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I

Data Structures

1.0 Introduction

It takes time for a society to accept computers. Many societies still
resist their use, but computers have passed the test of time and are being
~accepted at a rapid pace in all aspects of life. Computers have become
an integral part of American business. They are rapidly entering the fields
of education, inventory control, retail sales, government affairs; they are
scanning legal briefs to aid justice, helping law enforcement, making smart
judgments on monetary affairs, arranging airline schedules, and so on.
*These are only a fraction of the ways that computers are being used,
and their. potential can be bound only by the limitations on man’s
imagination.

. Hardware technologies have played vital roles in our ability to use
elcctromc properties to process information, but the software and data
processing aspects have not developed at the same speed. One of the main
reasons for the inability of software and data processing development to
keep pace with hardware development has been the novelty and complexity
" of the subject. The rapid expansion of computer applications to unrelated
.-and widely divergent subject areas has introduced tremendous challenge to
both computer users and researchers. In the beginning, computers were used
to process only numerical information, but the majority of our information
is nonnumerical in nature and very little is known about its description
and processing. If data relevant to one business are described using certain
primitives, then it is not clear whether the same set of primitives can be
adequately used to describe the data relevant to another business. Is there

1



2 ' 1 DATA STRUCTURES

any one technique for describing data for all business applications? Are
the techniques used for data description in the field of business applications.
adequate for describing data in the field of education or legal matters, etc.?
Very few basic questions associated with nonnumerical information pro-
cessing have been answered up to now. ‘ :

The information explosion has certainly not helped the situation. Our
knowledge has been doubling every ten years and most of this new knowledge
is being recorded in books. Libraries were the first to face the problem
and the first to start work in the area of automatic information pro-
cessing. Pioneering work done by many researchers in the area of library
automation laid the foundations of nonnumerical information processing.
Most of their work relates to retrieving relevant documents, indexing, and
answering some very simple questions contained in the material of the book,
etc. The last problem is actually the first attempt to solve complex problems
in the area of nonnumerical data processing.

Even before good reliable automated library systems could be developed,
computers were used to store complex strlictured data from many diversified
applications. Then computers from different regions were linked to form’
computer networks so that data could be shared by users of computers 'in
the different regions. Thus, the need for developing techniques for describing
data structures ip an efficient manner has become more important than
ever before. ‘.

In the last ten years, many information systems have been developed
for storing and retrieving nonnumerical information. These information
systems were based on the extension of operating systems which were
developed for processing numerical information. Many query languages
have been developed for processing existing information-retrieval systems
and are widely used, but very little is really known about their capabilities.
Todevelop good query languages, good data descriptions must be developed.
Most query languages are not completely dependent on the data description;
some depend on other aspects of the computer system. A truly data-
independent query language depends on the primitives of the data des-
cription alone. In such situations, it may be possible to assess the
capabilities of different query languages based on the same data des-
cription. Developing good theories for data description, then, is the first
step toward laying the foundation for developing powerful query languages,
information-retrieval systems, and broadening the applications of computers
to new and challenging fields.

In this book we shall use many basic mathematical concepts to describe
data, characterize the hardware to store data, and develop techniques for
storing, retrieving, and modifying data. The next section will be devoted to
basic mathematical concepts which will be used throughout the book.
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1.1 Basic Mathematical Concepts

In this section some of the basic mathematical concepts relevant to
_the materials covered in the book are discussed. In addition, more specific
concepts relevant to a chapter are covered in the chapter itself. The basic
materials covered in this chapter can be found in many textbooks (see
Stoll, 1963; Riordan, 1968; Harary, 1969; Peterson, 1972); hence, unless
considered beneficial to the readers, proofs of theorems or derivations of
results are not given. :

1.L1 Set Theory

A set is made up of objects called members or elements. Given 4n
element, it can be determined whether it is a member of a set or not. If
a is a member of a set A, then it is symbolically represented as

ae A
If ais not a mémber of A, then it is represented as.
a¢ A v
Ifa,, a,, ..., a,are all the members of the set A, then the set is denoted by
{a,, a,,...,a,} = A

