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1. Inti‘oduction

P. BRADSHAW

With 6 Figures -

This chapter is a description of the physical processes that govern
turbulence and the mathematical equations that in turn govern them.
It is self-contained, but the treatment of the mathematics, already
available in many other textbooks, has ‘been abbreviated in favor of
discussions of the physical consequences of the equations. The chapter
is intended to contain all the main results assumed without proof in
later chapters. In some cases, a topic is outlined in Chapter 1 and de-
veloped in one or more later chapters; in these cases forward references
are given. '

1.1 Equations of Motion

The one uncontroversial fact about turbulence is that it is the most
complicated kind of fluid motion. 1t is generally accepted that turbulence
in simple liquids and gases is described by the Navier-Stokes equations,
which express the principle of conservation of momentum for a con-
tinuum fluid with viscous stress directly proportional to rate of strain.
Although the principle and the stress law are the simplest that can be
imagined, some of the possible solutions of the equations, even for simple
flow geometries, are too complicated to be comprehended by the human
mind.

The Navier-Stokes momentum-transport equations are the second-
order Chapman-Enskog approximation to the Boltzmann equation
for molecular motion. For a masterly, if slightly inacceséible, review see
GOLDSTEIN [1.1]. The first-order approximation, leading to the Euler
equations, neglects viscosity altogether, while the more complicated
molecular-stress terms yielded by higher-order approximations are not
important in common gases at temperatures and pressures of the order
of atmospheric. It is easy to show that the smallest turbulent eddies have
a wavelength many times the mean free path unless the Mach number
(velocity divided by speed of sound) is exceptionally high; the continuum
approximation is a good one. Similarly, the constitutive equations of
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common liquids are close to the linear Newtonian viscous-stress law.
Therefore, we shall use the Navier-Stokes equations throughout this
book except for the discussion of “non-Newtonian™ fluids in Chapter 7.

Since the equations are needed in their most general three-
dimensional form, we shall use Cartesian tensor notation for compact-
ness. ignoring . the distinction between covariant and contravariant
tensors and using the repeated-suffix summation convention so that
abi=a\b; +ab+azb, (but a;+b=a,+b, or a,+b, or a;+b;).
Sometimes ¢f . Cx; — say — is denoted by £ .5 this form is used for brevity
in the extensive mathematics of Chapters 5 and 7. In special cases,
X, y, 2 notation will be used. Unless otherwise stated, x or x, is the general
direction of flow and y or x, is normal 1o the plane of a shear layer.
Occasionally vector notation will appear; in particular, u will be used
for the velocity vector, whose components are Uy, Uy, Uz or u, v, w. In
general, capital U is used to denote a mean velocity (time-average or
ensemble average) and small u denotes a fluctuation about that mean.
However, in most of the discussion of Sections 1.1 to 1.5, the presence
or absence of a mean velocity is immaterial, so the symbol u is used for
simplicity; if desired it can be interpreted as the instantaneous (mean
plus fluctuating) velocity, denoted by U +u in later sections. The con-
ventional division into mean and fluctuating components exists for the
convenience of technologists. It is not as arbitrary as is sometimes
claimed, because it leads to self-consistent equations with useful physical
interpretations. but it is artificial because the motion at a given point
and time receives no information about mean values, which necessarily
depend on averages over large distances or long times (Sect. 1.3). Flows
in which the mean velocity vector is everywhere parallel to a plane
{usually taken as the xy plane) are called “two dimensional”; an example
is the flow over a very long cylindrical body such as an unswept, un-
tapered wing, normal to the oncoming stream. Note that this definition
does not require the fluctuations to be parallel to the plane; in this book
at least, motion which is two dimensional at every instant is not regarded
as turbulence.

