2 LR SN E A O . HB R (%Eﬂ}lﬂﬁ)l

UNIX NETWORK PROGRAMMING .
Volume 2: Interprocess Communications

——I W. RICHARD STEVENS

“UNIX

PERIZEE2: LR HEE
(% 2 1)

Gen jE M K % BR 4t ST PRENTICE-HALL,INC.
“=27 http://www.tup.tsinghua.edu.cn =% http://www.prenhall.com

UNIX Network Programming

Volume 2
Second Edition

Interprocess Communications

UNIX 4% 4afs

5 2
*EE'ETJ 1|=|
% 2 kR

W. Richard Stevens

BIEXEFEHART Prentice Hall, Inc.

() MEF 1585

UNIX Network Programming Volume 2: Interprocess Communications 2nd ed.
W. Richard Stevens

Copyright © 1999 by Prentice Hall PTR.

Original English Language Edition Published by Prentice Hall PTR
All Rights Reserved.

For sale in Mainland China only.

APFZENRH Prentice Hall HiRt 2 8] ER0GE 0 R 22 SR BN OV 8 B AT
DL BRITIRFAATEUX AN 67X MR AR, RAT.
REHHBERL@FR, FEUEAARXEH S ERBHEMEBS .

AHHEAE Prentice Hall ;KB AFRE, TIREEREIEE.
LR THRAUREREN AR ZCS: B%: 01-2002-0656

B 44 UNIX W42 % 2. EREEEE (B2 /0
ff # . W. Richard Stevens
WARE: HRRF LR AusiEE K2 RE, Hi% 100084)
http:// www.tup.tsinghua.edu.cn
TR TSRS E R
KATHE: FEPE B RATE
FFOA: 787X9601/16 ENgk: 36.25
R: 200244 A% 1A 20024 4 A% 1 IREDKY
5 : ISBN 7-302-05355-3/TP « 3147
El - %: 0001~4000
& e 47.00 g

o B

BEA 21 e, RS E M5 B R ERE B I 58 o e . S5 b ok
X ANA B WA KEGRAMAA, RS PIRENS. S%8H, FEh5
FEFRAA T, BRZREEEN. HaTRE&SEH WM TR, 7t
METEBAR, 0 3 IEAE N D fe B3 E m BOR 1 S s B

HHER LA 1996 7145, SEAME L RN R G1E, ENLR T “ KA ENE
BAS GEEIRO” 55 RISEES, 2207 HAEERRGERSR. A 21 i, Al
AN BRE S FHH BB BURS VI, ECHEMEMLE, 3Py RaEAR, SRR
PIARSE, — B EHE A K& KL G TR E @R AR B R AE T AU E W 54
WEMEE LEMURHF B, QAL R FHENBEEMELEM . BB R0 (¥
EiRO 7, CASREE . IRUTHIM S8 R A RIEM . B RRAE WS AT
EAREANTR, BB RN BN ENBE M E B, ORI KT
MIEEESE XM . BS R GEEND” M3 A, SE & mRIm A M7 .

TENLS AR g %
2002.3

Preface

Introduction

Most nontrivial programs involve some form of IPC or Interprocess Communication. This
is a natural effect of the design principle that the better approach is to design an applica-
tion as a group of small pieces that communicate with each other, instead of designing
one huge monolithic program. Historically, applications have been built in the follow-
ing ways:

1. One huge monolithic program that does everything. The various pieces of the
program can be implemented as functions that exchange information as func-
tion parameters, function return values, and global variables.

2. Multiple programs that communicate with each other using some form of IPC.
Many of the standard Unix tools were designed in this fashion, using shell
pipelines (a form of IPC) to pass information from one program to the next.

3. One program comprised of multiple threads that communicate with each other
using some type of IPC. The term IPC describes this communication even
though it is between threads and not between processes.

Combinations of the second two forms of design are also possible: multiple processes,
each consisting of one or more threads, involving communication between the threads
within a given process and between the different processes.

What I have described is distributing the work involved in performing a given
application between multiple processes and perhaps among the threads within a pro-
cess. On a system containing multiple processors (CPUs), multiple processes might be

xiii

xiv. UNIX Network Programming Preface

able to run at the same time (on different CPUs), or the multiple threads of a given pro-
cess might be able to run at the same time. Therefore, distributing an application
among multiple processes or threads might reduce the amount of time required for an
application to perform a given task.