If a statement P(x) defines a set A4, ie., the elements of 4 are those
objects for which P(x) is true, then it is symbolically represented as

{x|P(x)}.
Two sets are equal iff (if and only if) they have the same elements.
The equality of two sets 4 and B is denoted by

A=B,
and the inequality is denoted by
A+# B
If A and B are two sets, then A is included in B is symbolized by
AS B

iff each member of A is a member of B. In such a situation, it is customary

to say A is a subset of B. The same symbolic representation (4 < B) can

also be stated as B includes A. If the set A is included in B but not
equal to B, then it is called properly included and is denoted by

Ac B.



4 1 DATA STRUCTURES

In such cases, 4 is also called a proper subset of B. Among the basnc
properties of inclusion are

A< B,
Ac B and B C=>A4AcC (= is the notation for implies),
AcS B and B A= A=B.

There can be only one set with no elements. It is called the empty set
and it is denoted by the symbol &F. If 4 has n elemems. then the number
of subsets of A including the empty subset is 2",

The set of all objects which are members of either A or B is calléd the
union of the sets- A and B. It is symbolized by

A'uB={x|xerrxe'B}.

For example, {a,, b,, a,} U {a,, b,} = {a,. b,. a,. b,}. The set of all objects .
which are members of both 4 and B is called the intersection of the sets
A and B. It is symbolized by :

AN B={x|xe Aand x € B).
For example, »
{ay, by, ay} 0 {ay, by} = {a,}.

Two sets are disjoint if their intersection is the empty set, ie, A ~ B = ¥,
A collection of sets is called a disjoint collection iff each distinct pair of
its member sets are disjoint. A partition of a set A is a disjoint collection
of nonempty and distinct subsets of 4 such that the union of the subsets
_is equal to A. For example, {a,, a,}, {a,}, and {b,, b,} is a partition of
{a), ay, a5, b,, by}

The absolute complement of a set A4 is the set of all elements which
-do not belong to the set and is denoted by 4. Thus,

= {x|x¢ 4}

The: relative complement of B with respect to A is the set of elements
of A which do not belong to B. It is symbolized as

A—B={xeA|x¢B}.

The symmetric difference of sets A and B is symbolized by A +B and
is defined by

A+B=(A-B)U (B- A).
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In a certain discussion if all sets under consideration are subsets of a
set, say €, then Q is called the universal set. Thus 4 = Q — A.

The associative, commutative, and distributive laws are true for L and .
Consider any subsets 4, B, and C; then the following are true:

ASSOCIATIVE LAWS .
Au(BuC)=(AuB)uUC,
An(BnC)=(An B)n C.

COMMUTATIVE LAWS

Au.B=BuA, An B=Bn A

DISTRIBUTIVE LAWS

Au(BNnC)=(AUB) N (AU (),
ANn(BuC)=(AnB)u(AnC).

These equaiities follow immediately:
Au = A, AnQ=A4;
AVUAd =Q  AnA=g.

The associative, commutative, and distributive laws can easily be gener-
alized to any finite number of sets. The generalization of the associative
and commutative laws are left to the readers. The generalization of the

distributive laws are given by
Av(BynB,n"nB)=(AuB)n(AuB,)n-"n (AU B,),
An(B,uB,u-UB)=(ANB)U(ANnB,) U U (AN B,)

There are three more laws which are also of importance in set theory:
IDEMPOTENT LAWS
AvA=4 and An A=A
* ABSORPTION LAWS
AU(ANnB)=A and An(Avu B)=A.

DCMORGANLAWS
AOUB=A~B and AnB=]u§.»

Examples of self-dual are

Ad=4 and ifAUB=Qand A~ B=(, then B=A.
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1.1.2  Relations

If an object x is related to another object y by a relation p, then
symbolically we write x p y or {(x, y)> e p. Examples of relations are
X=y, x <y x=}y, etc. x and y are called the arguments of the relation.
This is called a binary relation because it has two arguments. A binary
relation can also be considered as an ordered pair. Suppose x € X and
ye Y; then p is a subset of the cartesian product space X x Y (see Stoll,
1963). The elements of the relation p are all pairs which satisfy x p y in
X x Y. We call x the first coordinate and y the second coordinate of the
ordered pair {(x, y>. A relation is called transitive if x p yand y p z implies
xpez.

