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FROM THE PREFACE TO THE FIRST EDITION

This book is intended for readers who are acquainted with the
course of general physics and analysis of nonspecializing institutions
of higher education. It is meant chiefly for engineer-physicists, though
it may also be useful to specialists working in fields associated with
physics—chemists, physical chemists, biophysicists, geophysicists,
and astronomers.

Like the natural sciences in general, physics is based primarily
on experiment, and, what is more, on quantitative experiment.
However, no series of experiments can constitute a theory until a
rigorous logical relationship is established between them. Theory not
only allows us to systematize the available experimental material, but
also makes it possible to predict new facts which can be experimentally
verified.

All physical laws are expressed in the form of quantitative relation-
ships. In order to interrelate quantitative laws, theoretical physics
appeals to mathematics. The methods of theoretical physics, which
are based on mathematics, can be fully mastered only by those who
have acquired a very considerable volume of mathematical knowledge.
Nevertheless, the basic ideas and results of theoretical physics are
readily comprehensible to any reader who has an understanding of
differential and integral calculus, and is acquainted with vector
algebra. This is the minimum of mathematical knowledge required
for an understanding of the text that follows.

At the same time, the aim of this book is not only to give the reader
an idea about what theoretical physics is, but also to furnishihim
with a working knowledge of the basic methods of theoretical physics.
For this reason it has been necessary to adhere, as far as possible,
to a rigorous exposition. The reader will more readily agree with
the conclusions reached if their inevitability has been made obvious
to him. In order to activize the work of the student, some of the
applications of the theory have been shifted into the exercises, in
which the line of reasoning is not so detailed as in the}basic text.

In compiling such a relatively small book as this one it has been
necessary to cut down on the space devoted to certain important
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sections of theoretical physics, and omit other branches entirely.
For instance, the mechanics of solid media is not included at all
since to set out this branch, even in the same detail as the rest of
the text, would mean doubling the size of the book. A few results
from the mechanics of continuous media are included in the exercises
as illustrations in thermodynamics. At the same time, the mechanies
and electrodynamics of solid media. are less related to the fundamental,
gnosiological problems of physics than microscopic electrodynamics,
quantum theory, and statistical physics. For this rcason, very little
space is devoted to macroscopic electrodynamics: the material has
been selected in such a way as to show the reader how the transition
is made from microscopic electrodynamics to the theory of quasi-
stationary fields and the laws of the propagation of light in media.
It is assumed that the reader is familiar with these problems from
courses of physics and electricity.

On the whole, the book is mainly intended for the reader who is
interested in the physics of elementary processes. These considerations
have also dictated the choice of material; as in all nonencyclopaedic
manuals, this choice is inevitably somewhat subjective.

In compiling this book, I have made considerable use of the excellent
course of theoretical physics of L. D. Landau and E. M. Lifshits. This
comprehensive course can be recommended to all those who wish
to obtain a profound understanding of theoretical physics.

I should like to express my deep gratitude to my friends who have
made important observations: Ya. B. Zeldovich, V. G. Levich,
E. L. Feinberg, V.I. Kogan and V.I. Goldansky.

A. Kompaneyets



PREFACE TO THE SECOND EDITION

In this second edition I have attempted to make the presentation
more systematic and rigorous without adding any difficulties. In
order to do this it has been especially necessary to revise Part III,
to which I have added a special section (Sec. 30) setting out the general
principles of quantum mechanies; radiation is now considered only
with the aid of the quantum theory of the electromagnetic field,
since the results obtained from the correspondence principle do not
appear sufficiently justified.

Gibbs’ statistics are included in this edition, which has made it
necessary to divide Part IV into something in the nature of two
cycles: Sec. 39-44, where only the results of combinatorial analysis
are set out, and Sec. 45-52, an introduction to the Gibbs’ method,
which is used as background material for a discussion of thermo-
dynamics. A phenomenological approach to thermodynamics would
nowadays appear an anachronism in a course of theoretical physics.

In order not to increase the size of the book overmuch, it has been
necessary to omit the theory of beta decay, the variational properties
of eigenvalues, and certain other problems included in the first
edition.

I am greatly indebted to A.F. Nikiforov and V.B. Uvarov for
pointing out several inaccuracies in the first edition of the book.

A. Kompaneyets






PART I
MECHANICS

See. 1. Generalized Coordinates

Frames of reference. In order to describe the motion of & mechanical
system, it is necessary to specify its position in space as a function
of time. Obviously, it is only meaningful to speak of the relative
position of any point. For instance, the position of a flying aircraft
is given relative to some coordinate system fixed with respect to the
earth; the motion of a charged particle in an accelerator is given
relative to the accelerator, etc. The system, relative to which the
motion is described, is called a frame of reference.

