E 5hEF &S F B :
FERMFESRERAEFHM

TCP/IP AEEE 3%,
EF / REERERR

Linux/POSIX Sockets It

INTERNETWORKING with TCP/IP volume 3

CLIENT-SERVER PROGRAMMING AND APPLICATIONS - &
LINUX/POSIX Sockets Version

DOUGLAS E. COMER DAVID L. STEVENS

5 prEnTICE P€arson Education
A R HBE H ARkt A

www.pptph.com.cn




EIShE B Sl B R SE AR RS Bkt

TCP/IP [MBHIE 26 3 &:
EP/EEREERLE Linux/POSIX Sockets I
(&> ki)

Internetworking with TCP/IP Volume 3
Client-Server Programming and Applications
Linux/POSIX Sockets Version

Douglas E. Comer

David L. Stevens

/Z ARS B H ARt PRENTICE Pearson Education 1 i £ H



E 554 B E R R BRI SHAKS S
TCP/IP MEE&E % 3%:
ER/REB/HIERMNA Linux/POSIX Sockets iR
(BESCRR)

»E Douglas E.Comer David L.Stevens
RitHmE 5l

& ARBRE IR HARRTT AR LK BEE 148
Bis% 100061 HTERH 315@ pptph.com.cen
PIsiE  http://www. pptph. com. cn
EEMRL 01067129212 010-67129211(FF )
LU B A 3B R m A
A5 B R SR ER R T ENAg]
FHEBELIEIERRITEH

& JFA.800x 1000 1/16

13k .39.5
FH.166 TF 20024E 1 HE 1R
%1 -3 000 M 2002 4 ) HALFEE 1 KGR

EENAERZIE EF.01-2001 -4837 5
ISBN 7-115-09921-9/TP- 2654

Efr:57.00 L
ABNFIEAREOH, FSHEHEBER £iF:(010)67129223



RS E (CIP) %k

TCP/IP M4 Hi%E. 3 3 4, BF/IRE8HIE NN A Linux/POSIX Sockets hit/ ()
#IBR (Comer, D.E. ), (&) & (Stevens, D.L. ) &F. —Jbtx: AKRHE
B ARAE, 2002.1

E A E 2 BERRE R SERNS B

ISBN 7-115-09921-9

I. T... II. OF... @%... I HEHNE—BEDHPL—SFFERE—HM—
L5

IV. TN915.04

FE IR A E 31 CIP M ZF (2001) 28 089015 5

i L W

English Reprint Edition Copyright © 2001 by PEARSON EDUCATION NORTH ASIA LIMITED
and PEOPLE’S POSTS & TELECOMMUNICATIONS PUBLISHING HOUSE.

Internetworking with TCP/IP Volume 3 Client-Server Programming and Applications Linux/POSIX
Sockets Version: Douglas E. Comer David L. Stevens

Copyright © 2001

All Rights Reserved.

Published by arrangement with Prentice Hall, Pearson Education, Inc.

This edition is authorized for sale only in People’s Republic of China (excluding the Special

Administrative Region of Hong Kong and Macau).

EERAREL BT 01-2001-4837 5



N oE R E

AFHE T B IRGH/GEMNA, HR THRTFS MR HRS
MR P IR S T ERMERES, AFREEMAR RS JRIITIE
AR RIRME R P IREGEN &M TR R, OFFEEAH RPC. S48
T RREH SR TRNETEFRFIMNERLE. XEBEET
Linux/POSIX Sockets IRARER], NEEMEH, HTHE, B—4FXT
TCP/IP P48 B % (FIBE £ S X AR MR AR 0 5, RAEM —MEE THMNEE
ERARPAFTRARA DK SES,

EREEENBEERTEN L WSHFRENEM, HE&&E
PERARFF RN R



tH AR it AR

2001 4F, HEHEKRT (T “+1” HRASESSHEAMBR S SFEDN
B, ZCHHHEN, “hh” BEREREEE “MFESHEM, 2HRR
JE” HEERT, BT S TEARRE, HET —XHRAREREIIE
M. RMBEEREERN GEAE, HilmKRBEMER TV G T 828R
Tk, —BEMAERIE, FEHERFH L BRETHHRETRHFIRERE
FImE. A HFEIA, ENREAASMP5ISTIE. S5, SI3MNES
25 BRI SHARMERR % SHAFTHRFRPEM . BRESL GRB 2R
FIRE, BdEANRE. $RBIE, SIMEMBEN . BERESHEAMNOERESR
ME, MENTHEEMES, RUESEEMNERIE.