Just as the concept of ordered pair can be extended to ordered n-tuples

{x,, X;, ..., X,», similarly the concept of relations can be extended to
n-ary relations. The- n-ary relation R is a subset of the product space
X, x X, x+xX_ where X;,i=1,2,..., n are sets. The elements of R -

are ordered n- tuples which satisfy the relatlon R X;is called the jth domain
of R. For example, if R = the equality of the arguments in a 5-ary space
over integers, then the elements of Rare (1,1, 1, 1, 1), (2, 2, 2, 2, 2),
(3,3333),..

Since relanons are sets, all the usual operations of set theory are
applicable to them. However, relations are not closed under all set theoretic
operallons for example, the union of a binary relation and a ternary
relation is not a relation and neither is the intersection between them.

There are some operations which are applicable to relations but not to
general sets. Given a relation R, a new relation can be obtained by
interchanging any two domains. The new relation is called the permutation
of the previous relation. In general, n! permutation relations can be obtained
from a relation with n arguments.

If the domain X, is eliminated from the relation R and the duplicate
. elements removed, then the resulting set is a reldtion in n — 1 arguments.
It is called the projectionof Ron X, x X, x * x X, _,.

Let I ={i,, iy, ..., i} for ks n be a hst of k indices; then the
selection operator IT, when operated on R gives a k-ary relation I, (R)
whose jth domain lS X, . The selection operator IT, can be used for
permutation as well as pro;ectlon

The concept of joining two relations to obtain -another relation is more
difficult. It can be defined in a roundabout manner as follows: given a
relation R, on X | x X, x " x X, and another relation Ryon X, x X,

- x X,, they are joinable if there exists an n-ary relation R, on
X, x X, x-x X,suchthat T, ,(R,;)=R,and I, ,(R;)=R,.Then
R, is called the join of R, anhd R,. Joins can also be defihed on multiple
domains.
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Given two relations R, and R,, if there exists a join R, of R, and R,
such that IT ;. ,_, 4. ,(R3) = X,, then X, is called the composition
of R, and R,. -

1.1.3 Functions

A function is an n-ary relation such that no two distinct members have
the same set of first n — 1 coordinates. Thus, f is a function iff it satisfies
the following conditions:

(i) The members of f are ordered tuples. _
(i) If(xy, X5, ..oy X,_po X,» and {x, X,, ..., X,_,, X,/ are members
of f, thén x, = x,.

If {x;, X5, ..., X,» € [, then it is symbolically written as {x,, X;, ..., X,=;
fx,. If f is a function and (x,, x,, ..., x,_;, x,>€ f such that
(XpyXgy o Xy yD fX, then (xy, X,, ..., x,_ > is called the argument of /.
x, is called the value of f at (x,, x;, ..., X, Of the image of
{X;, Xy, ...5 X,_> under f, etc. The terms mapping and transformation
are synonyms for function. The symbol {x,, x,, ..., X, > = X, is also used
to symbolize the same function. Henceforth the symbol X will denote the
argument domain of f, and Y will denote the range of x,. Examples of a
function are {1, 3, 79, {Dick, Harry, Tom), (book, pen, student). The
image space of a function does not have to be one domain; it may contain
multiple domains. The image of a tuple can be a tuple so long as multiple
tup]es are not mapped into the same tuple. Thus X — Y is a function when
={{xy, X3, .., X, )} and ¥ = {Kyp yar oo yn;>}

A function f is into 'Y iff the range Qf f, say R;, is a subset of Y
and f is onto Y iff R, = Y. The symbol f(x) also denotes the image of x
under .

A function is called one-to-one if it maps distinct elements onto distinct
elements, ie.,

x#x=f(x)# f(x) and f(x)=f(x)=>x=x".

