Computer
Organization
& Design

The Hardware/Software Interface

ﬁ%ﬂéﬁr/\ %ilﬁ‘_
@#/Wﬁlﬂfin

(EXRR - $2hR)

T AP

HENER 5T
Bt/ R0

(EXLHR 2R)

Computer Organization & Design
The Hardware/Software Interface

(Second Edition)

John L. Hennessy
David A. Patterson

(%)

John L. Hennessy & David A. Patterson: Computer Organization & Design, The
Hardware/Software interface. Second Edition.

Copyright @ 1998 by Morgan Kaufmann Publishers, Inc.

Harcourt Asia Pte Ltd under special arrangement with Morgan Kaufmann authorizes
China Machine Press to print. and exclusively distribute this edition, which is the only
authorized complete and unabridged reproduction of the latest American Edition published
and priced for sale in China only, not including Hong Kong SAR and Taiwan.

Unauthorized export of this edition is a violation of the Copyright Act. Violation of this

Law is subjected to Civil and Criminal penalties.

Harcourtil # 2 &) £ 5Morgan KaufmannZ Gl % SR T, @A T HARH:
MR RITHEA, ZPBALEBRFRALZH N SBRANERR, ¥AEFE
BN (FEEEEIE MERMENTEKX) HEmEh HHK.

ARRA RSB 04748 E R, SEHERE - RFMAEFIE.

BEEE, BRSR.

EBRRNZFIRE: BR: 01-1999-2023
B4 1E K% B(CIP) iR

HWRILHA SR @/ kN P2 %30/(B)F e (Hennessy, J.L.),
(FE)MFE R (Patterson, D. AN —Jb50: HLbk Tk AR, 1999.9

GHEILEHEA)

ISBN 7-111-07437-8

L.if D.0%- O OOHEFHEN - ZELH - A XQBTFHEN - B4
it - ¥ Iv.TP302

B AR 3 B B CIPHIR B 3 (19998337928

H O F: DR GUrhdERe E S L A2 #ERE 100037)
ALECE MR BB ENR T ENR - BB B R TR KT
19994E9 B # 1 AR 4 1 R ENRI

787mm x 1092mm1/16 - 62.25E18k

EN%: 0 001-4 000#}

EHr: 80.005¢

A5, mABRT. #H. KT, hALRTHER

L A T I SO L e T e ——

About the Authors

David A. Patterson has been teaching computer architecture at the University of California,
Berkeley, since joining the faculty in 1977, and he holds the Pardee Chair of Computer Science.
Past chair of the CS division in the EECS department at Berkeley and the ACM SIG in computer
architecture, he is currently chair of the Computing Research Association. His teaching has been
honored by the ACM, the IEEE, and the University of California. Patterson has also received the
TEEE Technical Achievement Award and the Outstanding Alumnus Award of the UCLA Computer
Science Department. He is a member of the National Academy of Engineering and is a fellow of
both the ACM the IEEE.

At Berkeley, Patterson led the design and implementation of RISC I, likely the first VLSI
Reduced Instruction Set Computer. This research became the foundation of the SPARC,
architecture, currently used by Fujitsu, Sun Microsystems, and Xerox. He was also a leader of the
Redundant Arrays of Inexpensive Disks (RAID) project, which led to highperformance storage
systems from many cornpanies. These projects earned three distinguished dissertation awards from
the ACM. His current research interests are in building novel microprocessors using Intelligent
DRAM (IRAM).

John L. Hennessy teaches computer architecture at Stanford University, where he has been a
member of the faculty since 1997. He is currently Dean of the School of Engineering and the
Frederick Emmons Terman Professor of Engineering. Hennessy is a fellow of the IEEE and ACM,
a member of the National Academy of Engineering, and a fellow of the American Academy of Arts
and Sciences. He received the 1994 IEEE Piore Award for his contributions to the development of
RISC technology.