In words, the principle of conservation of momentum (Newton’s
sccond law of motion), as applied to a fluid subjected to any kind of
molecular forces, is

acceleration (following the motion of the fluid)
=molecular force per unit mass

+ body force per unit mass . (1.1)

Molecular force is a surface force and reduces to a sum of stress gradients
divided by the density, while body force is a volume force and is usually
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*2

Xy Fig. 1.1. Stresses acting on a fluid element

X3

specified directly as a force per unit mass or equivalent acceleration. The
molecular stress is conventionally divided into a scalar pressure p equal
to (—1/3) times the sum of the three normal (tensile) stress components,
and a stress due to deformation and bulk dilatation which is a second-
order tensor with components ;. For compatibility with the definition:
of p, the sum of the normal components of the stress due to deformation
must be zero, leading to the term in (1.3), below, containing (2/3)u.
However, the individual normal-stress components are not zero. Ac-
cording to these definitions the total molecular stress acting in the x;-
direction on a plane normal to the x,-direction (Fig. 1.1) is —pd,+0a,,
where d,=11if i=1 and §,=0 if i+l Equation (1.1) can now be written
for the x;-component of velocity, u; (where i=1, 2 or 3) as

ou; 1 0
—‘:——-———— — 5 . L= —

axl 0 6x’( p 11+0-11)+f| 0
or

W+ up, =(1/0) (= pdy+o,) 1+ fi= —(1jo)p;+(1/g)o,, + f: (12)

in the compact suffix notation for differentiation. Here f; is the x;-
component of body force per unit mass and g is the (instantaneous)
density. In a gravitational field, f;=g, where g, is a component of the
gravitational acceleration. Unless density fluctuations or a frec surface
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is present, this simply leads to an extra pressure gradient, which balances
g; so that both can be forgotten. Gravitational body forces are considered
in Chapters 4 and 6, and Coriolis apparent body forces in Chapter 3.

These are “Eulerian” equations, expressed in terms of the velocity
components at a fixed point. Corresponding (Lagrangian) equations
can be derived in terms of the velocity of a marked particle. The Lagran-
gian equations are much less convenient for studying ordinary fluid
motion and will not be needed in this book, though Lagrangian concepts
are used in the discussion of particle-laden flows in Chapter 7. Note
that (1.2) applies to any fluid whatever the constitutive law for o,,.
It even applies to the mean velocity in turbulent flow if all symbols
denote mean quantities and o, is understood to include apparent
turbulent (Reynolds) stresses (Section 1.3) as well as the molecular stresses.
For a Newtonian viscous fluid, the instantaneous stress due to deforma-
tion is

Ou,,
Tu=H (5—'*"““) +(B—- 3/‘)5116 (1.3)

where the last term enforces o,;=0, and f is the bulk viscosity, of the same
order as u [1.1]. In the most general case do,,/0x, is quite complicated
and forbidding; for a discussion see HOWARTH [Ref. 1.2, pp.49-51]
or SCHLICHTING [Ref. 1.3, Chapter 3], who neglect the bulk viscosity.
Clearly 0, =0, in Newtonian fluids, so ¢, is a “diagonally symmetric”
tensor.

Any fluid -obeys the law of conservation of mass, obtainable from
simple control-volume analysis as

Jg 0
2+ (ou)=0. 1.4
at3 :(Qu') 0 (14)

If the density is constant, (1.2) is unaltered but (1.4) reduces to

Ouy
M 1.5
o, 0 (L5)

in steady or unsteady flow. Thus the last term of (1.3) vanishes in con-
stant-density flow and the remainder of (1.3) implies that the viscous
stress due to deformation is

01’1:2/:)?1'1 (1.6)
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where

ey (6 z+ ax,-) (1.7)

which defines the rate of strain e;;; the factor 1/2 is inserted for com-
patibility with the usual definition of strain in solid mechanics, but some
fluids textbooks omit this and the factor 2 in (1.6). In a pure rotation
about an axis normal to the x,x,-plane du,/dx,= — du,/dx;, both being
numerically equal to the angular velocity, and e; and o, are zero.

It is sometimes useful to add u;/p times the “continuity” equation
(1.4) to (1.2); the left-hand side of the resulting equation is

1 [dou;
T+ —-( uul)}

4

called the “divergence” form, as apposed to the “acceleration” form of
(1.2). In this form, the equation shows that the rate of accumulation of
x~component momentum in a unit control volume, plus the rate at
which x,-component momentum leaves the control volume, equals the
force applied to the fluid instantaneously in the control volume by
molecular and body forces. The addition of multiples of the continuity
equation often helps to simplify or clarify equations.

In constant-property flow (constant density and constant viscosity')
the viscous-stress gradients can be simplified by neglect of viscosity
gradients and further use of the continuity equation (1.5); then (1.2)
becomes

a1y azu
@ E, T o e (.9

where v is the kinematic viscosity u/o. Note that the three elements of
Pu;/éx; do not individually equal the three elements of do,,/dx, for
constant-property flow, because part of each term has been removed by
using the continuity equation.