This book describes four different forms of IPC in detail:

message passing (pipes, FIFOs, and message queues),

2. synchronization (mutexes, condition variables, read—write locks, file and record
locks, and semaphores),

shared memory (anonymous and named), and

remote procedure calls (Solaris doors and Sun RPO).

This book does not cover the writing of programs that communicate across a computer
network. This form of communication normally involves what is called the sockets API
(application program interface) using the TCP/IP protocol suite; these topics are cov-
ered in detail in Volume 1 of this series [Stevens 1998].

One could argue that single-host or nonnetworked IPC (the subject of this volume)
should not be used and instead all applications should be written as distributed appli-
cations that run on various hosts across a network. Practically, however, single-host IPC
is often much faster and sometimes simpler than communicating across a network.
Techniques such as shared memory and synchronization are normally available only on
a single host, and may not be used across a network. Experience and history have
shown a need for both nonnetworked IPC (this volume) and IPC across a network
(Volume 1 of this series).

This current volume builds on the foundation of Volume 1 and my other four books,
which are abbreviated throughout this text as follows:

* UNPv1: UNIX Network Programming, Volume 1 [Stevens 1998],

* APUE: Advanced Programming in the UNIX Environment [Stevens 1992],
e TCPv1: TCP/IP INustrated, Volume 1 [Stevens 19941,

TCPv2: TCP/IP Illustrated, Volume 2 [Wright and Stevens 1995], and
TCPv3: TCP/IP Illustrated, Volume 3 [Stevens 19961.

Although covering IPC in a text with “network programming” in the title might
seem odd, IPC is often used in networked applications. As stated in the Preface of the
1990 edition of UNIX Network Programming, “A requisite for understanding how to
develop software for a network is an understanding of interprocess communication
arQ).”

Changes from the First Edition

This volume is a complete rewrite and expansion of Chapters 3 and 18 from the 1990
edition of UNIX Network Programming. Based on a word count, the material has
expanded by a factor of five. The following are the major changes with this new edi-
tion:

UNIX Network Programming Preface XV

Readers

In addition to the three forms of “System V IPC” (message queues, semaphores,
and shared memory), the newer Posix functions that implement these three
types of IPC are also covered. (I say more about the Posix family of standards in
Section 1.7.) In the coming years, I expect a movement to the Posix IPC func-
tions, which have several advantages over their System V counterparts.

The Posix functions for synchronization are covered: mutex locks, condition
variables, and read~write locks. These can be used to synchronize either threads
or processes and are often used when accessing shared memory.

This volume assumes a Posix threads environment (called “Pthreads”), and
many of the examples are built using multiple threads instead of multiple pro-
cesses.

The coverage of pipes, FIFOs, and record locking focuses on their Posix defini-
tions.

In addition to describing the IPC facilities and showing how to use them, I also
develop implementations of Posix message queues, read—write locks, and Posix
semaphores (all of which can be implemented as user libraries). These imple-
mentations can tie together many different features (e.g., one implementation of
Posix semaphores uses mutexes, condition variables, and memory-mapped 1/0)
and highlight conditions that must often be handled in our applications (such as
race conditions, error handling, memory leaks, and variable-length argument
lists). Understanding an implementation of a certain feature often leads to a
greater knowledge of how to use that feature.

The RPC coverage focuses on the Sun RPC package. I precede this with a
description of the new Solaris doors API, which is similar to RPC but on a single
host. This provides an introduction to many of the features that we need to
worry about when calling procedures in another process, without having to
worry about any networking details.

This text can be used either as a tutorial on IPC, or as a reference for experienced pro-
grammers. The book is divided into four main parts:

message passing,
synchronization,
shared memory, and
remote procedure calls

but many readers will probably be interested in specific subsets. Most chapters can be
read independently of others, although Chapter 2 summarizes many features common
to all the Posix IPC functions, Chapter 3 summarizes many features common to all the
System V IPC functions, and Chapter 12 is an introduction to both Posix and System V
shared memory. All readers should read Chapter 1, especially Section 1.6, which
describes some wrapper functions used throughout the text. The Posix IPC chapters are

xvi UNIX Network Programming Preface

independent of the System V IPC chapters, and the chapters on pipes, FIFOs, and record
locking belong to neither camp. The two chapters on RPC are also independent of the
other IPC techniques.