Hennessy's original research group at Stanford developed many of the techniques now in
commercial use for optimizing compilers. In 1981, he started the MIPS project at Stanford with a
handful of graduate students. After completing the Project in 1984, he took a one-year leave from
the university to co-found MIPS Computer Systems, which developed one of the first commereial
RISC microprocessors. MIPS Computer Systems has since merged with Silicon Graphics, where
Hennessy consults as Chief Architect. His recent research at Stanford focuses on the area of
designing and exploiting multiprocessors. Most recently, he has been involved in the development
of the DASH multiprocessor architecture, ope of the first distributed shared-memory

multiprocessors. /\/’ \g g ’Z 7 x/ Ol\" J /
| I A

vi

Foreword

by John H. Crawford
Intel Fellow, Director of Microprocessor Architecture
Intel Corporation, Santa Clara, California

Computer design is an exciting and competitive discipline. The microproces-
sor industry is on a treadmill where we double microprocessor performance
every 18 months and double microprocessor complexity—measured by the
number of transistors per chip—every 24 months. This unprecedented rate of
change has been evident for the entire 25-year history of the microprocessor,
and it promises to continue for many years to come as the creativity and
energy of many people are harnessed to drive innovation ahead in spite of the
challenge of ever-smaller dimensions. This book trains the student with the
concepts needed to lay a solid foundation for joining this exciting field. More
importantly, this book provides a framework for thinking about computer
organization and design that will enable the reader to continue the lifetime of
learning necessary for staying at the forefront of this competitive discipline.

The text focuses on the boundary between hardware and software and ex-
plores the levels of hardware in the vicinity of this boundary. This boundary
is captured in a computer’s architecture specification. It is a critical boundary
for a successful computer product: an architect must define an interface that
can be efficiently implemented by hardware and efficiently targeted by com-
pilers. The interface must be able to retain these efficiencies for many genera-
tions of hardware and compiler technology, much of which will be unknown
at the time the architecture is specified. This boundary is central to the disci-
pline of computer design: it is where compilation (in software) ends and inter-
pretation (in hardware) begins.

This book builds on introductory programming skills to introduce the con-
cepts of assembly language programming and the tools needed for this task:
the assembler, linker, and loader. Once these prerequisites are completed, the
remainder of the book explores the first few levels of hardware below the ar-
chitectural interface. The basic concepts are motivated and introduced with
clear and intuitive examples, then elaborated into the “real stuff” used in to-
day’s modern microprocessors. For example, doing the laundry is used as an
analogy in Chapter 6 to explain the basic concepts of pipelining, 2 key tech-
nique used in all modern computers. In Chapter 4, algorithms for the basic

Foreword vii

floating-point arithmetic operators such as addition, multiplication, and divi-
sion are first explained in decimal, then in binary, and finally they are elabo-
rated into the best-known methods used for high-speed arithmetic in today’s
computers.

New to this edition are sections in each chapter entitled “Real Stuff.” These
sections describe how the concepts from the chapter are implemented in com-
mercially successful products. These provide relevant, tangible examples of
the concepts and reinforce their importance. As an example, the Real Stuff in
Chapter 6, Enhancing Performance with Pipelining, provides an overview of a
dynamically scheduled pipeline as implemented in both the IBM/Motorola
PowerPC 604 and Intel’s Pentium Pro microprocessor.

The history of computing is woven as a thread throughout the book to re-
ward the reader with a glimpse of key successes from the brief history of this
young discipline. The other side of history is reported in the Fallacies and Pit-
falls section of each chapter. Since we can learn more from failure than from
success, these sections provide a wealth of learning!

The authors are two of the most admired teachers, researchers, and practi-
tioners of the art of computer design today. John Hennessy has straddled both
sides of the hardware/software boundary, providing technical leadership for
the legendary MIPS compiler as well as the MIPS hardware products through
many generations. David Patterson was one of the original RISC proponents:
he coined the acronym RISC, evangelized the case for RISC, and served as a
key consultant on Sun Microsystem’s SPARC line of processors. Continuing
his talent for marketable acronyms, his next breakthrough was RAID (Redun-
dant Arrays of Inexpensive Disks), which revolutionized the disk storage in-
dustry for large data servers, and then NOW (Networks of Workstations).