An example is f(x) = x + 1, where x is a real number.
The composition of two functions f and g written symbolically as

gof
is the set.

{{x, z)|there is a y such that xfy and ygz}.

Functional composition is not a commutative operation, but it is an
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associative operation. The function which is defined by composition from
the functions f,, f,, .... f, is a unique function and is designated by

fiefyooe fi

If /' is a one-to-one function, then the function resulting from f by inter-
changing the argument and the value coordinates of each member of f is
called the inverse function. It is symbolized as

S

If £~ exists, then its domain is the range of f, its range is the domain
of f,and x = f~1(y) iff y = f(x).

1.1.4 Binominal Coefficients
The binominal expansion discovered by Newton is given by
> (n
(l+xy=7Y ( ,)x",
x=o0 \K

where (}) is the number of ways in which k objects can be chosen from n
objects and is called the binominal coefficient. It can be expressed as ratios
of products or factorials as :

n _n(n—l)---(n—k+l)_ n!
(k)_ k(k —1)--(1)  kYn—k)!

for integer n > integer k > 0.

The binominal coefficient can be decomposed as

B R o

Some basic equalities and sums of binominal coefficients which are useful
for the materials covered in this book are

Bl @-167)
=62 = (- )(”"‘*’)

1>0,
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n+i n+m+ 1\ - . :
( = ( for integer . m > 0,
m

K I
- (: =§° (nkii 1), where K=min(k,n—-_ 1),

SRR
OG-0 TS =)

1.1.5 Graph Theory

Graph theory is the branch of mathematics which studies the properties
of diagrams which can be constructed on a plane using points and line
segments. A point is referred to as a vertex or node or point. A line
is used to connect two nodes. A line with ends connecting the same node
is called a loop. If the line does not have any sense of direction associated

- with it, then it is referred to as an edge. A line is called an arc if it has a
sense of direction associated with it. Diagrams which are constructed using
nodes and edges are called undirected graphs. A graph can be specified by
1dent1fymg its node collection {v;} and edge collection {e - Figure 1.1.5.1 is
‘an example of an undirected graph.

‘G-

FIG. 1.1.5.1.  An undirected gréph. '

In Fig. 1.1.5.1, A, B, C, D, E, F, G, H, I, J, and K are the nodes of the
nondirected graph. The lines AB, AC, BC, BD, BE, EF, EJ, EH, FG, GH,
HI, and IJ are the edges of the undi‘rected graph. K is an isolated point
of the graph. . :
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The edges of a graph may have labels as.in Fig. 1.1.5.2. Such graphs
are called lagraphs. '

, Fig. 1.1.5.2. A graph to illustrate labels and intersection of edges.

In Fig. 1.1.5.2, the edges u and v intersect, but their intersection point
is not a node of the graph.

A graph with arcs is called a directed graph or digraph. Figure 1.1.5.3
is an example of a directed graph. ’

FIG. 1.153. Directed graph (digraph).

In Fig. 1.1.5.3 the arcs AB, BC, DA, CD, EC, CF, FH, HI, IF, and GF -
are elements of the graph, but it would be wrong to say that arcs like BA
or AD are also elements of this graph.

If a graph has multiple edges or arcs connecting two specified nodes,
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then it is called multigraph. The two diagraphs in Fig. 1.1.5.4 illustrate
multigraphs. :

¢ D

FIG. 1.1.5.4. Multigraphs.

In multigraphs, loops with one node are not allowed. If such loops
appear in a graph, it is called pseudograph. Figure 1.1.5.5 gives an example
of a pseudograph. '

B

FIG. 1.1.5.5. Pseudograph.

The valency or degree of a node in a graph is the. number of edges
incident on the node. The valency of A in Fig. 1.1.5.3 is 2. There are many
interesting theorems that can be mathematically proven for graphs. One such
theorem due to Euler states: “The sum of the valencies of the nodes of a
graph is equal to twicc the number of lines.” In a directed graph the
number of arcs coming into a node is called its in-degree and the number
of arcs going away from the node is called its out-degree.

