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introduction

The heating of a solid or liquid substance leads to phase transitions.
Molecules or atoms with sufficient energy to overcome the binding potential
- will evaporate. At temperatures high enough to impart this energy to almost
every particle, the substance becomes a gas. It is characteristic of phase
transitions that at a fixed pressure they occur at a constant temperature. The
amount of energy that must be fed into the system at this temperature to
bring about the transition is the latent heat.

Further heating of a gas results in additional transitions. For example, a
molecular gas dissociates gradually into an atomic gas if the thermal energy
of some particles exceeds the molecular binding energy. An even more
drastic change takes place as soon as the temperature of the gas is high enough
so that some electrons can overcome the atomic binding energy. With in-
creasing temperature, more and more atoms get stripped of their electrons
until the gas becomes a- mixture of freely moving electrons and nuclei. We
shall call this fully ionized substance a plasma. Although the transition from
a gas to a plasma takes place gradually and is therefore not a phase transition
in the thermodynamic sense, plasma is often referred to as a *fourth state of
matter.” '

The investigation of the behavior of plasmas has great importance for the
understanding of our universe. Although our earth consists mainly of the
first three states of matter, this cannot be said about most of the stars and
interstellar matter. All but a tiny fraction of the universe is plasma.

The full scope of possible earthly application of plasmas cannot even be
estimated as yet. One of the most important possibilities to be seen at present
is the application of the hot plasma as thermonuclear fuel. Nuclear fusion
reactions resulting in the release of considerable energy take place in plasmas
composed of certain light elements (D, T, etc.) at temperatures of the order
of 10 to 100 million degrees Kelvin. This is the energy source of many stars
(including the sun), and man is attempting to use similar processes for his
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own use. The hydrogen bomb applies thermonuclear fusion in a hot piasma'

for energy production in an uncontrolled explosive form, and there are
hopes of finding ways to produce peaceful power by means of controlled
- thermonuclear fusion.

The latter problem poses many challengmg questions. As the extremely
hot plasma—necessary to obtain fusion reactions—would cause every material
in close contact to evaporate, it must be confined by some kind of field. The
plasma in the sun, for instance, is confined by its own gravitational field.
This is evidently impossible to achieve on an earthly scale; the most probable
answer is confinement by an electromagnetic field. Two questions arise
immediately: 1. Do field configurations exist where the internal pressure of
the plasma is counterbalanced by electromagnetic forces (equilibrium con-
figuration)? 2. If such configurations were found, how do they behave if the
equilibrium is slightly perturbed; are there any stable confined equilibria?
The first question can be answered positively, but the second one (not less
vital than the first) has not yet been settled.

In the following, while attempting to investigate the laws of plasma physics
in general, emphasis will be placed on those phenomena which are likely to
prove important for the realization and operation of thermonuclear machines
rather than to applications in astrophysics.

Gravitational forces are much smaller than electromagnetic ones on an
carthly scale. Therefore we shall deal mainly with electromagnetic forces.

Similarly, for conceivable controlled thermonuclear applications, the mo- -

mentum of the particles is high and the density low enough to keep the de
Broglie wavelengths of particles well below the mean particle distance. Except
for some cases of particle collisions (the close collisions), quantum effects
are therefore negligible.

The complete system of equations, describing the behavior of a plasma
under these conditions, can be presented in a straightforward way. The
electromagnetic field inside and outside the plasma is completely defined by
Maxwell’s equations:

VxH= J+gl—) : (1-1)

oB "
VxE=-— (1-2)
V'D=p (1-3) .
V'B=0 (14) -

and the additional conditions

B =uH (1-5)
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and
D=¢E (1-6)

Inside the plasma the particles move in vacuum, and therefore u = p,
and & = g, (the mks system is used). If the charge p(r,?) and current density
J(r,?) are given, the electromagnetic field as a function of space and.time is
uniquely defined, provided the initial and boundary conditions are known.
In a plasma, however, the charge and current densities are unknown, as the
particles moving in the field (to be determined from the solution of Maxwell’s
equations) give rise to charge accumulations and currents