Like other great “software” products, this second edition went through an
extensive beta testing program: 13 beta sites tested the draft manuscript in
classes to “debug” the text. Changes from this testing have been incorporated
into the “production” version.

Patterson and Hennessy have succeeded in taking the first edition of their
excellent introductory textbook on computer design and making it even better.
This edition retains all of the good points of the original, yet adds significant
new content and some minor enhancements. What results is an outstanding in-
troduction to the exciting field of computer design.

xiil

Worked Examples

Chapter 2: The Role of Performance

Throughput and Response Time 56
Relative Performance 57
Improving Performance 60

Using the Performance Equation 62
Comparing Code Segments 64

MIPS as a Performance Measure 78

Chapter 3: Instructions: Language of the Machine

Compiling Two C Assignment Statements into MIPS 108

Compiling a Complex C Assignment into MIPS 109

Compiling a C Assignment Using Registers 110

Compiling an Assignment When an Operand Is in Memory 112
Compiling Using Load and Store 113

Compiling Using a Variable Array Index 114

Translating a MIPS Assembly Instruction into a Machine Instruction 117
Translating MIPS Assembly Language into Machine Language 119
Compiling an If Statement into a Conditional Branch 123

Compiling if-then-else into Conditional Branches 124

Compiling a Loop with Variable Array Index 126

Compiling a while Loop 127

Compiling a Less Than Test 128

Compiling a switch Statement by Using a Jump Address Table 129
Compiling a Procedure that Doesn’t Call Another Procedure 134
Compiling a Recursive Procedure, Showing Nested Procedure Linking 136
Compiling a String Copy Procedure, Showing How to Use C Strings 143
Translating Assembly Constants into Machine Language 145

Loading a 32-Bit Constant 147

Showing Branch Offset in Machine Language 149

Branching Far Away 150

Decoding Machine Code 154

Linking Object Files 160

Compiling an Assignment Statement into Accumulator Instructions 190
Compiling an Assignment Statement into Memory-Memory Instructions 192
Compiling an Assignment Statement into Stack Instructions 193

Chapter 4: Arithmetic for Computers

ASCII versus Binary Numbers 212
Binary to Decimal Conversion 214
Signed versus Unsigned Comparison 215
Negation Shortcut 216 ‘

Sign Extension Shortcut 217
Binary-to-Hexadecimal Shortcut 218

xiv Worked Examples

Binary Addition and Subtraction 220

C Bit Fields 229

Both Levels of the Propagate and Generate 247

Speed of Ripple Carry versus Carry Lookahead 248

First Multiply Algorithm 253

Second Multiply Algorithm 256

Third Multiply Algorithm 257

Booth’s Algorithm 261

Multiply by 2i via Shift 262

First Divide Algorithm 268

Third Divide Algorithm 271

Floating-Point Representation 279

Converting Binary to Decimal Floating Point 280

Decimal Floating-Point Addition 282

Decimal Floating-Point Multiplication 287

Compiling a Floating-Point C Program into MIPS Assembly Code 293
Compiling Floating-Point C Procedure with Two-Dimensional Matrices into MIPS 294
Rounding with Guard Digits 297

Chapter 5: The Processor: Datapath and Control

Composing Datapaths 351

Implementing Jumps 370

Performance of Single-Cycle Machines 373

Performance of a Single-Cycle CPU with Floating-Point Instructions 375
CPl in a Multicycle CPU 397

Chapter 6: Enhancing Performance with Pipelining

Single-Cycle versus Pipelined Performance 438
Stall on Branch Performance 442

Forwarding with Two Instructions 446
Reordering Code to Avoid Pipeline Stalls 447
Labeled Pipeline Execution, Including Control 471
Dependency Detection 479

Forwarding 485

Pipelined Branch 498

Loops and Prediction 501

Comparing Performance of Several Control Schemes 504
Exception in a Pipelined Computer 507