RANEEE R 1977 FERMPHISH: “EF|HEEH, RUESIEHEMTH
HHOFT.” BEEREMA WTO, {58/ LERFRESFHBEI, BATLHR
PSR KA B EFE TSR IWRKPE BEANS . B E—MEER R
B, EAG—EREHMMERET, HSRETREHHAA T EMEET
K. SIBESERES, oOUESHREESKERES, #Baed3EK PR
260, PRIERNIESR M4 BE B RokHE.

hT Bab R “REME” B, RAENRSEHEEMERNFTE, A
EHB R AL AiE A R ERXRERIE, SEEAMAMEMBRAREE, M5
B E BRI ERRINBEM . BB A ENE L EFEORE,
RENZEZ FEREIRBNEN, BFREEBEEARRETREZMTE
B2, XUHEMAET, REBTHEIREERNBERARE, MemRrERERE
BRI S AR EEFEKCTE LRSI ERKESIEA.

HAR E A E L B S LRE BR¥ SEARRBEEM B THERR— KK, B
BAWENTRE, ®EME (wwwpptph.com.en) LA BT RATEMRBEER WE
BEMER, FBEHEME5EME BRI T R ER A, BudxiE.
T KBITA R A P AR R DR ARG A, AR E A R
PRAMTHE RN T A, HHEL B SIERE SR E S HAREM.

A BEHRH R A
2001 4 12 H



F &

Douglas E. Comer #### (Internetworking with TCP/IP) =& f&1% TCP/IP K%
BEA, EENIEEERESE, XOEREVR, /5= R
HELSWEPAENES . FEEW. S0, &S WRTRET 3,
X RARIFEFBEEMKFHEFZBHEERA,

HEIM B AR L5 E B RERNEARZ —, LT KRR
BTG, W14 A LA TCP/IP LAILME . @R FFUMIL R AR S P4k
REMDHET L, BN EBEMSKHIRE. TCP/AP {58 KA ar 12 E a8
.

HEERI Ot T EE i, FRITE AR FOE B R 2t 38 5 AATTHY
HENE. MR R AMIXEBERSKERT KB SEE T - AE
P HRIRAITR, fEXFHE, HUREMT FEHXNZE, W: IPV6, RTP.
Mobile IP 5.

MR “BERALIESHMH, TN IEE RIRAIREEER,
Comer #FZHIXA T R EATHEMINAC . T KK MIRL BIBT £

EHERF W EY R SRR R
v [ SRR 2% 0 B A

ytf

2001 11 J 18 H



Foreword

It is a singular honor to introduce open source readers to the third volume of Dr.
Douglas E. Comer’s remarkable series: Internetworking with TCP/IP.

The history of open source and TCP/IP are magnificently intertwined: you can’t
have collaboration without a network to connect the collaborators! Further, some of the
very first open source software were implementations of the TCP/IP protocols. [
remember the early 80’s, long before ‘‘open source’’ was today’s media darling. In
those days, there were a handful of researchers who understood the problems of network
architectures and implementations. Doug was among their leaders — the principal of
an extensive research program and waging a multi-front attack on the problems we
faced.

I remember the early 90’s, when we first began to see the push toward moving the
technology to the large engineering communities that were hungering for knowledge
and solutions. In those days, it was a mighty struggle for those engineers to build
internet-based environments for their corporations. Doug was there to educate and in-
form them — making the underlying complexity accessible to them and providing them
with hard-earned insights.

And now, I see the early 00’s, where a new generation of designers are writing dis-
tributed applications for the Internet, In these days, we hear of many exciting Intetnet
applications, such as napster, gnutella, and infrasearch. Surprisingly, few of today’s
developers have a grasp of solid network engineering principles — bluntly, they lack an
understanding of the basics, and this lack of understanding inevitably leads to applica-
tions that don’t scale well or that just plain do not work.

It is for this reason, that Volume 3, Client-Server Programming and Applications,
which Doug has authored with David L. Stevens, is particularly relevant to the Internet
today. It teaches us how to architect and build client-server applications, and -— more
importantly -—— how to understand what trade-offs are involved with each design deci-
sion.

My hope is that you, the reader, can benefit from Dr. Comer’s wisdom as much as
your humble predecessors.

