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Foreword

It is a singular honor to introduce open source readers to the third volume of Dr.
Douglas E. Comer’s remarkable series: Internetworking with TCP/IP.

The history of open source and TCP/IP are magnificently intertwined: you can’t
have collaboration without a network to connect the collaborators! Further, some of the
very first open source software were implementations of the TCP/IP protocols. [
remember the early 80’s, long before ‘‘open source’’ was today’s media darling. In
those days, there were a handful of researchers who understood the problems of network
architectures and implementations. Doug was among their leaders — the principal of
an extensive research program and waging a multi-front attack on the problems we
faced.

I remember the early 90’s, when we first began to see the push toward moving the
technology to the large engineering communities that were hungering for knowledge
and solutions. In those days, it was a mighty struggle for those engineers to build
internet-based environments for their corporations. Doug was there to educate and in-
form them — making the underlying complexity accessible to them and providing them
with hard-earned insights.

And now, I see the early 00’s, where a new generation of designers are writing dis-
tributed applications for the Internet, In these days, we hear of many exciting Intetnet
applications, such as napster, gnutella, and infrasearch. Surprisingly, few of today’s
developers have a grasp of solid network engineering principles — bluntly, they lack an
understanding of the basics, and this lack of understanding inevitably leads to applica-
tions that don’t scale well or that just plain do not work.

It is for this reason, that Volume 3, Client-Server Programming and Applications,
which Doug has authored with David L. Stevens, is particularly relevant to the Internet
today. It teaches us how to architect and build client-server applications, and -— more
importantly -—— how to understand what trade-offs are involved with each design deci-
sion.

My hope is that you, the reader, can benefit from Dr. Comer’s wisdom as much as
your humble predecessors.

Marshall T. Rose

Theorist, Implementor, and Agent Provocateur
Petaluma, California .
June, 2000



Preface

- The Linux operating system is soaring in popularity, and especially important in
the networking community as the system for many servers. This new version of
Volume 3, which uses Linux, is aimed at p.ogrammers who want to understand how to
create networking applications. Broadly speaking, it examines the question, ‘‘How deces
application software use TCP/IP protocols to communicate across an internet?”’ The
text focuses on the client-server paradigm, and examines algorithms for both the client
and server components of a distributed program. It shows an implementation that illus-
trates each design, and discusses techniques including application-level gateways and
tunneling. In addition, it reviews several standard application protocols, and uses them
to illustrate the algorithms and implementation techniques.

Although this volume can be read and used alone, it forms part of a larger picture
completed by two other volumes in the series. Volume / considers the question ‘‘What
is a TCP/IP internet?”’ Volume 2 examines the question, ‘‘How does TCP/IP software
work?”’ It presents more details, examines working code, and explores greater depth
than the first volume. Thus, although a programmer can learn to create network appli-
cations from Volume 3 alone, the other volumes can be used to provide a better under-
standing of the underlying technologies.

This version of Volume 3 includes the latest technologies. For example, a chapter
explains how a Linux program can use the POSIX thread facilities to create a con-
current server. The chapter on NFS discusses version 3, the version that is about to em-
erge in the Linux community. In addition, sections have been included to explain con-
cepts behind programs like slirp that provide Internet access over a dialup telephone
connection without requiring each computer to have a unique IP address.

Two chapters that stand out as especially timely concentrate on streaming and the
associated technologies used to send audio and video across the Internet. Chapter 28
describes fundamental concepts such as the Real-time Transport Protocol (RTP), encod-
ing, and jitter buffers. Chapter 29 shows an implementation of RTP that is used to re-
ceive and play MP3 audio.

The code for all examples in the text is available online. To access a copy via the
Web, look for Volume 3 in the list of networking books at location:

http://www.cs.purdue.edu/homes/comer/netbooks.html
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To access the code via FTP, use location:

ftp://ftp.cs.purdue edu/pub/Xinu/TCPIP-vol3 Jinux.dist.tar.Z

The text is organized as follows. Beginning chapters introduce the client-server
paradigm and the socket interface that application programs use to access TCP/IP proto-
col software. They also describe concurrent processes and the operating system func-
tions used to create them. Chapters that follow the introductory material discuss client
and server designs.

