volume cNA/M (where NA is the Avogadro number, c is
the concentration and M the molar mass of polymer}), we obtain the
work dissipated per unit time and unit volume due to the presence
of polymer molecules, —(cN /M)Y I<F, y >. According to egn (1.6),

ix
this work must be equal to the difference (n-n )Yz so that

2 .
(n-ns)Y = (CNA/M)Y §<ijyj> . (1.10)

The basic equation for the calculation of the intrinsic viscosity
is readily obtained from eqns (1.3) and (1.10):

[n] = —(N,/Mn_y) §<ijyj> . (1.11a)

For some purposes, it is more convenient to write
[n) = (N /Mn_y) §<(§j.gx)(§j.gy)> . : ~(1.11b)

‘wheré ey and gy are unit vectors defining the Cartesian system
(with the origin in the centre of mass, with e parallel to the
stream lines of the unperturbed flow, and ey perpendicular to the
phase boundary), and §j is the position vector of the j-th element
relative to the centre of mass. An equation similar to (1.11)
obtains if the distribution of discrete frictional centres is
replaced by a continuous frictional force distribution (refs 7,8).

It follows from eqn (1.11a) that the intrinsic viscosity is
proportional to the sum of averages of products ijyj where F is
the component of the statistical restoring force in the dlrectlon
of flow, and yj depends on the extension of the molecule in the

direction of flow plane perpendicular to the flow. In order to
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evaluate the viscosity or the intrinsic viscosity according to eqns
(1.11), we need know the frictional force F; and the distribution
function of distances §j'

1.1.4.4 The hydrodynamic interaction

(a) Bead models. When calculating the frictional force exerted on
the j-th element by the fluid, one must consider the fact that the
distribution of velocities in the solution is not exactly that
existing in the pure solvent because of the effect of the hydro-
dynamic interaction. The velocity of the fluid in the layer adhering
to the dissolved particle is that of points on the surface of the
particle, u. In remote layers, it is equal to go, the unperturbed
velocity. In intermediate layers it is between u and XO. That means
that the original velocity is perturbed by the dissolved particle.
If two or more particles (e.g. beads) are suspended in the fluid,

the perturbations overlap, and the velocity of the fluid flowing

around any of them is the sum of the unperturbed velocity and of
the perturbations due to the presence of the other particles.

The problem of the hydrodynamic interaction is usually solved
in terms of the Oseen approximation (refs 11,12). It was introduced
into the hydrodynamics of polymer solutions, thirty years ago, by
Kirkwood and Riseman (ref. 13) as a tool simplifying the solution
of this proklem. Recent studies (refs 14,15) have not disproved
its practical value but have set bounds to its use.

Let Yy be the velocity which the fluid would possess at th?
point of location of the bead k if that bead were absent, and u,
be the velocity of this bead. Then a force Ek'
Fy = tly - v, (1.12)

is ekerted on the fluid by this bead. The translational friction
coefficient of the bead { depends on the fluid and on the chemical
structure of polymer molecules. The perturbation of flow, z‘(gk;),
produced at the point k at a distance R, ., from the locus s of
application of the force F  can be calculated by the Oseen formula

V(R ) = TRy ) .E (1.13)

]

where Z(Eks] is the Oseen tensor,
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Z(Bks) = (1/8ﬂnsts)(§ + BksBks/Rks)‘ (1.14)
E is the unity tensor, and R, . is the distance between the beads k
and s in a specified internal configuration of the molecule.
Combining egns (1.13) and (1.14), we have

v(R,) = (1/8Tn_R, ) (F_ + R __F cos3/R ). (1.15)

The perturbation of flow is anisotropic, depending on the angle 3

between the vectors Es and §ks' The motion of a bead is accelerated

if other beads move in the same direction (positive hydrodynamic
interaction), and is slowed down in the opposite case (negative

hydrodynamic interaction). The effect is maximum if the vectors are

parallel, and minimum if they are perpendicular (Fig. 1.3).

Fig. 1.3. The hydrodynamic interaction
of beads.

The curve represents the chain;
A,B,C,D are frictional centres (beads).

Since the distances between elements situated on the same side

from the centre of rotation of the molecule and moving in the same

direction are smaller, the positive contribution to the hydrodynamic

interaction is stronger, and the total effect of the hydrodynamic»
interaction is always positive.

The fluid velocity, xk,'at the pbint k is the sum of the un-
perturbed velocity, gg, existing in the solvent in the absence of
the polymer molecule and the summed Oseen perturbations from all
the other chain elements, i.e.

v P | ) (1.16)
v, =v2 + v .
-k =k s &

szk

1

.5

{

—
v 7 4
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From eqns (1.12), (1.13) and (1.14), we obtain

n
= -v° -

S=0

s*k

&) -Fg - (1.17)

The anisotropy of the hydrodynamic interaction is very often
neglected, and the Oseen tensor is replaced by its average, <I>,
taken over the equilibrium configuration (refs 12,13). If the
distribution of inter-bead distances is spherically symmetric, the
average is

<I> = (1/6nns)<1/Rks> E . (1.18)

The use of the pre-averaged Oseen tensor keeps the mathematics
within‘manageable limits but is a rather severe approximation as it
introduces isotropy which is not present in the physical picture of
the model.