Marshall T. Rose

Theorist, Implementor, and Agent Provocateur
Petaluma, California .
June, 2000



Preface

- The Linux operating system is soaring in popularity, and especially important in
the networking community as the system for many servers. This new version of
Volume 3, which uses Linux, is aimed at p.ogrammers who want to understand how to
create networking applications. Broadly speaking, it examines the question, ‘‘How deces
application software use TCP/IP protocols to communicate across an internet?”’ The
text focuses on the client-server paradigm, and examines algorithms for both the client
and server components of a distributed program. It shows an implementation that illus-
trates each design, and discusses techniques including application-level gateways and
tunneling. In addition, it reviews several standard application protocols, and uses them
to illustrate the algorithms and implementation techniques.

Although this volume can be read and used alone, it forms part of a larger picture
completed by two other volumes in the series. Volume / considers the question ‘‘What
is a TCP/IP internet?”’ Volume 2 examines the question, ‘‘How does TCP/IP software
work?”’ It presents more details, examines working code, and explores greater depth
than the first volume. Thus, although a programmer can learn to create network appli-
cations from Volume 3 alone, the other volumes can be used to provide a better under-
standing of the underlying technologies.

This version of Volume 3 includes the latest technologies. For example, a chapter
explains how a Linux program can use the POSIX thread facilities to create a con-
current server. The chapter on NFS discusses version 3, the version that is about to em-
erge in the Linux community. In addition, sections have been included to explain con-
cepts behind programs like slirp that provide Internet access over a dialup telephone
connection without requiring each computer to have a unique IP address.

Two chapters that stand out as especially timely concentrate on streaming and the
associated technologies used to send audio and video across the Internet. Chapter 28
describes fundamental concepts such as the Real-time Transport Protocol (RTP), encod-
ing, and jitter buffers. Chapter 29 shows an implementation of RTP that is used to re-
ceive and play MP3 audio.

The code for all examples in the text is available online. To access a copy via the
Web, look for Volume 3 in the list of networking books at location:

http://www.cs.purdue.edu/homes/comer/netbooks.html



2 Preface
To access the code via FTP, use location:

ftp://ftp.cs.purdue edu/pub/Xinu/TCPIP-vol3 Jinux.dist.tar.Z

The text is organized as follows. Beginning chapters introduce the client-server
paradigm and the socket interface that application programs use to access TCP/IP proto-
col software. They also describe concurrent processes and the operating system func-
tions used to create them. Chapters that follow the introductory material discuss client
and server designs.

The text explains that the myriad of possible designs are not random. Instead, they
follow a pattern that can be understood by considering the choice of concurrency and
transport. For example, one chapter discusses a nonconcurrent server design that uses
connection-oriented transport (e.g., TCP), while another discusses a similar design that
uses connectionless transport (e.g., UDP).

We describe how each design fits into the space of possible implementations, but
do not try to develop an abstract ‘‘theory’” of client-server interactions. Instead, we em-
phasize practical design principles and techniques that are important to programmers.
Each technique has advantages in some circumstances, and each has been used in work-
ing software. We believe that understanding the conceptual ties among the designs will
help the reader appreciate the strengths and weaknesses of each approach, and will
make it easier (0 choose among them. '

The text contains example programs that show how each design operates in prac-
tice. Most of the examples implement standard TCP/IP application protocols. In each
case, we tried to select an application protocol that would convey a single design idea
without being too complex to understand. Thus, while few of the example programs are
exciting, they each illustrate one important concept. This version of Volume 3 uses the
Linux socket mechanism (i.e., socket API) in all programming examples; two other ver-
sions of the text contain many of the same examples using Microsoft’s Windows Sock-
ets interface and AT&T’s TLI interface.

Later chapters focus on middleware. They discuss the remote procedure call con-
cept and describe how it can be used to construct distributed programs. The chapters
relate the remote procedure call technique to the client-server model, and show how
software can be used to generate client and server programs from a remote procedure
call description. The chapters on TELNET show how small details dominate a produc-
tion program and how complex the code can become for even a simple, character-
oriented protocol. The section ends with the two chapters on streaming transport
described earlier.

Much of the text concentrates on concurrent processing. Many of the concepts
described may seem familiar to students who have written concurrent programs because
they apply to all concurrent programs, not only network applications. Students who
have not written concurrent programs may find the concepts difficult.



Preface 3

The text is suitable for a single semester undergraduate course on ‘‘socket pro-
gramming’’ or a beginning graduate-level course on distributed computing. Because the
text concentrates on how to use an internet rather than on how it works, students need
little background in networking to understand the material. No particular concept is too
difficult for an undergraduate course as long as the instructor proceeds at a suitable
pace. A basic course in operating systems concepts or experience with concurrent pro-
gramming may provide the best background.