Specification of time. As will be shown later (Sec. 20), specification
of time in the general case is also connected with defining the frame
of reference in which it is given. The intuitive conception of a uni-
versal, unique time, to which we are accustomed in everyday life,
is, to a certain extent, an approximation that is only true when the
relative speeds of all material particles are small in comparison
with the velocity of light. The mechanics of such slow movements
is termed Newtonian, since Isaac Newton was the first to formulate
its laws.

Newton’s laws permit a determination of the position of a mechanical
system at an arbitrary instant of time, if the positions and velocities
of all points of the system are known at some initial instant, and also
if the forces acting in the system are known.

Degrees of freedom of a mechanical system. The number of inde-
pendent parameters defining the position of a mechanical system in
space is termed the number of its degrees of freedom.

The position of a particle in space relative to other bodies is defined
with the aid of three independent parameters, for example, its
Cartesian coordinates. The position of a system consisting of N
particles is determined, in general, by 3N independent parameters.

However, if the distribution of points is fixed in any way, then
the number of degrees of freedom may be less than 3. For example,
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if two points are constrained by some form of rigid nondeformable
coupling, then, upon the six Cartesian coordinates of these points,
Xy, Yy, 21, To, Ys, 2y, 18 imposed the condition

(g — 21)2 + (Y — ¥1)* + (2, — 2)2= Ry, , (L.1)

where R,, is the given distance between the points. It follows that
the Cartesian coordinates are no longer independent parameters:
a relationship exists between them. Only five of the six values
Xy, ..., 2, are now independent. In other words, a system of two
particles, separated by a fixed distance, has five degrees of freedom. If
we consider three particles which are rigidly fixed in a triangle, then
the coordinates of the third particle must satisfy the two equations:

(%3 — 21)2+ (Y5 — %)+ (23— 21)* =K}, , (1.2)
(23— )%+ (Y5 — Y2)? + (23 — 22)2 =Ry, . (1.3)

Thus, the nine coordinates of the vertices of the rigid triangle are
defined by the three equations (1.1), {1.2) and (1.3), and hence only
six of the nine quantities are independent. The triangle has six
degrees of freedom.

The position of a rigid body in space is defined by three points
which do not lie on the same straight line. These three points, as we
have just seen, have six degrees of freedom. It follows that any rigid
body has six degrees of freedom. It should be noted that only such
motions of the rigid body are considered as, for example, the rotation
of a top, where no noticeable deformation occurs that can affect
its motion.

Generalized coordinates. It is not always convenient to describe
the position of a system in Cartesian coordinates. As we have already
seen, when rigid constraints exist, Cartesian coordinates must satisfy
supplementary equations. In addition, the choice of coordinate system
is arbitrary and should be determined primarily on the basis of
expediency. For instance, if the forces depend only on the distances
between particles, it is reasonable to introduce these distances into
dynamical equations explicitly and not by means of Cartesian
coordinates.

In other words, a mechanical system can be described by coordinates
whose number is equal to the number of degrees of freedom of the
system. These coordinates may sometimes coincide with the Cartesian
coordinates of some of the particles. For example, in a system of two
rigidly connected points, these coordinates can be chosen in the
following way: the position of one of the points is given in Cartesian
coordinates, after which the other point will always be situated on
a sphere whose centre is the first point. The position of the second
point on the sphere may be given by its longitude and latitude.
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Together with the three Cartesian coordinates of the first point,
the Jatitude and longitude of the second point completely define
the position of such a system in space.

For three rigidly bound points, it is necessary, in accordance with
the method just described, to specify the position of one side of the
triangle and the angle of rotation of the third vertex about that
gide. :

The independent parameters which define the position of a
mechanical system in space are called its generalized coordinates.
We will represent them by the symbols ¢,, where the subscript o
signifies the number of the degree of freedom.

As in the case of Cartesian coordinates, the choice of generalized
coordinates is to a considerable extent arbitrary. It must be chosen
so that the dynamical laws of motion of the system can be formulated
as conveniently as possible.

Seec. 2. Lagrange’s Equation

In this section, equations of motion will be obtained in terms of
arbitrary generalized coordinates. In such form they are especially
convenient in theoretical physics.

Newton’s Second Law. Motion in mechanics consists in changes in
the mutual configuration of bodies in time. In other words, it is
described in terms of the mutual distances, or lengths, and intervals
of time. As was shown in the preceding section, all motion is relative;
it can be specified only in relation to some definite frame of refer-
ence.

In accordance with the level of knowledge of his time, Newton
regarded the concepts of length and time interval as absolute, which
is to say that these quantities are the same in all frames of reference.
As will be shown later, Newton’s assumption was an approximation
(see Sec. 20). It holds when the relative speeds of all the particles
are small compared with the velocity of light; here Newtonian
mechanics is based on a vast quantity of experimental facts.