Simple Superscalar Code Scheduling 513

Loop Unrolling for Superscalar Pipelines 513

Chapter 7: Large and Fast: Exploiting Memory Hierarchy

Bits in a Cache 550

Mapping an Address to a Multiword Cache Block 556
Calculating Cache Performance 565

Cache Performance with Increased Clock Rate 567
Associativity in Caches 571

Size of Tags versus Set Associativity 575

Performance of Multilevel Caches 576

Overall Operation of a Memory Hierarchy 595

Chapter 8: Interfacing Processors and Peripherals

Impact of I/O on System Performance 639
Disk Read Time 648

Worked Examples

XV

Performance of Two Networks 654

FSM Control for I/O 662

Performance Analysis of Synchronous versus Asynchronous Buses 662
Performance Analysis of Two Bus Schemes 665

Overhead of Polling in an I/0 System 676

Overhead of Interrupt-Driven I/O 679

Overhead of I/O Using DMA 681

1/0 System Design 685

Chapter 9: Multiprocessors

Speedup Challenge 715

Speedup Challenge, Bigger Problem 716
Parallel Program (Single Bus) 718
Parailel Program (Message Passing) 729

Appendix A: Assemblers, Linkers, and the SPIM Simulator
Local and Global Labels A-11
String Directive A-15
Macros A-15
Stack in Recursive Procedure A-28
Interrupt Handler A-34

Appendix B: The Basics of Loglc Design
Truth Tables B-5
Logic Equations B-6
Sum of Products B-11
PLAs B-13
Don't Cares B-16

Appendix C: Mapping Control to Hardware

Logic Equations for Next-State Outputs C-12
Control ROM Entries C-17

xvi

Computer Organization
and Design Online

ENHAQGCED All of the following resources are available at http:/fwww.mkp.com/cod2e.htm.

Web Extensions

These materials are extensions of the book’s content.

Web Extension I: Survey of RISC Architectures
Supplies current detailed information for several RISC architectures.
B Desktop RISC Architectures (Alpha, PA-RISC, MIPS, PowerPC,

SPARC)

@ Embedded RISC Architectures (ARM, Hitachi SH4, MIT M32R, MIPS
16, Thumb)

Web Extension l: introducing C to Pascal Programmers

Provides Pascal programmers with a quick reference for understanding
the C code in the text.

® Variable Declarations

® Assignment Statements

B Relational Expressions and Conditional Statements

m Loops

@ Examples to Put It All Together

| Exercises

Web Extension II: Another Approach to Instruction Set
Architecture—VAX

Presents an example of a CISC computer architecture for comparison
with the MIPS architecture described in the text.

® VAX Operands and Addressing Modes

B Encoding VAX Instructions

m VAX Operations

® An Example to Put it All Together: swap

Computer Organization and Design Online xvil

® A Longer Example: sort

m Fallacies and Pitfalls

m Historical Perspective and Further Reading
m Exercises

Supplements

This electronic support package includes files that can be viewed and down-
loaded in a number of formats.

Lecture slides

Electronic versions of text figures

Instructors Manual

Links to course home pages from selected schools

Instructions for using new DOS and Windows versions of PCspim simu-
lators

Links to SPIM simulators (see page xviii)

Resources

Multiprocessors Page

Extends Chapter 9's coverage of real machines by providing links to
companies that manufacture current multiprocessor machines.

Discussion Group

Provides readers with the opportunity to exchange ideas and informa-
tion related to the book.

The SPIM Simulator

Developed by James R. Larus, the SPIM S20 is a software simulator that
runs assembly language programs for the MIPS R2000/R3000 RISC
computers. It can read and run MIPS a.out files (when compiled and
running on a system containing a MIPS processor). SPIM is a self-con-
tained system that contains a debugger and an interface to the operating
system.

SPIM is portable; it has run on a DECStation 31000 /51000, Sun 3, Sun 4,
PC/RT, IBM RS/6000, HP Bobcat, HP Snake, and Sequent. Students can
generate code for a simple, clean, orthogonal computer, regardless of the
machine used. SPIM comes with complete source code and documenta-
tion of all instructions.