Students will not appreciate the material until they use it first hand. Thus, any
course should have programming exercises that force the students to apply the ideas to
practical programs. Undergraduates can learn the basics by repeating the designs on
other application protocols. Graduate students should build more complex distributed
programs that emphasize some of the subtle techniques (e.g., the concurrency manage-
ment techniques in Chapter /6 and the interconnection techniques in Chapters /8 and
19).

We thank many people for their help. Members of the Internet Research Group at
Purdue contributed technical information and suggestions to the original text. Michael
Evangelista proofread the text and wrote the RTP code. Gustavo Rodriguez-Rivera read
several chapters, ran experiments to test details, and edited Appendix 1. Dennis Brylow
commented on several chapters. Christine Comer edited the entire text and improved
both wording and consistency.

Douglas E. Comer
David L. Stevens

July, 2000



About The Authors

Dr. Douglas Comer is an internationally recognized expert on TCP/IP pro-
tocols and the Internet. One of the researchers who contributed to the Internet
as it was being formed in the late 1970s and 1980s, he was a member of the In-
ternet Architecture Board, the group responsible for guiding the Internet’s
development. He was also chairman of the CSNET technical committee and a
member of the CSNET executive committee.

Comer consults for companies on the design and implementation of net-
works, and gives professional seminars on TCP/IP and internetworking to both
technical and nontechnical audiences around the world. His operating system,
Xinu, and implementation of TCP/IP protocols are documented in his books,
and used in commercial products.

Comer is a professor of computer science at Purdue University, where he
teaches courses and does research on computer networking, internetworking,
and operating systems. In addition to writing a series of best-selling technical
books, he serves as the North American editor of the journal Software — Prac-
tice and Experience. Comer is a Fellow of the ACM.

Additional information can be found at:

www.cs.purdue.edu/people/comer

David Stevens received his BS (1985) and MS (1993) in Computer Science
from Purdue University. He has been a UNIX systems programmer working
primarily on BSD UNIX kernels since 1983. He has done implementations of
most of the Internet Protocol Suite and co-authored several Computer Science
textbooks with Dr. Comer. His areas of professional interest are operating sys-
tems, computer networking, and large-scale software systems design.

In recent years, Stevens has worked in the area of scalable networking on
high-performance multiprocessor systems for Sequent Computer Systems and
the IBM Corporation. He is a member of the ACM and IEEE.



What Others Have Said About The Linux Version
Of Internetworking With TCP/IP Volume 3

““This is by far the best book on the topic I have ever read. Thank you for
making sockets easy to understand.”
Dustin Boswell
Caltech

“*An excellent book for learning TCP/IP client-server programming. This book
explains important concepts clearly and provides working example code; the
combination produces an extremely effective way to learn the subject.”

John Lin
Bell Labs

“Your book has been extremely valuable to me — thank you very much
indeed.”’
Jacoby Thwaites

“I enjoy the clarity and depth!”’
Rob Moloney

“Volume 3, Client-Server Programming and Applications, which Doug has au-
thored with David L. Stevens, is particularly relevant to the Internet today. It
teaches us how to architect and build client-server applications, and — more
importantly — how to understand what trade-offs are involved with each
design decision.”’

Marshall Rose



Contents

Chapter 1

1.1
1.2
1.3
14
15
1.6
1.7
1.8
19

introduction And Overview

Internet Applications Using TCP/IP

Designing Applications For A Distributed Environment

2
2

Standard And Nonstandard Application Protocols
An Example Of Standard Application Protocol Use

An Example TELNET Connection 3

Using TELNET To Access An Alternative Service
Application Protocols And Software Flexibility 5
Viewing Services From The Provider's Perspective