We have given diagrammatic representations of different types of graphs,
but diagrams should not be mistaken for definitions of graphs. A graph is
distinguished by its nodes and lines only. Two graphs are equivalent if they
have the same nodes and lines. Consider a graph with nodes {4, B, C, D}
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and edges {4B, BC, CD}. Then the two diagrams of this graph given in
Fig. 1.1.5.6 are equivalent. If a piece of a graph is separated from a graph,
then each piece is referred to as a subgraph. A subgraph consists of a subset
of the vertices of the original graph and all the edges or arcs connecting
these vertices which are present in the original graph. Figure 1.1.5.7 illustrates
two subgraphs obtained from the graph presented in Fig. 1.1.5.3.

c
Prrssel) A
— D
B A 8

FIG. 1.1.5.6. Equivalent graphs.

: G
F
A c
H /

e E

FIG. 1.1.5.7. Two subgraphs of"¥ig. 1.1.5.3.

A part of a graph is called partial graph. Figure 1.1.5.8 gives a partial
graph of Fig. 1.1.5.3. ‘

E
M ! \

FIG. 1.1.58. A partial graph of Fig. 1.1.5.3.

A complete graph is a graph in which there is a line between every
two pairs of nodes. Figure 1.1.5.9 illustrates a complete graph.
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A 8.

0 c
FIG. 1.1.59. Completg graph.

In a complete graph with » nodes, each node has a valency of n — 1;
hence there are (3}) lines. The complement graph of a given graph is obtained
by constructing a complete graph on the nodes and then deleting all the
lines of the original graph. Figure 1.1.5.10 illustrates a graph and its
complement,.

8

SN AL
B XX
| Y

E
FIG. 1.1.5.10. A graph and its complement.

A graph G is called a bigraph or bipartite graph if its vertices can be
partitioned into two subsets ¥, and V¥, such that every line of G joins V,
with V,. Figure 1.1.5.11 is an example of a bigraph.

A g c D

£ ) F G H
FIG. 1.1.5.11. Bigraph.
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Let N={S,, S,, ..., S,} be a collection of distinct nonempty subsets
of a set S, whose union is S. The intersection graph of N is obtained by
considering each element of N as a node and defining lines between §; and
S, whenever S;nS;# & for i+ j. The intersection graph has many
important applications in organizing information in an optimum manner
in a computer storage.

A sequence of edges which form a route between two nodes is called an’
edge sequence. In Fig. 1.1.5.1 the edges AB, BE, and EH form an edge
sequence. The multiplicity of an edge is the number of times it appears
in an edge sequence. A cycle is a closed edge sequence. In Fig. 1.1.5.1
ABC is a cycle. An edge sequence with multiplicity one is called a chain.

A route in a digraph is an arc sequence. In-an arc sequence the.
terminal node of one arc is the initial node of another arc, ie., we follow
the arrow to go from the “start” of the arc sequence to the “end.” A path
is an arc sequence and contains no duplicate arc. A path can be labeled
by writing the nodes in it in a sequential manner. In Fig. 1.1.53 ABCFH
*is a path, but ABCE is not a path. An elementary path repeats no nodes.
A loop is an arc sequence with the same “start” and “finish.” In'Fig. 1.1.5.3 .
FHIF is a loop.

A tree is a graph with a chain between any two nodes but without any -
cycles. Examples of trees are given in Fig. 1.1.5.12. The number of edges
in a tree is one less than the number of nodes. If one edge is deleted from
a tree, the graph is no longer connected. If an edge is added between two
nonadjacent nodes, then exactly one cycle is formed. If the edges are replaced’
by arcs, we get a directed tree. The tree with 2n — 1 nodes in which n — 2
nodes have valency 3 and one node has valency.?2 is called a binary tree.
These trees, especially the directed ones, play an important role in searching
information in a computer. - '

./
A

FIG. 1.1.5.12. Trees.

A network is a graph with values assigned to each line. In most situations
these values are real numbers, but in this book we shall also be dealing
with nonnumerical values.