SPIM can be downloaded in versions for DOS, Windows, and UNIX,
either from www.mkp.com/cod2e.htm or by direct ftp.

xviii

Computer Organization and Design Online

Retrieval of SPIM by ftp

SPIM is available for anonymous ftp from ftp.cswisc.edu in the file
pub/spim/spim.tar.Z (this is a compressed tar file).

For those who are unfamiliar with command-line anonymous ftp, here are the
steps to follow to get a copy of your preferred version of SPIM.

1.

ftp to ftp.cs.wisc.edu from your computer:
% ftp ftp.cs.wisc.edu

The ftp server will respond and ask you to log in. Log in as anonymous
and use your email address as a password:

Name (ftp.cs.wisc.edu:larus): anonymous
331 Guest login ok, send login or email address as password
Password:

The server will then print a welcome message. Change to the directory
containing spim:

ftp» cd pub/spim

Set binary mode for the transfer (since the file is compressed):
ftp> binary

Choose the file appropriate for your machine and copy:

ftp> get spim.tar.Z (UNIX)
ftp> get PCspim.zip (Windows)
ftp> get PCspim-dos.zip (DOS)

Exit the ftp program:
ftp> quit
Uncompress and untar the file:

% uncompress spim.tar.Z
% tar xvf spim.tar

If the uncompression fails, you probably forgot to set binary (step 4). Try
again. There are directions in the file README.

Xix

Preface

The most beautiful thing we can experience is the mysterious.
1t is the source of all true art and science.

Albert Einstein, What I Believe, 1930

About This Book

We believe that learning in computer science and engineering should reflect
the current state of the field, as well as introduce the principles that are shap-
ing computing. We also feel that readers in every specialty of computing need
to appreciate the organizational paradigms that determine the capabilities,
performance, and, ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing
specialty to understand both hardware and software. The interaction between
hardware and software at a variety of levels also offers a framework for under-
standing the fundamentals of computing. Whether your primary interest is
computer science or electrical engineering, the central ideas in computer orga-
nization and design are the same. Thus, our emphasis in this book is to show
the relationship between hardware and software and to focus on the concepts
that are the basis for current computers.

Traditionally, the competing influences of assembly language, organiza-
tion, and design have encouraged books that consider each area as a distinct
subset. In our view, such distinctions have increasingly lost meaning as com-
puter technology has advanced. To truly understand the breadth of our field,
it is important to understand the interdependencies among these topics.

The audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization
as well as readers with backgrounds in assembly language and/or logic design
who want to learn how to design a computer or understand how a system
works and why it performs as it does.

Changes for the Second Edition

We had six major goals for the second edition: tie the ideas from the book
more closely to the real world; enhance how well the book works for begin-
ners; extend the book material using the World Wide Web; improve quality;
improve pedagogy; and finally, update the technical content to reflect changes

XX

Preface

ENHANCED

in the industry since the publication of the first edition in 1994—the conven-
tional reason for a new edition.

First, to make the examples in the book even more concrete and connected
with the real world, in each chapter we explained how the ideas were realized
in the latest microprocessors from Intel or from IBM/Motorola. Hence you can
learn how the mechanisms discussed are used in the computer on your desk-
top. Each chapter has a new section called “Real Stuff” that ties the ideas you
read about to the machine you probably use everyday.

Second, we wanted the book to work better for readers interested in an
overview of computer organization. Each chapter now has a list of the key
terms discussed in the chapter, and we added a glossary of more than 300 def-
initions. We also rely on analogies from everyday life to explain subtleties of
computers:

m commercial airplanes to show how performance differs if measured as
bandwidth or latency

the stealth of spies to explain procedure invocation and nesting
plumbing to show how carry-lookahead logic works
the laundry room to explain pipeline execution and hazards

a desk in a library to demonstrate principles of memory hierarchy

the management overhead as committees grow to illustrate the diffi-
culty of achieving high performance in large-scale multiprocessors

More specifically, we added more assembly language programming examples
and more explanation in each example to help the beginner understand
assembly language programming in Chapters 3 and 4. We also added an
introductory section to the pipelining chapter (Chapter 6) that allows under-
standing of the important ideas and issues in pipeline design without having
to delve into the details of a pipelined datapath and control.