In formulating the laws of motion a very convenient concept is
the material particle, that is, a body whose position is completely
defined by three Cartesian coordinates. Strictly speaking, this
idealization is not applicable to any body. Nevertheless, it is in
every way reasonable when the motion of a body is sufficiently well
defined by the displacement in space of any of its particles (for
example, the centre of gravity of the body) and is independent of
rotations or deformations of the body.

If we start with the concept of a particle as the fundamental
entity of mechanics, then the law of motion (Newton’s Second Law)
is formulated thus:
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m —‘g—;— =F. (2.1)

Here, F is the resultant of all the forces applied to the particle

(the vector sum of the forces) fidit; is the vector acceleration, the
Cartesian components of which are

d*z d¥y diz
ae ' di* ’ det ’

The quantity m involved in equation (2.1) characterizes the particle
and is called its mass.

Force and mass. Equality (2.1) is the definition of force. However,
it should not be regarded as a simple identity or designation, be-
cause (2.1) establishes the form of the interaction between bodies
in mechanics and thereby actually describes a certain law of nature.
The interaction is expressed in the form of a differential equation
that includes only the second derivatives of the coordinates with
respect to time (and not derivatives, say, of the fourth order).

In addition, certain limiting assumptions are usually made in
relation to the force. In Newtonian mechanics it is assumed that
forces depend only on the mutual arrangement of the bodies at the
instant to which the equality refers and do not depend on the con-
figuration of the bodies at previous times. As we shall see later (see
Part II), this supposition about the character of interaction forces
is valid only when the speeds of the bodies are small compared with
the velocity of light.

The quantity m in equality (2.1) is a characteristic of the body,
its mass. Mass may be determined by comparing the accelerations
which the same force imparts to different bodies; the greater the
acceleration, the less the mass. In order to measure mass, some body
must be regarded as a standard. The choice of a standard body is
completely independent of the choice of standards of length and
time. This is what makes the dimension (or unit of measurement)
of mass a special dimension, not related to the dimensions of length
and time.

The properties of mass are established experimentally. Firstly, it
can be shown that the mass of two equal quantities of the same
substance is equal to twice the mass of each quantity. For example,
one can take two identical scale weights and note that a stretched
spring gives them equal accelerations. If we join two such weights
and subject them to the action of the same spring, which has been
stretched by the same amount as for each weight separately, the
acceleration will be found to be one half what it was. It follows that
the overall mass of the weights is twice as great, since the force
depends only on the tension of the spring and could not have changed.
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Thus, mags is an additive quantity, that is, one in which the whole
is equal to the sum of the quantities of each part taken separately.
Experiment shows that the principle of additivity of mass also
applies to bodies consisting of different substances.

In addition, in Newtonian mechanics, the mass of a body is a
constant quantity which does not change with motion.

It must not be forgotten that the additivity and constancy of
masses are properties that follow only from experimental facts which
relate to very specific forms of motion. For example, a very important
law, that of the conservation of mass in chemical transformations
involving rearrangement of the molecules and atoms of a body,
was established by M. V. Lomonosov experimentally.

Like all laws deduced from experiment, the principle of additivity
of mass has a definite degree of precision. For such strong interactions
as take place in the atomic nucleus, the breakdown of the additivity
of mass is apparent (for more detail see Sec. 21).

We may note that if instead of subjecting a body to the force of
a stretched spring it were subjected to the action of gravity, then
the acceleration of a body of double mass would be equal to the
acceleration of each body separately. From this we conclude that
the forece of gravity is itself proportional to the mass of a body.
Hence, in a vacuum, in the absence of air resistance, all bodies fall
with the same acceleration.

Inertial frames of reference. In equation (2.1) we have to do with
the acceleration of a particle. There is no sense in talking about
acceleration without stating to which frame of reference it is referred.
For this reason there arises a difficulty in stating the cause of the
acceleration. This cause may be either interaction between bodies
or it may be due to some distinctive properties of the reference frame
itself. For example, the jolt which a passenger experiences when a
carriage suddenly stops is evidence that the carriage is in nonuniform
motion relative to the earth.

Let us consider a set of bodies not affected by any other bodies,
that is, one that is sufficiently far away from them. We can suppose
that a frame of reference exists such that all accelerations of the
set of bodies considered arise only as a result of the interaction between
the bodies. This can be verified if the forces satisfy Newton’s Third
Law, i.e., if they are equal and opposite in sign for any pair of particles
(it is assumed that the forces occur instantaneously, and this is true
only when the speeds of the particles are small compared with the
speed of transmisgion of the interaction).