(b) Cylinder models. In hydrodynamic calculations for the continuous

cylinder model, the cylinder is replaced by a frictional force
distribution, £(s), per unit contour length along the cylinder ‘axis,
as a function of the contour distance from one end, s. The source

of hydrodynamic interaction originates on the axis and acts at the
point on the cylinder surface. Therefore, calculating the distance
of interaction, R, one must consider not only the distance between
the contour points J and K (denoted by R) but also the normal radius
vector, r, from the contour point J on the axis to a point P on the
surfaces: |r| = r = d/2. Since the frictional force distribution is
a continuous function, the perturbation of flow due to the hydro-
dynamic interaction is given by the integral

/ T(R7).£(s)ds

(with limits appropriately chosen).

For an instantaneous configuration (or orientation) of the
cylinder, the velocity v(P) of the solvent at the point P relative
to the velocity of this point, u(P), is defined as

v(P) = v°(P) - u(P) + JT(R").f(s)ds , (1.19)

where go(P) is the unperturbed velocity existing at the point P in
the absence of the polymer molecule, and the Oseen-Burgers method
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based on the non-slip condition is applied. This condition requires
that the value of v(P) averaged over a normal cross—-section of the
cylinder vanishes for all values of the contour distance:

<X(P)>(r) =0 . (1.20)

From eqns (1.19) and (1.20) one obtains an integral equation whic.
is the basis for the determination of the frictional force for an

instantaneous configuration:

L

S <T(RT)>,_, .E(s)ds = <u(P)> . - <v°(P)> (1.21)
[e)

(r)~° (r) (r)

1.1.4.5 Orientation and deformation of polymer molecules

For a qualitative description of the orientation and deformation
effects of shear forces in laminar flow, it is convenient to adopt
the dumb-bell model, and for a further simplification of the matter,
t0 consider only the dumb-bells lying in the x-y plane.

Fig. 1.4. An elongated rigid particle
in laminar flow. :

Rotation by shear forces denoted by -
— 3, rotatory diffusion by~——-—,

In Fig. 1.4, arrows represent the differences of the unperturbed
velonities of the liquid in the centre of the dumb-bell and in the
points oEcupied by the frictional centres. They also represent the
force exerted on the frictional centre by the liquid. This force
depends on the angle between the direction of flow and the axis of
the dumb-bell (orientation andgle Xor)' It assumes largest values if
particles are oriented perpendicularly to the flow direction

(Xor = 90"), while lowest values correspond to the parallel
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orientation (Xor =0°}). .

The frictional force can be resclved into radial and tangential
components. The tangential components at two frictional centres of
a dumb-bell are equal in magnitude, but of opposite direction;
acting as a torque, they cause rotation of the particle. Obviously,
the tangential component is the larger, the larcer is Xor S° that
the rotation is not uniform. Consequently, the particle spends
shorter time periods in those regions of orientation where the
velocity of rotation is high. For an ensemble of particles, there
exists a non-uniform distribution function of orientational angles
which gives the probability of finding a particle oriented in the
direction defined by Xor ©F ~ in other words - the number of
particles per unit volume oriented in the corresponding direction.

The orientation is opposed by random thermal motions, which
tend to destroy the non-uniform distribution of Xor and restore
the uniform one. We have to do with a current of rotating particles

_which is proportional to the agradient of the distribution function
of orientation. It has the same physical background as diffusion

in systems characterized by a concentration gradient, and it is
therefore referred to as rotatory diffusion. It is characterized

by the rotatory diffusion coefficient, Dr,.or by the relaxation

time of orientation, Tor = 1/6Dr. This quantity has the following
physical meaning: an imposed preferred orientation reverts to random
orientation with a time decay proportional to exp(—t/ror).

According to Fig. 1.4 the diffusion current in the even
quadrants is opposite to the rotatory motion caused by the shear-
rate whereas the directions of both motions are the same in the
odd quadrants. Therefore, the resulting angular velocity is lower
in the even quadrdnts.'A stationary distribution of Xor angles is
set up which is more or less different from the uniform distribution
at the state cf rest. The distribution is a function of the ratio of
the relative intensities of hydrodynamic and thermal motions of the
axes of the particles, expreséed by the ratio \'(/Dr (ref. 16).

The effect of the radial coOmponent of the frictional force
depehds on the rigidity of the particle. For rigid, undeformable
particles, the radial component is destroyed by the rigidity of the
particle. With coiling, deformable molecules, this component is not
compensated and, therefore, causes deformation. The molecule dilates
when passing the even gquadrants, and is compressgd in odd ones.
Within one rotation about its axis, the molecule is twice dilated
and twice compressed. Since it spends a shorter period of time in