Very fortunately, viscosity does not usually affect the larger-scale
eddies which are chiefly responsible for turbulent mixing (in fact, as we
shall see in Section 7.4, turbulence processes are usually the same in the

! In the study of gas flows the word “incompressible” is used instead of “constant
property”; this usage is misleading in liquid flows, which can often be assumed incompres-
sible in the strict sense of constant density but whose viscosity varies very rapidly with
temperature. A “constant pressure” flow is one in which dp/dx; is negligible in (1.2).
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simpler types of non-Newtonian fluids). Equally fortunately, the effects
of density fluctuations on turbulence are small if, as is usually the case
(Section 2.5), the density fluctuations are small compared to the mean
density. Part of the discussion below will be concerned with the two
major exceptions to these statements: the effect of viscosity on turbulence
in the “viscous sublayer” very close to a solid surface (Sections 1.8, 2.3)
and the effect of temporal fluctuations and spatial gradients of density
in a gravitational field (Chapters 4 and 6); elsewhere, we will usually
neglect the direct effect of viscosity and compressibility on turbulence.
Several different definitions of the,Reynolds number (velocity scale) x
(length scale)/v will be used below. They fall into two main classes:
“bulk” Reynolds numbers in which the scales are those of the mean
flow, and “turbulent” or “local” Reynolds numbers, in which the scales
are those of the turbulence or even of part of the turbulence.

A fluctuating velocity field will cause fluctuations to develop in an
initially smooth spatial variation of a scalar such as enthalpy, or con-
centration in a two-component flow. It is important to note that the
fluctuating velocity field drives the fluctuating scalar field while the
effect of the latter on the former, applied via mean gradients and fluctua-
tions of density, is usually weak or even negligible. The conservation
equation for a scalar c, equating the rate of change of ¢ with time (follow-
ing the motion of the fluid) to the sum of molecular diffusion and sources
within the fluid, is

oc ac 10 ac
i = 9
a T, eax,( ax.)” et

where y is the molecular diffusivity of ¢ (having the same dimensions as
the kinematic viscosity v) and S is the rate of generation of ¢ per unit
volume (by chemical reactiqn, say) at the point considered. Compare
(1.2) and (1.9): equations like these, whose lefi-hand sides contain the
“transport operator” d/dt+ u,0/dx,, are called “transport equations”;
sometimes this name is reserved for equations containing the time- or
ensemble-averaged version of this operator. An important case of (1.9)
in engineering is when ¢ represents enthalpy and y represents the thermal
diffusivity k/gcp, the dimensionless group of Auid properties ucp/k_ '
v/(k/ec,)= o is the Prandtl number, and, in compressible flow, §.is the
sum of compression work and viscous dissipation of kinetic energy into
heat. If ¢ represents mass concentration, v/y is the Schmidt number, Sc.
If y is constant, (1.9) becomes

- +8S. (1.10)
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The obvious similarities between (1.8), without pressure gradient or
body force, and (1.10), without the source term S, are the bases for
analogies between momentum transfer and the transfer of heat and other
scalars. The similarities between the general equations (1.2) and (1.9)
are less obvious. Bearing in mind the relative unimportance of viscosity
in turbulent mixing at all but the lowest Reynolds numbers, we can
deduce the relative unimportance of molecular diffusivity (constant or
otherwise) at least if v/y is not much smaller than unity. The presence of
pressure gradients in (1.8) and their absence from (1.10) prevent the

logies from being exact in turbulent flow, even if v/y=1, because
."pressure fluctuations always accompany velocity fluctuations. To see
this, take the divergence of the Navier-Stokes equations [i.e., differentiate
(1.8) with respect to x;] neglecting density variations and body forces;
after rearranging and using (1.5) we get the Poisson equation

1&p o Fuy,
e ox?  ax ox  éx0x,

(1.11)

However, the analogies between momentum transfer and heat or mass
transfer are sufficiently accurate for this introduction to be confined to
momentum transfer, leaving the corresponding qualitative results for
heat or mass transfer to be inferred by the reader. We return to the heat-
transfer equations in Chapter 6: see also Subsection 2.3.9.

Detailed discussions of the equations of motion, some with specific
- application to turbulence, are given in [1.2-7].