Our third goal was to go beyond the limitations of a printed book by adding
descriptions and links on the World Wide Web. Throughout this book, you
will often see the “Web Enhanced” icon shown at the left. Wherever this icon
appears, you can go to http:/fwww.mkp.com/cod2e.htm to find materials related
to the text.

The WWW lets us give examples of recent, relevant machines so that you
can see the Jatest versions of the ideas in the book. For example, we've added
anew online appendix (Web Extension I) comparing RISC architectures. Other
examples include links for specific references in the book to other sites; instruc-
tions on how to use PCspim, the new DOS and Windows versions of the SPIM
simulator, as well as links to all the versions of SPIM; access to all the figures
from the book; lecture slides; links to instructors” home pages; and an online
Instructors Manual. We also included some appendices from the first edition
(Web Extensions Il and III} that you may find valuable. We intend to update
these pages periodically to make new and better links.

Preface XXi

Fourth, we wanted to significantly reduce the flaws that creep into a book
during the revision process. The first edition of the book used beta testing to
see which ideas worked well and which did not, and we were very happy with
the improvements as a result. We did the same with the second edition. To fur-
ther reduce the chances of bugs in the book, we gave ourselves a longer devel-
opment cycle and involved many more computer architects in its preparation.
First, Tod Amon completely revised all exercises, in part based on suggestions
of exercises by a dozen instructors. The book now has 30% new exercises and
another 30% that have been reworked for a total of 400. We believe that they
are much more clearly worded than before and that there is sufficient variety
for a broader group of students. Second, Kent Wilken carefully read the beta
edition, suggesting hundreds of improvements. After we revised the beta edi-
tion, George Adams gave another very careful read of our revision, again mak-
ing hundreds of useful suggestions. Finally, we reviewed the copyedit and
read the page proof to try to catch mistakes that can creep in during the book
production process. Although we are sure there must still be bugs for which
you can get rewards, we believe this edition is far cleaner than the first.

The fifth goal was to improve the exposition of the ideas in the book, based
on difficulties mentioned by readers of the first edition. We expanded the sec-
tion of Chapter 3 explaining procedures, showing the procedure infrastructure
in a longer sequence of examples. Chapter 4 has a longer description of carry
lookahead and carry save adders. We simplified the explanation of the multi-
cycle datapath in Chapter 5 by adding several registers. Chapter 6 actually got
a good deal shorter by adding an overview section, since it allowed us to re-
duce the number of examples in the detailed pipelining sections. We also made
numerous changes in the pipeline diagrams to make them easier to under-
stand and more consistent. Chapter 7 was reorganized to put all caches togeth-
er before moving to virtual memory and then translation buffers, coming back
to the commonalities at the end. We also changed the emphasis from virtual
memory as simply another level of the hierarchy to the hardware enforcer of
protection. Chapter 8 was refocused to be more quantitative and design orient-
ed. Chapter 9 was completely rewritten and retitled, reflecting the dramatic
change in the parallel processing industry since 1994.

Finally, in the interval since the first edition of this book, a computer has
run a program at the rate of 1 teraFLOPS—a trillion floating-point operations
per second or a million floating-point operations per microsecond, another com-
puter has played better chess than the best human being, and the whole world
is more closely connected thanks to the World Wide Web. These events oc-
curred in part because computer designers have first improved performance
of a single computer by a factor of 100 in the last 10 years and then harnessed
together many of them to achieve even greater performance. We have includ-
ed descriptions of new ideas that helped make these miracles occur, such as

Xxii

Preface

branch prediction and out-of-order execution in Chapter 6, multilevel and
nonblocking caches in Chapter 7, switched networks and new buses in Chap-
ter 8, and nonuniform-memory-access, shared-memory multiprocessors and
clusters in Chapter 9.