If, on the other hand, the electromagnetic fields were known, the equations
of motion of each particle could be calculated, and the resulting charge and
current densities computed. The equation of motion of a nonrelativistic
particle with charge ¢; and mass m, in an E (electric) and B (magnetic)
field is '

mi;=q(E+t x B) : 1-7

If the total number of plasma particles is N, we have N equations of this_
type. With known E(r,f) and B(r,?) fields, these equations (with given initial
conditions) can also be uniquely solved. To * plug back ” the results of these
solutions into (1-1) to (1-4), we express the plasma charge and current density
in the form :

Z q
AV

(1-8
pu =2 (1-8)
and
M ¢
J =A; lq‘ (1-9)
pl AV -

where the summation is carried out over a ““suitably chosen” small volume
element AV. As the positions and velocities of: particles as a function of time
are given as solutions of (1-7), p,, and J; in (1-8) and (1-9) can be computed.

Obviously the set of equations (1-1) to (1-9) is complete. The solutions are
self-consistent in the sense that the particle motions obtained create the
appropriate electromagnetic fields necessary to produce just the particle
motions with which one started (Fig. 1-1).

An important approximaticn is hidden behind (1-8) and (1-9). Since we
are dealing with point charges, p and J should be described by 3 functions.
In other words, carrying out the lim transition in these equation we find

AV-0
either nothing or a single particle in our volume element. If, however, one
keeps AV big enough to contain a fairly large number of particles, we obtain
“smooth”™ functions for p and J, which are suitable for analytical cal-

culations. This is physically equivalent to “smearing out " the point particles
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and forgetting about their individuality. When looking for interactions of
individual particles, such as- collisions, more refined expressions shall be
invoked. ‘

E(r,s), B(r,7)

Initiol
conditions

Moxwell's Parficle equations
equotions of motion

L104]
P("” [ 10)]

J(r, )

Fic. 1-1. Self-consistent plasma equations.

In addition to the plasma, known charges and currents mighf be present,
associated with external conductors. In this case,

P=Pmnt Pext (1-10)
and C .
J= Jpl +dex (1-11)

Owing to the very lafge number of equations (1-7), it is practically incon-
ceivable to carry out the above~outlined program of solution, even with the
fastest computers available. We have the choice of approximate solution of
the equations, or of finding precise solution for simplified models resembling
(more or less) the real plasma.



~ Motion of Charged Particles in
Electromagnetic Fields

2-1. The Static Magnetic Field
For one particle moving in a magnetic, field with velocxty v, (1-7) reduces
to
dv ‘
m T g(v x B) 2-1)

As the force is perpendicular to the velocity, no work is done by the magnetic
field. Indeed, the scalar multiplication of (2-1) by v yields

mv dv_d (1} v?) =0 ©(2-2)
d' . .
showing that the kinetic energy of the partche, in an arbitrary magnetic field,
is a constant of motion.

Let us restrict ourselves for the moment to the special case where the
magnetic field lines are straight and parallel (but the field is not necessarily
uniform). Denoting vector components parallel to the field with the sub-
script || and those -perpendicular to it with L, we obtain

Y=y +v, : (2-3) -
and (2-1) becomes
> + % = (v, x B) (2-9)

since v x Bvanishes. Equation(2-4) splits into a l-component equation and
a l-component equation

dv
_E:—" =0 (v, =const) (2-5)

and '
| a _4 xB) 2-6
dt _m vJ. ( = )
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‘Since the right side of (2-6) is perpendicular to v, the left side is a centri-
petal acceleration. It can be written

2 (-n=1(, xB) @)

where r is the local radius of curvature of the particlé path (Fig. 2-1). Its
vy

Ao

F1G. 2-1. Particle moving in a magnetic field of straight and parallel field lines. The field
intensity varies in the plane perpendicular to B.