To aid in the use as a reference, a thorough index is provided, along with sum-
maries on the end papers of where to find detailed descriptions of all the functions and
structures. To help those reading topics in a random order, numerous references to
related topics are provided throughout the text.

Source Code and Errata Availability

The source code for all the examples that appear in this book is available from the
author’s home page (listed at the end of this Preface). The best way to learn the IPC
techniques described in this book is to take these programs, modify them, and enhance
them. Actually writing code of this form is the only way to reinforce the concepts and
techniques. Numerous exercises are also provided at the end of each chapter, and most
answers are provided in Appendix D.

A current errata for this book is also available from the author’s home page.

Acknowledgments

Although the author’s name is the only one to appear on the cover, the combined effort
of many people is required to produce a quality text book. First and foremost is the
author’s family, who put up with the long and weird hours that go into writing a book.
Thank you once again, Sally, Bill, Ellen, and David.

My thanks to the technical reviewers who provided invaluable feedback (135
printed pages) catching lots of errors, pointing out areas that needed more explanation,
and suggesting alternative presentations, wording, and coding: Gavin Bowe, Allen
Briggs, Dave Butenhof, Wan-Teh Chang, Chris Cleeland, Bob Friesenhahn, Andrew
Gierth, Scott Johnson, Marty Leisner, Larry McVoy, Craig Metz, Bob Nelson, Steve Ragpo,
Jim Reid, Swamy K. Sitarama, Jon C. Snader, Ian Lance Taylor, Rich Teer, and Andy
Tucker.

The following people answered email questions of mine, in some cases many ques-
tions, all of which improved the accuracy and presentation of the text: David Bausum,
Dave Butenhof, Bill Gallmeister, Mukesh Kacker, Brian Kernighan, Larry McVoy, Steve
Rago, Keith Skowran, Bart Smaalders, Andy Tucker, and John Wait.

A special thanks to Larry Rafsky at GSquared, for lots of things. My thanks as
usual to the National Optical Astronomy Observatories (NOAO), Sidney Wolff, Richard
Wolff, and Steve Grandi, for providing access to their networks and hosts. Jim Bound,
Matt Thomas, Mary Clouter, and Barb Glover of Digital Equipment Corp. provided the
Alpha system used for most of the examples in this text. A subset of the code in this
book was tested on other Unix systems: my thanks to Michael Johnson of Red Hat Soft-
ware for providing the latest releases of Red Hat Linux, and to Dave Marquardt and
Jessie Haug of IBM Austin for an RS/6000 system and access to the latest releases of
AIX.

UNIX Network Programming Preface xvii

My thanks to the wonderful staff at Prentice Hall—my editor Mary Franz, along
with Noreen Regina, Sophie Papanikolaou, and Patti Guerrieri—for all their help, espe-
cially in bringing everything together on a tight schedule.

Colophon

I produced camera-ready copy of the book (PostScript), which was then typeset for the
final book. The formatting system used was James Clark’s wonderful groff package,
on a SparcStation running Solaris 2.6. (Reports of troff’s death are greatly exaggerated.)
I typed in all 138,897 words using the vi editor, created the 72 illustrations using the
gpic program (using many of Gary Wright’s macros), produced the 35 tables using the
gtbl program, performed all the indexing (using a set of awk scripts written by Jon
Bentley and Brian Kernighan), and did the final page layout. Dave Hanson’s 1oom pro-
gram, the GNU indent program, and some scripts by Gary Wright were used to
include the 8,046 lines of C source code in the book.

I welcome email from any readers with comments, suggestions, or bug fixes.

