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Introduction

I. At the present level of development of science and technology,
many investigations in physics, biology, chemistry, metallurgy, etc.,
require setting up complicated and expensive experiments. The
measurement of any experimental quantity always takes place under
the influence of some obstacles which can never be completely
eliminated despite the efforts of the researcher to keep them to a
minimum. Because of this, the investigator deals not with deterministic,
but with random quantities. In some cases the measured quantities
are random by their very nature. It is necessary to deal with the
measurement of such quantities in quantum mechanics, in biological
investigations, in certain problems of chemical kinetics, and in other
branches of science.

The necessity of applying the apparatus of mathematical statistics
to the reduction of the results of measurements is evident when the
random components are commensurate with the results themselves.
The corresponding methods of reduction have long been used in
experimental practice.

For a long time, the attention of mathematical statistics was focused
on the perfection of methods of reduction when the method of
conducting the experiment was preestablished. The choice of the
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2 . INTRODUCTION

experiment itself, that is, when and where to take measurements, was
determined mainly by the intuition of the experimenter. During this
time it was necessary to deal with problems which were comparatively
simple from the theoretical and experimental viewpoints, and which
did not require significant expenditures (financial means, time,
limited material resources). Losses related to errors of the intuitive
solution for the mcthod of conducting the experiment were not met
very often and were not essential.

The development of science and technology led to natural complica-
tions in the theoretical interpretation of the results obtained, and in
the methods of carrying out necessary experimental investigations.
More complicated experimental situations led to sharply increased
cost of experimental investigations. As an example, one may cite
investigations in the realm of the physics of elementary particles
where the necessity of building powerful accelerators makes measure-
ments very expensive. Therefore, the problem of extracting an in-
creased quantity of data from processes under study with finite
resources is currently very real. Relying on the intuition of the experi-
menter for the solution of a given problem becomes less and less
hopeful. In connection with this, it is absolutely necessary to give
a broad class of methods which would give not only the means of
reduction of experimental data, but also would permit the organization
of the experiment in an optimal manner.

The mathematical apparatus used in the optimal organization of
experiments is based on a composition of mathematical statistics
methods'and methods of solving extremal problems. Increasingly often,
mathematical statistics is necessary for wise construction and elucida-
tion of the basic properties of the criteria of optimality of an experi-
ment. Afterward the problem of optimal organization of an experiment
(or more briefly, a design of an experiment) leads to the solution of
some extremal problem.

We note that a design is suitable only in those cases when the experi-
menter clearly sets forth the end-purpose of the investigation being
conducted. It may be further added that statistical methods of design
are instruments which make attainment of an established goal easier.
Moreover, the effectiveness of utilizing any instrument (or apparatus)
essentially depends on how well it is used and on the qualifications
of the hands using it. In the same way, the effectiveness of applying
experimental design methods depends, in the large, on how well they
are mastered, and on their appropriate utilization. For example, in
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conducting elementary experiments requiring very few rcsources,
it is hardly necessary to apply methods requiring computational
resources which could significantly exceed the cost of the experiment
itself,

II. Currently, it is possible to divide the mathematical theory of
experimental design into two basic areas: design of extremal experi-
ments and design of experiments for an elucidation of the mechanism
of a phenomenon. A design of the first type is used in those cases when
the experimenter is interested in conditions under which the process
being investigated satisfies some criteria of optimality. For example,
in the development of a new chemical-technological process, the criteria
of optimality consists of requiring maximal output of the products of
the reaction. In this case, design consists of finding those values of
temperature, pressure of reagents, their percentage of concentration,
and so forth, for which the established requirements are satisfied.

Frequently, the experimenter finds it necessary to elucidate the
global behavior of an investigated object, or as we shall say in the
future, to elucidate the mechanism of a phenomenon. For example
in the study of a chemical-technological process it may be necessary
to eluctdate the dependenceof the final products of the reaction on
temperature, pressure, reagents, and so forth. In the language of
mathematics a similar type of problem is formulated in the following
way: It is necessary to find a function which defines the relationship
between the end product of the reaction and the quantities introduced
at the beginning of the reaction(temperature, percentageof reagent con-
centration, and so forth). Or in short: Find a mathematical model of the
given process. In this way, by an elucidation of the mechanism of a phe-
nomenon, here, in distinction from the usual use of this term, it will be
understood to be not a direct investigation of a reaction on the level of
elementary particles, molecules and so on, but an investigation of the
phenomenological side of an event. In other words, we are indifferent,
for example, to the manner in which two molecules react. The
important point to us is the dependence of the final product on the
percentage of reagent concentration which enters into this reaction
and can be directly measured in a given experiment. Having set up
an investigation of the mathematical form of the dependence of some
quantity on corresponding factors, we will thereby give enough
information to the specialist of a branch of science on the basis of
which he may call on the necessary theoretical apparatus and be able
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to deduce the correct form of the elementary chemical reactions.