The text explains that the myriad of possible designs are not random. Instead, they
follow a pattern that can be understood by considering the choice of concurrency and
transport. For example, one chapter discusses a nonconcurrent server design that uses
connection-oriented transport (e.g., TCP), while another discusses a similar design that
uses connectionless transport (e.g., UDP).

We describe how each design fits into the space of possible implementations, but
do not try to develop an abstract ‘‘theory’” of client-server interactions. Instead, we em-
phasize practical design principles and techniques that are important to programmers.
Each technique has advantages in some circumstances, and each has been used in work-
ing software. We believe that understanding the conceptual ties among the designs will
help the reader appreciate the strengths and weaknesses of each approach, and will
make it easier (0 choose among them. '

The text contains example programs that show how each design operates in prac-
tice. Most of the examples implement standard TCP/IP application protocols. In each
case, we tried to select an application protocol that would convey a single design idea
without being too complex to understand. Thus, while few of the example programs are
exciting, they each illustrate one important concept. This version of Volume 3 uses the
Linux socket mechanism (i.e., socket API) in all programming examples; two other ver-
sions of the text contain many of the same examples using Microsoft’s Windows Sock-
ets interface and AT&T’s TLI interface.

Later chapters focus on middleware. They discuss the remote procedure call con-
cept and describe how it can be used to construct distributed programs. The chapters
relate the remote procedure call technique to the client-server model, and show how
software can be used to generate client and server programs from a remote procedure
call description. The chapters on TELNET show how small details dominate a produc-
tion program and how complex the code can become for even a simple, character-
oriented protocol. The section ends with the two chapters on streaming transport
described earlier.

Much of the text concentrates on concurrent processing. Many of the concepts
described may seem familiar to students who have written concurrent programs because
they apply to all concurrent programs, not only network applications. Students who
have not written concurrent programs may find the concepts difficult.
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The text is suitable for a single semester undergraduate course on ‘‘socket pro-
gramming’’ or a beginning graduate-level course on distributed computing. Because the
text concentrates on how to use an internet rather than on how it works, students need
little background in networking to understand the material. No particular concept is too
difficult for an undergraduate course as long as the instructor proceeds at a suitable
pace. A basic course in operating systems concepts or experience with concurrent pro-
gramming may provide the best background.

Students will not appreciate the material until they use it first hand. Thus, any
course should have programming exercises that force the students to apply the ideas to
practical programs. Undergraduates can learn the basics by repeating the designs on
other application protocols. Graduate students should build more complex distributed
programs that emphasize some of the subtle techniques (e.g., the concurrency manage-
ment techniques in Chapter /6 and the interconnection techniques in Chapters /8 and
19).

We thank many people for their help. Members of the Internet Research Group at
Purdue contributed technical information and suggestions to the original text. Michael
Evangelista proofread the text and wrote the RTP code. Gustavo Rodriguez-Rivera read
several chapters, ran experiments to test details, and edited Appendix 1. Dennis Brylow
commented on several chapters. Christine Comer edited the entire text and improved
both wording and consistency.

Douglas E. Comer
David L. Stevens

July, 2000
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What Others Have Said About The Linux Version
Of Internetworking With TCP/IP Volume 3

““This is by far the best book on the topic I have ever read. Thank you for
making sockets easy to understand.”
Dustin Boswell
Caltech

“*An excellent book for learning TCP/IP client-server programming. This book
explains important concepts clearly and provides working example code; the
combination produces an extremely effective way to learn the subject.”

John Lin
Bell Labs

“Your book has been extremely valuable to me — thank you very much
indeed.”’
Jacoby Thwaites

“I enjoy the clarity and depth!”’
Rob Moloney

“Volume 3, Client-Server Programming and Applications, which Doug has au-
thored with David L. Stevens, is particularly relevant to the Internet today. It
teaches us how to architect and build client-server applications, and — more
importantly — how to understand what trade-offs are involved with each
design decision.”’

Marshall Rose
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