Tucson, Arizona W. Richard Stevens
July 1998 rstevens@kohala.com
http://www.kohala.com/~rstevens

Abbreviated Table

of Conlenfts

Part 1. Introduction 1
Chapter 1. Introduction 3
Chapter 2. Posix IPC 19
Chapter 3. System V IPC 27
Part 2. Message Passing 1M
Chapter 4. Pipes and FIFOs 43
Chapter 5. Posix Message Queues 75
Chapter 6. System V Message Queues 129
Part 3. Synchronization 157
Chapter 7. Mutexes and Condition Variables 159
Chapter 8. Read-Write Locks 177
Chapter 9. Record Locking 183
Chapter 10. Posix Semaphores 219
Chapter 11. System V Semaphores 281
Part 4. Shared Memory 301
Chapter 12. Shared Memory Introduction 303
Chapter 13. Posix Shared Memory 325
Chapter 14. System V Shared Memory 343
Part 5. Remote Procedure Calls 353
Chapter 15. Doors 355
Chapter 16. Sun RPC 399
Appendix A. Performance Measurements 457
Appendix B. A Threads Primer 501
Appendix C. Miscellaneous Source Code 505
Appendix D. Solutions to Selected Exercises 515

Table of Confents

Preface xiii
Part 1. Introduction 1
Chapter 1. Introduction 3
1.1 Introduction 3
1.2 Processes, Threads, and the Sharing of Information 5

1.3 Persistence of IPC Objects 6

1.4 Name Spaces 7

1.5 Effect of fork, exec, and exit on IPC Objects 9
1.6 Error Handling: Wrapper Functions 11

1.7 Unix Standards 13

1.8 Road Map to IPC Examples in the Text 15

1.9 Summary 16

Chapter 2. Posix IPC 19
241 Introduction 19
2.2 IPC Names 19
23 Creating and Opening IPC Channels 22
2.4 IPC Permissions 25

25 Summary 26

vii

viii ~ UNIX Network Programming

Contents

Chapter 3. System V IPC 27
3.1 Introduction 27
3.2 key_t Keys and ftok Function 28
3.3 ipc_perm Structure 30
3.4 Creating and Opening IPC Channels 30
35 IPC Permissions 32
3.6 Identifier Reuse 34
3.7 ipcs and ipcrm Programs 36
3.8 Kernel Limits 36
3.9 Summary 38
Part 2. Message Passing 41
Chapter 4. Pipes and FIFOs 43
4.1 Introduction 43
4.2 A Simple Client-Server Example 43
4.3 Pipes 44
4.4 Full-Duplex Pipes 50
45 popen and pclose Functions 52
4.6 FIFOs 54
4.7 Additional Properties of Pipes and FIFOs 58
4.8 One Server, Multiple Clients 60
4.9 lterative versus Concurrent Servers 66
410 Streams and Messages 67
4.11 Pipe and FIFO Limits 72
412 Summary 73
Chapter 5. Posix Message Queues 75
5.1 Introduction 75
52 mg_open, mg_close, and mg unlink Functions 76
5.3 mg_getattr and mg setattr Functions 79
5.4 mg_send and mq_receive Functions 82
55 Message Queue Limits 86
5.6 mg_notify Function 87
5.7 Posix Realtime Signals 98
5.8 Implementation Using Memory-Mapped 1/0 106
5.9 Summary 126
Chapter 6. System V Message Queues 129
6.1 Introduction 129
6.2 msgget Function 130
6.3 msgsnd Function 131
6.4 msgrcv Function 132
6.5 msgetl Function 134
6.6 Simple Programs 135
6.7 Client-Server Example 140
6.8 Multiplexing Messages 142

UNIX Network Programming

Contents ix

6.9 Message Queues with select and poll 151
6.10 Message Queue Limits 152
6.11 Summary 155
Part 3. Synchronization 157
Chapter 7. Mutexes and Condition Variables 159
71 Introduction 159
7.2 Mutexes: Locking and Unlocking 159
7.3 Producer—-Consumer Problem 161
7.4 Locking versus Waiting 165
7.5 Condition Variables: Waiting and Signaling 167
7.6 Condition Variables: Timed Waits and Broadcasts 171
7.7 Mutexes and Condition Variable Attributes 172
7.8 Summary 174
Chapter 8. Read-Write Locks 177
8.1 introduction 177
8.2 Obtaining and Releasing Read-Write Locks 178
8.3 Read-Write Lock Attributes 179
8.4 Implementation Using Mutexes and Condition Variables 179
8.5 Thread Canceliation 187
8.6 Summary 192
Chapter 9. Record Locking 193
9.1 Introduction 193
9.2 Record Locking versus File Locking 197
9.3 Posix fcntl Record Locking 199
9.4 Advisory Locking 203
9.5 Mandatory Locking 204
9.6 Priorities of Readers and Writers 207
9.7 Starting Only One Copy of a Daemon 213
9.8 Lock Files 214
9.9 NFS Locking 216
9.10 Summary 216
Chapter 10. Posix Semaphores 219
10.1 introduction 219
10.2 sem_open, sem_close, and sem_unlink Functions 225
103 sem_wait and sem_trywait Functions 226
10.4 sem_post and sem_getvalue Functions 227
10.5 Simple Programs 228
10.6 Producer—-Consumer Problem 233
10.7 File Locking 238
10.8 sem_init and sem_destroy Functions 238
10.9 Multiple Producers, One Consumer 242
10.10 Multiple Producers, Multiple Consumers 245