The design of an extremal experiment has been adequately investi-
gated. A significant number of articles and surveys have been devoted
to an exposition of the corresponding mathematical apparatus. The
results of a majority of these are discussed in the book by Nalimov
and Chernova [I]. The book of Hicks, ‘Fundamental Concepts in
the Design of Experiments” [2], should also be pointed out. This book
is usually used in a first introduction to the problems under considera-
tion. Along with the broad literature expounding the mathematical
aspects of design of extremal experiments there are many works
related to the practical application of methods of designing such
experiments (cf., for example, (3, 4]).

Essentially little attention in contemporary literature is given to
the design of experiments for seeking mathematical models to
describe an investigated object. From the Russian literature here we
can cite only the monograph of Klepikov and Sokolov [5], in which
there is a brief section related to the planning of such experiments,
and a chapter of Nalimov [4]. By comparison with the number of
works on extremal design, only a very small collection of works deal
with the practical application of methods of experimental design for
seeking methamtical models.

This book sets as its aim the presentation, from the viewpoint of
practical applications, of the more important and accessible mathe-
matical methods of experimental design, along the line of defining
mathematical models which describe an investigated object. For a
clear explanation of the possibilities and the region of applicability of
each of the methods considered in this volume, theoretical material
is accompanied by a significant number of examples.

III. We now consider a more detailed mathematical setup of
the problem of experimental design along the line of elucidating the
mechanism of a phenomenon. Usually the measured quantity depends
on one or several factors, which sometimes we shall call “control
variables;” this term attempts to emphasize those values of each of
the factors that can be chosen arbitrarily from some given domain.
Various quantities can be considered as control variables, depending
on the type of experiment. For example: time, scattering angle of
particles falling on a target, temperature, tension, output of an
experimental apparatus, percentage of reagent concentration in a
chemical or biological experiment, and so on,
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The column vector
*1
x =
Xx
is set up for each level of these quantities; the coordinates x, , x3 ,..., X
are equal to the values of the control variables and are enumerated
in an order suitable to the experimenter.

The space of dimension k, on which the vector x is defined, is called
the factor space or the space of control variables. The collection of
points of this space, where measurements are possible (that is, the
corresponding values of the control variables X, X3 ,..., Xk which
can be realized by the experimenter) is called the region of possible
measurements or the domain of actions, and in this book is indicated
by X. Determination of the boundary of the region X plays an impor-
tant role in the design of optimal experiments. In some cases, these
boundaries are defined by the very nature of the control variables.
For example, the percentage of reagent concentration cannot be less
than O or greater than 100 %, the dimensions of details under investiga-
tion are negative, and so on. In other cases, met significantly more
often, the boundary of the domain of action is determined by the
characteristics of the apparatus used by the investigator or by the form
of the process under study. Indeed, the upper boundary of temperature
will be determined either by the power of the heat source or by the
thermal insulation properties of the materials. The upper limits for the
speed of accelerated elementary particles is determined by the param-
eters of the accelerator. The reader can extend without difficulty the
list of analogous examples, related to real experiments encountered
in the branch of science familiar to him.

The problem of setting up an experiment for finding a mathematical
model, as already noted, is the search for relations among the measured
quantities (sometimes there can be several) and the control variables.
Since the results of an observation are random quantities, it makes
sense in the majority of cases to talk about the relation of the mean
value of the quantity under study to the control variables. In the future
we shall assume that this relation can be written by means of some
function

E(y | %) = (),
where E(y | x) is the mean value of the quantity y under study for
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values of the control variables defined by means of the coordinates
of the vextor x. The function n(x) depends on unknown parameters
#,0,..08,, and in the general case, its analytic form can also be
unknown.

Beginning the search for a mathematical model {the function 5(x}],
the experimenter possesses some prior information. The degree of
this information can be characterized at three basic levels.