1.2 Shear-Layer Instability and the Development
of Turbulence

In steady “inviscid” flow? without body forces, the Navier-Stokes
equations (1.2) reduces to the requirement that the total pressure

d
Pzo(jui+ %), (112)

where u is the velocity vector, shall be constant along a streamline (the
envelope of the velocity vector); here the integral is evaluated along a

2 Meaning a flow with negligible viscous stresses, the result of negligible rate of strain .
rather than negligible viscosity.
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streamline starting from the point where ©=0. In constant-density flow,
P=p+iojul*. (1.13)

P may vary normal to the streamlines because of the previous influence of
viscosity or body forces, and in flow with significant viscous stresses (or
turbulent stresses) it will in general vary along and normal to the stream-
lines. A flow with a total-pressure gradient normal to the streamlines
(a working definition of a “shear layer”) may be unstable to infinitesimal,
or small but finite, time-dependent disturbances. Other kinds of in-
stability may occur, but if turbulence develops it is almost always via
the stage of shear layer instability. Naturally, the shear layer is most
unstable to the type of disturbance which travels downstream with the
fluid, th.‘g\t is, a “traveling-wave” disturbance. Unstable shear flows
give rise to complicated flow patterns [1.8,9] and complicated mathe-
matics [1.10], both of great beauty. Our present concern is with the
further development of amplified unstable disturbances, which in the
simplest cases can be two-dimensional sinusoidal fluctuations, into the
three-dimensional continuous-spectrum fluctuations of turbulence.

The key phenomenon in both the further development of instabilities
and the maintenance of fully developed turbulence is the intensification
of vorticity in three-dimensional flows [Ref 1.8, p. 266]. Vorticity is
defined as

w=curlu=V, u (1.14a)
in vector notation or

— ’auk auj
W= e (5; - a:) (1.14b)

in tensor notation. Here the unit alternating tensor ¢, is defined to be
upity if i, j, k are in cyclic oraer (123123...), —1if i, k, j are in cyclic
order, and zero otherwise (i.e., if two indices are equal); it exists simply
to provide a tensor representation of a vector (cross) product. The
vorticity of an element of fluid in unstrained (“solid body™) rotation
about the x;-axis with angular velocity Q is w=w;=2£2. The “transport”
equation for vorticity in a Newtonian viscous fluid is obtained by taking
the curl of the Navier-Stokes equations. For incompressible, constant-
property flow without body forces (or with a body-force vector f that
satisfics curlf=0, as is the case for many simple body forces, including
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X, Yz

]
x

a) b}

Fig. 1.2a and b. Effect of a velocity gradient on a vortex line. (a) Tilting: vorticity w,,
velocity gradient du,/dx,. (b) Stretching: vorticity w,, velocity gradient du,/0x,

gravity, (1.8), with some use of (1.5), gives

Ow; ou; y Pw,
oxt

i

—_— Uy —— = -
a TUE, TP,

(1.15)

Note that the pressure term has disappeared but that a new term appears
on the right, in addition to the viscous diffusion term. The vorticity/
velocity-gradient interaction term w,du;/dx,, which is a nonlinear term
because w depends on u, has two main effects. It is convenient to discuss
these with reference to a slender element of fluid, rotating about its
axis (Fig. 1.2). We shall call such elements “vortex lines”, the length of
the line being nominally infinite and the distribution of vorticity over
the cross section being immaterial for present purposes. Except for the
effects of viscous diffusion, which tends to increase their cross section,
vortex lines move with the fluid, 2 consequence of Kelvin's circulation
theorem [Ref. 1.8, p. 273]. A vortex sheet is an envelope of vortex lines,
and a finite body of fluid with vorticity can be regarded as a continuous
distribution of vortex lines. Vortex lines induce an irrotational (zero-
vorticity) velocity field at other points in space according to the Biot-
Savart law, which also governs the magnetic field due to a current-
carrying conductor.