value is, from (2-7),
my,

5| - (2-8)

r=

In the special case of a uniform magnetic field, B = const, and considering
the constancy of v, from (2-2) and (2-5), the radius of curvature

(29

is also a constant. In a uniform magnetic field, therefore, the particle moves
in a circle with the so-called cyclotron or gyroradius R in the perpendicular
plane, while it moves with a constant velocity along the field lines, The
resulting path is a helix. '
The angular frequency of the circular motion is

-
which is often called the cyclotron frequency, as its constancy for nonrela-
tivistic velocities (m = const) enables the operation of the cyclotron. For
v, =0 (which does not represent any restriction, just a suitable choice of
coordinate system moving with the particle in the parallel direction), the
particle moves in a circular path, giving rise to a magnetic field of its own.
The time average of this field, over many gyration periods, is that of a ring
current with the intensity

=23 (2-10)
m

w. 1 ¢°B
e @-11)
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The corresponding magnetic moment is

1 2R’B
o =InR2 =122 (2-12)

Denoting the magnetic flux surrounded by the path by ¢, (2-12) becomes

=ty @)

which shows that the magnetic moment is proportional to the flux enclosed.
Inserting R from (2-9) into (2-12) leads to another form of the magnetlc
4moment

1, = *"’;’*2 (2-14).
or, using (2-9) again, we obtain
= |3qv,R| (2-15)
The latter is often put into vector form,
=3qR x v, (2-16)

Note that the direction of u,, does not depend on the sign of particle charge
a given field.

*q

‘-
N LA TTNL S

FiG. 2-2. Tf\e gyrating particle in the magnetic field generates a field like that of-a
diamagnetic dlpole

The magnetic ﬁeld generated by a ring current at a distance much larger
than R is similar to that of a magnetic dipole with the same moment. Figure
2-2 shows that the magnetic field associated with both a +gand —q particle
moving in a uniform magnetic field opposes the external field inside the
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path, corresponding to a diamagnetic dipole. This is the source of the dia-
magnetic properties of plasmas to be studied later.

We are now going to investigate the motion of 4 charged partxcle ina
uniform magnetic field with an additional constant force present. The
equation of motion then becomes

dv S

This splits again into component equations:
, dv, F,
— =l 2-
Pl (2-18)

and

dv, '

_Jt—_—( _,_.x B)+_ (2-19)

Equation (2-18) represents a constant accelerdtion along the field line. The
external force term in (2-19) results in a drift velocity perpendicular to both
the magnetic field and F. As shown in Fig. 2-3, the particle accelerated by

Cfm
C/YTZY\

FiG. 2-3. A constan’. force F, acting on a particle gyrating in a umform magnetic field
resultsina drift motion perpendlcular toF,and B.

this force gains velocity, which in turn increases the radius of curvature
according to (2-8). Reaching the turning point, the particle moves backward
on a symmetrical path, now decelerated by the force, with decreasing radius
of curvature to the opposite turning point.

Equation (2-19) can be resolved by introducing the drift velocity w” and
writing

v L= WD 4+ u . (2'20)
We shall now show that a suitable choice of the drift velocity, namely,
p 1F xB

(2-21).
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“transforms away”’ the force term in (2-19). With the substitution of (2-20) -
_ and (2-21), (2-19) becomes

du (leB)xB] q, - F, ' :
—= 2T T L L (uxB)+ 2.22
dt m[ B? +m(ll>< )+m (‘ )
The first term on the right side can be written

(F,xB)x B B(F,-B)—F,(B-B)
BZ = BZ

Substitution in (2-22) leads to cancellation of the force term. The rem}iinder
is simply

=-F, (2-23)

ag (u B) | (2-24)

which mcans that the particle motion in a coordinate system moving with
velocity w” is governed entirely by the magnetic field and therefore moves
on a circular path. The constant drift velocity superposed on this motion
yields a cycloid, such as the one in Fig. 2-3. Note that the drift velocity
depends on the particle charge.