Supplements and Web Extensions

A directory of the Web supplements, extensions, and resources appears on
page xvi. In it you'll find a complete electronic supplements package, as well
as a variety of materials and resources designed to support this text, that you
can access on the publisher’s World Wide Web site at www.mkp.com/ cod2e htm.
Included in the supplements package is an online Instructors Manual. The
Instructors Manual contents are available from the Web site with the excep-
tion of the solutions. Instructors should contact the publisher directly to
obtain access to solutions.

If they prefer, instructors may choose a printed Instructors Manual that in-
cludes chapter objectives, teaching hints, and critical points for each chapter as
well as solutions to the exercises. Instructors should contact the publisher di-
rectly to obtain the printed Instructors Manual.

Relationship to CA:AQA

Some readers may be familiar with Computer Architecture: A Quantitative
Approach. Our motivation in writing that book was to describe the principles
of computer architecture using solid engineering fundamentals and quantita-
tive cost/performance trade-offs. We used an approach that combined exam-
ples and measurements, based on commercial systems, to create realistic
design experiences. Our goal was to demonstrate that computer architecture
could be learned using scientific methodologies instead of a descriptive
approach.

A majority of the readers for Computer Organization and Design: The Hard-
ware/Software Interface do not plan to become computer architects. The perfor-
mance of future software systems will be dramatically affected, however, by
how well software designers understand the basic hardware techniques at
work in a system. Thus, compiler writers, operating system designers, data-
base programmers, and most other software engineers need a firm grounding
in the principles presented in this book. Similarly, hardware designers must
understand clearly the effects of their work on software applications.

Thus, we knew that this book had to be much more than a subset of the ma-
terial in Computer Architecture. We've approached every topic in a new way.
Topics shared between the books were written anew for this effort, while
many other topics are presented here for the first time. To further ensure the
uniqueness of Computer Organization and Design, we exchanged the writing re-
sponsibilities we assigned to ourselves for Computer Architecture. The topics

Preface XXiif

that Hennessy covered in the first book were written by Patterson in this one,
and vice versa. Several of our reviewers suggested that we call this book
“Computer Organization: A Conceptual Approach” to emphasize the signifi-
cant differences from our other book. It is our hope that the reader will find
new insights in every section, as well as a more tractable introduction to the
abstractions and principles at work in a modern computer.

We were so happy with Computer Organization and Design that the second
edition of Computer Architecture was revised to remove most of the introducto-
ry material, hence there is much less overlap today than with the first editions
of both books.

Learning by Evolution

It is tempting for authors to present the latest version of a hardware concept
and spend considerable time explaining how these often sophisticated ideas
work. We decided instead to present each idea from its first principles,
emphasizing the simplest version of an idea, how it works, and how it came
to be. We believe that presenting the fundamental concepts first offers greater
insight into why machines look the way they do today, as well as how they
might evolve as technology changes.

To facilitate this approach, we have based the book upon the MIPS proces-
sor. It offers an easy-to-understand instruction set and can be implemented in
a simple, straightforward manner. This allows readers to grasp an entire ma-
chine organization and to follow exactly how the machine implements its in-
structions. Throughout the text, we present the concepts before the details,
building from simpler versions of ideas to more complex ones. Examples of
this approach can be found in almost every chapter. Chapter 3 builds up to
MIPS assembly language starting with one simple instruction type. The con-
cepts and algorithms used in modern computer arithmetic are built up starting
from the familiar grade school algorithms in Chapter 4. Chapters 5 and 6 start
from the simplest possible implementation of a MIPS subset and build to a ful-
ly pipelined version. Chapter 7 illustrates the abstractions and concepts in
memory hierarchies by starting with the simplest possible cache, then extend-
ing it, and then covering virtual memory and TLBs using the same ideas.

This evolutionary process is used extensively in Chapters 5 and 6, where
the complete datapath and control for a processor are presented. Since learn-
ing is a visual process, we have included sequences of figures that contain pro-
gressively more detail or show a sequence of events within the machine. We
have also used a second color to help readers follow the figures and sequences
of figures.

Learning from this Book

Our objective of demonstrating first principles through the interrelationship
of hardware and software is enhanced by several features found in each