The first effect of the term w,;du,/0x, in (1.15} is that if i==] (say, i=1,
[=2, see Fig. 1.2a) it represents an exchange of vortiuty between com-
ponents, because a velocity gradient du,/dx, (say) tilis 1 vortex line
which was initially in the x,-direction so that it acquires a component
in the x,-direction. Secondly. if i=[ (=2, say, scc Fig. 1.2b) the vortex
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line is stretched by the rate of tensile strain along its axis, without any
change of the direction of that axis. Neglecting viscous diffusion (and,
strictly, requiring the cross section of the vortex line to be circular so that
pressure gradients cannot apply a torque to it) we see that the vortex
line will conserve its angular momentum as its cross-sectional area
decreases under the influence of axial stretching; therefore, its vorticity
(angular velocity) will increase. If viscous diffusion is small (high Reynolds
number) the vorticity/velocity-gradient interaction terms in (1.15) can
change an initially simple (but three-dimensional) flow pattern into an
unimaginably complicated distributidn of vorticity and velocity—
turbulence.

Three dimensionality is essential to the genesis and maintenance of
turbulence [1.11]: in an instantaneously two-dimensionai flow, by
definition, the velocity vector would be everywhere parallel to a plane,
the vorticity vector would be normal to that plane, and o,du;/0x, would
be zero. It appears that although the most unstable infinitesimal dis-
turbance in a steady two-dimensional shear flow is a two-dimensional
traveling wave, amplified disturbances of sufficient amplitude {which
can be regarded as packets of vortex lines with spanwise axes) are them-
selves unstable to infinitesimal three-dimensional perturbations. A small
kink in an otherwise straight vortex line is distorted and enlarged by
the induced velocity field of the vortex itself, and if viscous diffusion is
small enough (ie., if the vortex Reynolds number is large enough).
the distortion will continue indefinitely. Therefore, once the primary
unstable disturbances have reached a sufficient amplitude they rapidly
become more complicated and unsteady, because of the stretching and
tilting by the induced velocity field of the vortex lines themselves, as well
as by the basic shear flow. The simplest way of explaining how non-
periodic unsteadiness arises is to note that in real life the wavelength
of the primary disturbance is bound to be slightly unsteady. The per-
. centage unsteadiness in the wavelength of the first harmonic disturbance
will be roughly twice as large, and so on for higher harmonics. Sum-and-
difference wave numbers® appear because of the nonlinearity of the
interaction of different packets of vortex lines via their induced velocity
ficlds, and the wave-number spectrum eventually becomes continuous.

As the motion becomes increasingly complicated the effects are felt
of a theorem in random processes, known as the theorem of the random
walk. or “Drunkard’s Walk”, which states that a particle subjected to
random impuises will, on the average, increase its distance from its

3 Wave number =2n/(wavelength): it is a vector with the same direction as the
wavelength (which is not necessarily the direction of propagation of the wave). Note that
small scale =small wavelength =large wave number.
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starting point. The phenomenon is known to, and regretted by, cab
drivers. An obvious corollary states that the distance between two
randomly perturbed particles will, on the average, increase. If those two
particles are situated at the ends of a given element of a vortex line,
then, in a flow field approximating to random disturbances, the length
of the element will on the average increase, and its vorticity will be
increased by this stretching. Moreover, the typical length scales of the
region of high vorticity— the diameter of the vortex line in our simple
model—will also decrease. This is the key mechanism of fully developed
turbulence: interaction of tangled vortex lines maintains random fluctua-
tions of the vorticity and velocity, while the random-walk mechanism
transfers vorticity to smaller and smaller length scales. It remains to
provide the transfer process with a beginning and an end. If there is a
mean rate of strain it deforms the fluctuating vorticity field and intensifies
vortex lines whose axes are, at any given instant, near the axis of the
largest positive principal strain rate. Because of the nonlinearity of the
process, this intensification usually predominates over the weakening
of those vortex lines whose axes are near that of the negative principal
strain rate. Thus the mean strain rate helps to maintain the level of
vorticity fluctuation. A more rigorous analysis shows that the main
effect of the mean strain rate is on the larger-scale motions, which then
distort motions of smaller scale and so on. A limit to thq decrease of
vortex-line diameter by stretching is set when viscous stress gradients
diffuse vorticity away from the axis as fast as stretching reduces the
diameter.