1. The analytic form of the function n(x) = n(x, 8) is known.
It is required to determine or estimate the unknown parameters

O
2. It is known that the analytic form of the function is defined by
one of the functions

ni(x, 8),
n(x) — ﬂ2(x:v 02))‘
7, 0,)-
The dimension of the vectors 8,,8,,..., 8, can be different. It is

required to determine which of the functions

M, 63), na(, Be),-.., 7, 6,)

is correct and to find the unknown parameters.

3. The analytic form of the function 7(x, 8) is not known. It is
known only that the function 7(x) can be approximated sufficiently
well, in the region of interest to the experimenter, by means of
a finite series in some system (or systems) of given functions. It is
required to find the best description of the function n(x).

Although the decomposition 1-3 is sufficiently coarse, it is possible
to find examples where the real experimental situation occupies
a position between any two of these levels. The levels 1-3 are con-
venient from the viewpoint of existing methods of designing an
experiment, and, at the same time, they describe fairly well the
majority of real cases.

The mathematical apparatus of experimental design with prior
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knowledge corresponding to level 1 began to develop about in the
mid 1950s, and its development has practically been completed.
For this case, the development consists of effective methods of
statistical and sequential experimental design. By a statistical design
of an experiment, here we understand a prior design of an experiment
in its entirety. By a sequential design we mean a design of an experi-
ment in stages. That is, one or several measurements is taken; after
these measurements are realized a reduction of the obtained data is
carried out and planning of a further stage is begun, and so on. For
a broad class of functions 7(x, 8), a statistically designed experiment
consists essentially in making use of prepared tables describing the
characteristics of optimal designs.

Methods of designing experiments for seeking the correct model
from some given collection of models (level 2) appeared only recently
and undoubtedly will still improve both from the conceptual as well
as from the computational point of view. In connection with this fact,
basic attention is focused here on the more simple and complete
methods. For more complicated or less complete methods, from the
theoretical point of view, the presentation of the material takes on
a more descriptive character. The majority of the methods considered
for designing experiments, with prior knowledge corresponding to
level 2, are by their very nature sequential. It is to be pointed out that
the given methods of planning experiments are more effective when
the number of concurring models 7,(x, 8,), (x, 0,),..., 7,(x, 6,) is small.
This is a statement of the fundamental regularity of design in general:
The more we know, the more effectively we can plan. Therefore
the problem of the experimenter as a specialist in his branch of science,
which gives rise to the necessity of conducting a given investigation,
is to seek the smallest possible collection of models based on a careful
analysis of available theoretical and experimental data.

A more difficult, less worked out, and very often met problem is the
design of experiments when the analytical function 7(x, 8) is com-
pletely unknown (level 3). Generally, it is hardly possible to design
an experiment which would permit the formulation of the problem
in its entirety. Nevertheless its solution can be reduced to some
sequential procedure, which contains alternating experiments (design
and practical realization) of the following form:

1. The functional form 7 = 75(x, 6) is known. It is required to
determine or estimate the parameter 6.
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2. On the basis of a theoretical analysis of the occurring hypotheses,
or from the results of previous experiments, two or several hypotheses
are suggested about the form z(x):

e =)

It is required to find the dependence 7,(x, 8,); this means the best
form describing the object under study.

A more detailed sequential process for seeking a mathematical
model is presented in Diagram 1.

Diagram 1

3

Verify agreement between the
model and the data.

4

5 4
4
Reconsider the model. Plan an experiment for
Suggest concurring models. estimation of parameters.
2

Reduce the experimental data.
Seek values of the paramecters sought.

A

6

Y

Plan a discriminatory
experiment.

1

> Experiment i <

Block 1 corresponds to the experimental stage of the work, ie.,
the technical carrying out of previously designed experiments.
Usually the carrying out of designed experiments is preceded by
conducting some *‘preliminary” experiment which offers the experi-
menter rough information about the process under investigation,
since in the complete absence of prior information, design is impossible.

The next stage of the work (Block 2) is the computation of estimates




INTRODUCTION 9

of the parameters # under the assumption that the functional form
of n(x, 0) is known. Sometimes the computation of the estimates of
the parameters is preceded by an analysis of experimental data from
the point of view of discrimination of concurring models.

After estimates of the parameters are found, it is necessary to verify
whether or not the behavior of the function 7(x) = 5(x, §), where §
is the value of the estimate, agrees with the experimental data.
(Block 3).

If 7j(x) satisfies the experimental data sufficiently well, then, depend-
ing on the circumstances of the experiment, the experimenter must
either stop or design a supplementary experiment for estimating the
entire collection of parameters or some group of them which are of
more interest to the experimenter (Block 4).