The Remainder Of This Text 6
1.10  Summary 7

1

4

6

Chapter 2 The Client Server Model And Software Design

2.1
22
2.3

Introduction 9
Motivation 10
Terminology And Concepts 10

2.3.1
2.3.2
2.3.3
2.34
2.3.5
2.3.6

Clients And Servers 11
Privilege And Complexity

Standard Vs. Nonstandard Client Software

Parameterization Of Clients

Connectionless Vs. Connection-Oriented Servers

Stateless Vs. Stateful Servers

11

12

14

12

1

13



24

Chapter 3 Concutrent Processing In Client-Server Software

3.1
32
3.3
34

35

36
3.7
38
39

2.3.7 A Stateless File Server Example 15
238 A Stateful File Server Example 15
2.3.9 Identifying A Client 16

2.3.10  Statelessness Is A Protocol Issue 18
2.3.11  Servers As Clients 19

Summary 20

Introduction 23

Concurrency In Networks 23

Concurrency In Servers 25

Terminology And Concepts 26

34.1 The Process Concept 26

342 Sharing Of Local And Global Variables 27
343 Procedure Calls 28

An Example Of Concurrent Process Creation 29
35.1 A Sequential C Example 29

352 A Concurrent Version 30

353 Timeslicing 31

354 Singly-Threaded Process Assumption 32
355 Making Processes Diverge 33

Executing New Code 34

Context Switching And Protocol Software Design 34
Concurrency And Asynchronous I/O 35

Summary 36 ’

Chapter 4 Application Interface To Protocols

4.1
4.2

4.3
4.4
45
4.6
47
48
4.9

Introduction 39

Loosely Specified Protocol Software Interface 39

4.2.1 Advantages And Disadvantages 40

Interface Functionality 40

Conceptual Interface Specification 41

System Calls 42

Two Basic Approaches To Network Communication 43
The Basic I/O Functions Available In Linux 43

Using Linux IO With TCP/IP 45

Summary 45

Contents

23

39



Contents

Chapter 5 The Socket API

3.1
5.2
5.3
54

55
5.6
5.7

5.8
5.9
5.10
5.11

Introduction 47

Berkeley Sockets 47

Specifying A Protocol Interface 48

The Socket Abstraction 49

54.1 Socket Descriptors And File Descriptors 49
54.2 System Data Structures For Sockets 50
5.4.3 Making A Socket Active Or Passive 51
Specifying An Endpoint Address 52

A Generic Address Structure 52

Major System Calls In The Socket API 54

57.1 The Socket Call 54

5.7.2 The Connect Call 54

57.3 The Send Call 55

5.7.4 The Recv Call 55

57.5 The Close Call 55

5.7.6 The Bind Call 56

577 The Listen Call 56

5.7.8 The Accept Call 56

5.7.9 Using Read And Write With Sockets 56
57.10 Swmmary Of Socket Calls 57

Utility Routines For Integer Conversion 58
Using Socket Calls In A Program 58

Symbolic Constants For Socket Call Parameters 59
Summary 60

Chapter 6 Algorithrhs And Issues In Client Software Design

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

Introduction 63

Learning Algorithms Instead Of Details 63
Client Architecture 64

Identifying The Location Of A Server 64
Parsing An Address Argument 66

Looking Up A Domain Name 67

Looking Up A Well-Known Port By Name 68
Port Numbers And Network Byte Order 68
Looking Up A Protocol By Name 69

The TCP Client Algorithm 69

Allocating A Socket 70

Choosing A Local Protocol Port Number 71

A Fundamental Problem In Choosing A Local IP Address 71

Connecting A TCP Socket To A Server 72

47

63



6.15
6.16
6.17

6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25

Communicating With The Server Using TCP 72
Receiving A Response From A TCP Connection 13
Closing A TCP Connection 74

6.17.1  The Need For Partial Close 74
6.17.2 A Partial Close Operation 74
Programming A UDP Client 75

Connected And Unconnected UDP Sockets 76
Using Connect With UDP 76

Communicating With A Server Using UDP 76
Closing A Socket That Uses UDP 77

Partial Close For UDP 77

A Warning About UDP Unreliability 77
Summary 77

Chapter 7 Example Client Software

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
710
711
712
713
7.14
7.15
7.16
7.17
718
7.19

Introduction 81

The Importance Of Small Examples 81

Hiding Details 82

An Example Procedure Library For Client Programs 82
Implementation Of ConnectTCP 83
Implementation Of ConnectUDP 84

A Procedure That Forms Connections 85

Using The Example Library 88

The DAYTIME Service 88

Implementation Of A TCP Client For DAYTIME 89
Reading From A TCP Connection 90

The TIME Service 91

Accessing The TIME Service 91

Accurate Times And Network Delays 92

A UDP Client For The TIME Service 92

The ECHO Service 94

A TCP Client For The ECHO Service 94

A UDP Client For The ECHO Service 96
Summary 98

Chapter 8 Algorithms And Issues In Server Software Design

81
82
83
84

Introduction 101

The Conceptual Server Algorithm 101

Concurrent Vs. Iterative Servers 102
Connection-Oriented Vs. Connectionless Access 102

Contents

81

101