A frame of reference for which the acceleration of a certain set of
particles depends only on the interaction between these particles
is called an ¢nertial frame (or inertial coordinate system). A free
particle, not subject to the action of any other body, moves, relative
to such a reference frame, uniformly in a straight line or, in everyday



16 MECHANICS [Part I

language, by its own momentum. If in a given frame of reference
Newton’s Third Law is not satisfied we can conclude that this is
not an inertial system.

Thus, a stone thrown directly downwards from a tall tower is
deflected towards the east from the direction of the force of gravity.
This direction can be independently established with the aid of 'a
suspended weight. It follows that the stone has a component of
acceleration which is not caused by the force of the earth’s attraction.
From this we conclude that the frame of reference fixed in the earth
is noninertial. The noninertiality is, in this case, due to the diurnal
rotation of the earth. :

On the forces of friction. In everyday life we constantly observe
the action of forces that arise from direct contacts between bodies.
The sliding and rolling of rigid bodies give rise to forces of friction.
The action of these forces causes a transition of the macroscopic
motion of the body as a whole into the microscopic motion of the
constituent atoms and molecules. This is perceived as the generation
of heat. Actually, when a body slides an extraordinarily complex
process of interaction occurs between the atoms in the surface layer.
A description of this interaction in the simple terms of frictional
forces is a very convenient idealization for the mechanics of macro-
scopic motion, but, naturally, does not give us a full picture of the
process. The concept of frictional force arises as a result of a certain
averaging of all the elementary interactions which occur between
bodies in contact.

In this part, which is concerned only with elementary laws, we shall
not consider averaged interactions where motion is transferred to
the internal, microscopic, degrees of freedom of atoms and molecules.
Here, we will study only those interactions which can be completely
expressed with the aid of elementary laws of mechanics and which
do not require an appeal to any statistical concepts connected with
internal, thermal, motion.

Ideal rigid conmstraints. Bodies in contact also give rise to forces
of interaction which can be reduced to the kinematic properties of
rigid constraints. If rigid constraints act in a system they force
the particles to move on definite surfaces. Thus, in Secec. 1 we con-
sidered the motion of a single particle on a sphere, at the centre of
which was another particle,

This kind of interaction between particles does not cause a transition
of the motion to the internal, microscopic, degrees of freedom of
bodies. In other words, motion which is limited by rigid constraints
is completely described by its own macroscopic generalized co-
ordinates q,.

If the limitations imposed by the constraints distort the motion,
they thereby cause saccelerations (curvilinear motion is always
accelerated motion since velocity is a vector quantity). This ac-
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celeration can be formally attributed to forces which are called
reaction forces of rigid constraints.

Reaction forces change only the direction of velocity of a particle
but not its magnitude. If they were to alter the magnitude of the
velocity, this would produce a change also in the kinetic energy of
the particle. According to the law of conservation of energy, heat
would then be generated. But this was excluded from consideration
from the very start.

To summarize, the reaction forces of ideally rigid constraints do
not change the kinetic energy of a system. In other words, they do
not perform any work on it, since work performed on a system is
equivalent to changing its kinetic energy (if heat is not gener-
ated).

In order that a force should not perform work, it must be perpen-
dicular to the displacement. For this reason the reaction forces of
constraints are perpendicular to the direction of particle velocity
at each given instant of time.

However, in problems of mechanics, the reaction forces are not
initially given, as are the functions of particle position. They are
determined by integrating equations (2.1), with account taken of
constraint conditions. Therefore, it is best to formulate the equations
of mechanics so as to exclude constraint reactions entirely. It turns
out that if we go over to generalized coordinates, the number of
which is equal to the number of degrees of freedom of the system,
then the constraint reactions disappear from the equations. In this
section we shall make such a transition and will obtain the equations
of mechanics in terms of the generalized coordinates of the system.

The transformation from rectangular to generalized coordinates.
We take a system with a total of 3N=n Cartesian coordinates of
which v are independent. We will always denote Cartesian coordinates
by the same letter 2;, understanding by this symbol all the co-
ordinates x, ¥, z; this means that 4 varies from 1 to 3N, that is, from 1
to n. The generalized coordinates we denote by ¢, (I <« <v). Since
the generalized coordinates completely specify the position of their
system, x; are their unique functions:

=i (1, Q2> +++ Gas -3 Gv) - (2.2)

From this it is easy to obtain an expression for the Cartesian com-
ponents of velocity. Differentiating the function of many variables
2 (... qs) with respect to time, we have

v
dz; Oz; dyg«
dt _2 6qa de *

a=1

In the subsequent derivation we shall often have to perform
summations with respect to all the generalized coordinates gq,,
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