If %(x) does not satisfy the experimental data, then the necessity
of a more careful analysis of the occurring phenomena arises. In the
absence of any reduction in the number of suggested models we must
turn to the design of a more precise experiment. If we have facts which
point out the possibility of describing the phenomena under study
by some other model in comparison with the original model, then it is
necessary to begin to design an experiment which would permit us
to clarify which of these models best describes the objects under study
(Block 6). In this way, the strategy for conducting an experiment to
elucidatc the mathematical model, with prior knowledge corre-
sponding to level 3, can be represented in the form of a sequence of
cycles 4-1-2-3- and 5-6-1-2-3 (cf. Diagram 1). The order of altera-
tion of these cycles is determined by the results of verifying agreement
between the model and the data (Block 3). In many cases, an analogous
strategy can be applied to experimental design corresponding to
the second level of prior knowledge.

IV. We now go to a brief description of the contents of the
following chapters. In Chapter 1, a survey of regression analysis is
presented at a level necessary for the construction of the mathematical
apparatus of experimental design. The concept of best linear estimator
(or best quasi-linear estimator, for the case of functions 7%(x, 6)
depending nonlinearly on the parameters 0) is presented as fundamen-
tal in constructing the scheme of regression analysis.

Such an approach permits us to develop the theory of optimal
experiments for determining the estimator of an unknown parameter
not depending on a concrete form of the distribution function of
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the observations. The first section of this chapter has the character
of a review, and contains a survey of matrix algebra Its aim is to gather
in one place the basic formulas of matrix algebra, necessary for
regression analysis and design of experiments, which are'scattered
throughout various sources, and at the same time, make it easy for
the reader to become acquainted with the basic material. The con-
cluding section of the first chapter is devoted to the formulation of
basic optimality criteria of experiments for determining and estimating
unknown parameters. The formal definition of an experimental design
is introduced there.

Chapter 2 is devoted to an exposition of the basic properties of
continuous statistically optimal designs for the various criteria of
optimal design and for various criteria of optimality. The analytical
and computational methods of constructing such designs is investigated
here. A table of characteristics of optimal designs is also presented.

The properties and methods of construction of optimal designs,
taking into account the discrete character of the expenditures for
carrying out real experiments, is studied in Chapter 3.

In Chapter 4, results are presented for sequential methods of
designing experiments in the determination and estimation of unknown
parameters. These methods, above all, give perspective to the non-
linear parametrization functions n(x, §) and in the highest degree
satisfy the spirit of Diagram 1.

Chapter 5 generallzes the results obtained in thc previous chapters
to the case where it is possible to have simultaneous measurements,
some of which, generally speaking, are correlated.

Chapter 6 contains information on the discrimination of statistical
hypotheses, as they apply to problems of seeking the correct mathe-
matical model, and on various methods of designing discriminating
experiments. In contrast to the results of the preceding five chapters,
Chapter 6 depends essentially on the analytic form of the distribution
function of the observations. .

In the concluding chapter, methods of experimental design depend-
ing on generalized criteria of optimality are considered which succeed
in simultaneously solving the problems of deciding on the correct
mathematical model and estimating unknown parameters. Basic
attention is focused on criteria using the entropy measure of informa-
tion.



INTRODUCTION 11

V. The material is presented in such a way that the basic theoreti-
cal results are formulated in the form of theorems. Besides making
it possible to concentrate on the most important results, theorems
permit the reader to become acquainted with the mathematical
methods of designing optimal experiments. He may confine himself,
at a first reading, only to the analysis contained in the theorems and
explanations, skipping the more complicated and cumbersome proofs.
Theorems and lemmas are enumerated in the following form: The first
digit is the chapter number, the second digit is the section number,
and the last digit is the ordering number in the given section; formulas
are handled by means of analogous numbering.



Regression Analysis and
Optimality Criteria for Regression Experiments

1.1. Basic Elements of Matrix Algebra

This section is of a review character. Detailed illustrations, defini
tions, and proofs of the basic results presented in what follows can

be found in [6-8].

I. Basic properties of matrices.

DerFiNiTION 1. The rectangular array of numbers

Ay Ay v Ay,
An Adn - Ay, (1.1.1)
A;nl A.mz A-mu

is called a matrix.

If m = n, then the matrix is called square, and the number m,
equal to n, is called its order. If m == ] or # = 1, then the matrix is
respectively a row vector or a column vector. In general, matrices are
called rectangular (with dimension m X n) or m X n matrices. The
numbers comprising the matrix are called its elements.

12