X

UNIX Network Programming

Contents

10.11

Multiple Buffers 249

10.12 Sharing Semaphores between Processes 256
10.13 Semaphore Limits 257
10.14 Implementation Using FIFOs 257
10.15 Implementation Using Memory-Mapped /O 262
10.16 Implementation Using System V Semaphores 271
10.17 Summary 278
Chapter 11. System V Semaphores 281
11.1 Introduction 281
11.2 semget Function 282
11.3 semop Function 285
114 semctl Function 287
11.5 Simple Programs 289
11.6 File Locking 294
11.7 Semaphore Limits 296
11.8 Summary 300
Part 4. Shared Memory 301
Chapter 12. Shared Memory Introduction 303
12.1 Introduction 303
12.2 mmap, munmap, and msync Functions 307
12.3 Increment Counter in a Memory-Mapped File 311
12.4 4.4BSD Anonymous Memory Mapping 315
12.5 SVR4 /dev/zero Memory Mapping 316
12.6 Referencing Memory-Mapped Objects 317
12.7 Summary 322
Chapter 13. Posix Shared Memory 325
13.1 Introduction 325
13.2 shm_open and shm_unlink Functions 326
13.3 ftruncate and fstat Functions 327
13.4 Simple Programs 328
13.5 Incrementing a Shared Counter 333
13.6 Sending Messages to a Server 336
13.7 Summary 342
Chapter 14. System V Shared Memory 343
141 Introduction 343
14.2 shmget Function 343
143 shmat Function 344
14.4 shmdt Function 345
14.5 shmetl Function 345
14.6 Simple Programs 346
147 Shared Memory Limits 349
14.8 Summary 351

UNIX Network Programming

Contents

xi

Part 5. Remote Procedure Calls 353
Chapter 15. Doors 355
15.1 Introduction 355
15.2 door_call Function 361
16.3 door_create Function 363
154 door_return Function 364
15.5 door_cred Function 365
15.6 door_info Function 365
15.7 Examples 366
15.8 Descriptor Passing 379
15.9 door_server_create Function 384
15.10 door_bind, door_unbind, and door_revoke Functions 390
15.11 Premature Termination of Client or Server 390
15.12 Summary 397
Chapter 16. Sun RPC 399
16.1 Introduction 399
16.2 Multithreading 407
16.3 Server Binding 411
16.4 Authentication 414
16.5 Timeout and Retransmission 417
16.6 Call Semantirs 422
16.7 Premature Termination of Client or Server 424
16.8 XDR: External Data Representation 426
16.9 RPC Packet Formats 444
16.10 Summary 449
Epilogue 453
Appendix A. Performance Measurements 457
A1 Introduction 457
A2 Results 458
A3 Message Passing Bandwidth Programs 467
A4 Message Passing Latency Programs 480
A5 Thread Synchronization Programs 486
A6 Process Synchronization Programs 497
Appendix B. A Threads Primer 501
B.1 Introduction 501
B.2 Basic Thread Functions: Creation and Termination 502
Appendix C. Miscellaneous Source Code 505
CA1 unpipc.h Header 505
C.2 config.h Header 509

C.3

Standard Error Functions 510

xii ~ UNIX Network Programming Contents

Appendix D. Solutions to Selected Exercises 515
Bibliography 535
539

Index

Part |

Introduction