If we now consider the kinetic energy of the fluctuating motion, we
can see that vortex stretching increases the rotational kinetic energy of
the vortex line. Angular momentum is proportional to wr? while energy is
proportional to w”r?, so if the former is conserved while r decreases, the
latter increases. The kinetic energy comes from the velocity field that
does the stretching, so that kinetic energy passes from the mean flow
(if a mean strain rate is present) down through vortex motions of smaller
and smaller length scale until it is converted into thermal internal
energy via work done against viscous stresses. If there is no mean strain
field to do work on the fluctuating motion the latter gradually decays:
Now this process of energy transfer to smaller scales, aptly called the
“energy cascade”, is independent of viscosity except in the final stages,
as can be seen from the description above. It therefore follows that the
rate of energy transfer to the smallest, viscous-dependent motions that

~dissipate it into “heat” is independent of viscosity. Viscosity causes
dissipation but does not control its rate; the intensity and length scale
of the small-scale motion adjust themselves so as to dissipate all the
energy transferred from larger scales, and the smaller the viscosity the
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Fig. 1.3. Spectral distribution of velocity fluctuations in a late stage of transition to
turbulence

smaller the motions that can survive. The rate of viscous dissipation of
energy per unit volume by turbulent fluctuations is the mean product of
the fluctuating rate of strain and the fluctuating viscous stress (clearly
this is the mean rate at which the turbulence does work against viscous
stresses). The viscous stress is equal to 2 p times the rate of strain, so the
dissipation is proportional to the mean square of the rate of strain and is
therefore non-negative as required by the second law of thermodynamics.

In summary, the stages in the development of turbulence from an
initial unstable shear layer (or from other unstable situations like that of a
fluid whose density decreases in the direction of a body-force vector) are:
1) The growth of disturbances with periodic fluctuations of vorticity.
2) Their secondary instability to three-dimensional (infinitesimal)

disturbance if the primary fluctuations are two dimensional.

3) The growth of three dimensionality and higher harmonics of the
disturbance, leading to spectral broadening by vortex-line inter-
action.

4) The onset of the random-walk mechanism when the vorticity field
becomes sufficiently complicated, leading to a general transfer of
energy across the spectrum to smaller and smaller scales.

It is not useful to agonize about the exact point at which the motion
can properly be called “turbulence”. Flows in the later stages of transition
from laminar to turbulent (at the spectral state shown in Fig. 1.3, say) are
even more difficult to understand and calculate than turbulence in an
undoubted state of full development. Therefore, equating “turbulence”
and “incalculability”—the unconscious basis of many definitions—is
to be deprecated. So is the use of the word “turbulence” in plasma
physics to describe miscellaneous instabilities in current-carrying fluids,
and in meteorology to describe the synoptic-scale motion (whose
horizontal length scales are many times the depth of the atmosphere
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and which is therefore close to instantaneous two dimensionality).
The essential characteristic of turbulence is the transfer of energy to
smaller spatial scales across a continuous wave-number spectrum;
this is a three-dimensional, nonlinear phenomenon.

Note that we have discussed the main mechanisms of turbulence
without any mathematics other than the qualitative use of the vorticity
equation. The vortex-line model used above is clearly artificial, but the
spatial distribution of vorticity in a real turbulence field is almost
discontinuous, the ratio of the width of typical high-vorticity regions to
the width of the flow decreasing with increasing Reynolds number.
There is some controversy [ 1.12] over whether the high-vorticity regions
are best approximated by rods, strips or sheets (known to some as the
“pasta problem”). An alternative concept is that of an “eddy”. In
qualitative discussion an eddy can be thought of as a typical turbulent
flow pattern, covering a moderate range of wavelengths so that large
eddies and small eddies can coexist in the same volume of fluid. Flow-
visualization experiments (to be heartily recommended to all who work
with turbulence and especially those who seek to calculate it) show the
usefulness of the concept and the difficulty of a precise definition [1.13].
In quantitative work one uses statistical-average equations based on
Fourier analysis of the velocity patterns (Section 1.4), and since sinusoidal
modes have no relation to the actual modes (eddies, velocity patterns,
high-vorticity regions...) the physical processes are obscured. Note
however that an optimum mode for spectral decomposition can be
found only after the problem has been solved!

1.3 Statistical Averages

The reason for working with statistical averages [1.6, 11, 14, 15] is
that one is generally not interested in complete details of the behavior of
the three velocity components and the pressure as functions of three
space coordinates and time. In most cases, indeed, only very simple
statistics, such as the mean rates of transfer of mass or momentum, are
required for engineering or geophysical purposes.

The simplest form of statistical average is the mean, with respect
to time, at a single point. This is useful only if the mean is independent
of the time at which the averaging process is started; in symbols

f= Lt %ﬁz”fdt (1.16)
T—x .