We conclude by establishing the following rule: The motion of a charged .
particle in a uniform magnetic field, under the influence of an external force,
can be described as the superposition of a gyration around the so-called
guiding center with the cyclotron frequency and the motion of this guiding
center. The guiding-center motion does not follow the laws of particle
mechanics; it responds differently to the external force parallel and perpen-
dicular to B. It is accelerated in the paralle]l direction according to (2-18),
as if no magnetic field were present, while it drifts in the perpendicular plane
with the constant velocity w” as given by (2-21).

2-2. The Guiding-Center Approximation; Dipole-Like Motion
Using the conclusion of the previous section, we are now going to attack

several more complicated cases. The combination of a homogeneous magnetic
field and an electric field leads, for instance, to the additional force

F =qE (2-25)
and the drift velocity .
ExB

(2-26)
which is independent of the charge and mass as well. The electric drift is
identical for every particle; consequently the glectric field can be entirely
transformed away. The special theory of relativity shows that this can indeed
be done. The Lorentz transformation from a coordinate system, where a
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homogeneous electric and a magnetic field are present, to another one, which
moves with velocity w® (wE < ¢) with respect to the first, transforms away
the electric field, leaving the magnetic field unchanged (see Exercise 2-1).

A homogeneous gravitational field, however, with gravitational accelera-
tion g, gives rise to a force

F=mg : 2-27)
and the drift velocity

(2-28)

depends on the m/q ratio. The gravitational field cannot, therefore—in this
context—be transformed away. :
An important example is the motion of a charged particle in a slightly
inhomogeneous magnetic field, ““slightly”” meaning that the variation of the
magnetic field inside the particle orbit is small compared to the magnitude -
of the field. If B, is the field at the guiding center and r represents the mo-
mentary particle position in the guiding-center coordinate system, the
magnetic field at the particle can be expressed by the Taylor expansion, '

B(r) =By + (r* Vo)B + - | (2-29)

where V, means that the differentiation is to be i)erformed at point 0.
[Actually the momentary guiding center also varies slightly during a gyration
period, while we hold point 0 fixed for this time (see Fig. 2-4)].

Fig. 2-4. Particle motion in a slightly nonuniform magnetic field.

In our case the higher-order terms can be neglected, and, in addition,
[Bol > |(r - Vo)B| ‘ (2-30)

is true; thus the magnetic field *felt” by the particle differs but little from
that prevailing at the guiding center. The particle path differs little, therefore,
from a helix corresponding to B = const, or in the case of v; =0 from a
circle. The latter case will be assumed in the following,calculation.

In this approximation the motion of the particle can be described in the
following way. The ring current represented by its dipole moment is located
in an inhbmogeneous magnetic field. The force exerted by the field inhomo-
geneity makes the particle drift as described in the ‘previous section. The
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equation of motion (2-1) becomes, when inserting (2-29),

- d

ztf =2 (v x B,] +[v x (r* Vo)B]) | @-31)
As the last term is a small first-order one compared to the first zero-order
term, we write the velocity as a superposition:

) ) V=¥, + AL (2'32)
where v, is the solution of the zero-order equation
dv
=1 vxB)] (2-33)

and v, is a perturbatxomof the first order. Since we neglect second-order
terms, the last term of (2-31) can be written in the form

2 tvo x (v Vo)B] (2-34)
: Similarly,' up to the first order we can put r = R (the cyclotron radius corre-
.spondmg to B,), and (2-31) becomes

dv ,

7‘ = '—n' (v X Bo) + = [VO x (R Vo)B] (2"35)

The second right-hand term constitutes the external force of (2-17). It is,
- however, not a constant, since it depends on the momentary particle position
R. We calculate the average of this quantity over a gyration period

F = {qv, x (R - Vo)B) (2-36)

z

F1G. 2-5. Illustration to aid combutation of F.

In a local cylindrical coordinate system with the z coordinate pointing in
the B, direction (Fig. 2-5), (2-36) becomes

do :
F = =B .
<4Yo x R P > 2-37)



