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CHAPTER 1
THERMAL RADIATION

1-1 Introduction. Radiant-energy transfer is of fundamental im-
portance in the solution of many problems in applied science. Examples of
mteresting practical apphcations are theoretical caleulations of radiant-
heat transfer, flame-temperature measurements, determinations of gas
composition and excitation behind shock fronts, and spectroscopic analy-
gis of isothermal multicomponent gas mixtures. Usually a satisfactory
(theoretical) description of the phenomena iuvolved is feasible only for
equilibrium {thermal) radiation. For this reason it is appropriate to begin
a course on applications of radiant-energy transfer with a survey of fun-
—tlaniental laws and a (qualitative) outhne of the methods used for calcula-
tions of thermal radiation characteristics.

Although the Planck blackbody distribution formula and Kirchhoff’s
law are generally familiar from introductory surveys of physics,""®§
it is desirable to review briefly the onigin and significance of these
relations after first presenting a bref summary of nomenclature and
defimtions.

1-2 Definitions and symbols. Because of the large number of measur-
able parameters involved in quantitative studies of radiant-energy trans-
fer, it is of the utmost importance to adopt a consistent set of definitions
and syrabols. A compilation of useful quantities appears in Table 1-1.
Spectral parameters will be derived by appending to the parent symbol
borrowed from Table 1—~1 the subscripts A, ¥, or w, which then identify
obsetrvable quantities in the wavelength range between A and A + A, in
the frequency range between v and v -+ dv, and in the wave number range
between w and o + dw. The emitted radiant flux, radiant intensity,
radiancy, and steradiancy charactenistic of a blackbody (discussed later
in this chapter) source will be identified by the superseript °.

In our quantitative theoretical studies of gas emissivities we shall be
largely concerned with attempts to calculate from first principles the total

(R = fy Rxd\) and spectral (R d\) radiancies for uniformly distnibuted
gaseous emitters. -

1 See the references at the end of the chapter.
1
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4 THERMAL RADIATION feuar. 1

1-3 Bquilibrium energy density of radiation in an enclosure.f Con-.
sider a vaeuum in an enclosure {“Hohlraum”) of arbitrary shape. At
equilibrium the walls of the enclosure absorb and emit radiant energy in
such a way that the evacuated space contains, at any given time, a definite
equilibrium number of photons of specified frequency and energy. The
entropy of the radiation field per unit volume must remsain unchanged
when new partitions made of material at the same temperature as the walls
are first inserted reversibly into and then removed reversibly from the
enclosure.’® Therefore, because the entropy per unit volume must be a
upique function of the energy per unit volume, it follows that the equilib-
rium energy density of radiation cannot depend either on the size of the
enclosure or on the materials used for construction. The total energy of
the radiation field is an extensive property and depends, at a given tem-
perature, only on the volume of the enclosure.

We may apply the universal thermodynamic relation for the rate of
change of entropy (S) with volume (V) at constant temperature (T) to
the radiation field, which must then be assumed to exert on the walls of ’
the enclosure a pressure (praq) that varies with temperature at constant

volume, i.e.,
_‘3§ — QE’L&&E) . . -
(aV r = \aT /vy (-1

However, it is well known from the electromagnetic theory of radiation
(compare Eq. 1-17) that .

: 1 8
Prad = 53 T (1-2)

where & denotes the total (internal) energy in the radiation field. Applica-
tion of another universal thermodynamic relation to the radiation field
vields the expression

Ipna) 9.&) e

T( aT v —— Prad + 6‘7 T’ ) (1 3)
where we may identify the last term with 3praa if we consider.a constant-
pressure process in which the volume 6f the enclosure and the total radiant
energy & are increased from zZero. Hence '

Qprsd) A
T BT v - 4'prad

+ Throughout the following exposition the aim is an efficient demonstration
of useful relations. No attempt will be made to classify historical developments
in their proper perspective. The reader interested in the evolution of the science
concerned with radiant-transfer problems will find the discussion by Worthing
and Halliday®’ particularly informative.



1-4] KIRCHHOFF'S LAW AND PLANCK’S EQUATION 5
or.

Prad = = constant X T* (1-4)

&
7

GO et

That is, the energy density of the radiation field (8/V) increases as the
fourth power of the temperature.

1-4 Kirchhoff’s law and Planck’s equation. To identify the constant
multiplicative factor appearing in Eq. (1-4), it is necessary to utilize more
detailed arguments. First we define the spectral volume density of radiant
energy, '

pul) = =5~ (1-5)

as the radiant energy per unit volume in the frequency range between v
and v <+ dv. That the spectral volume density of radiant energy must be
a universal funection of the temperature follows from the invariance of the
entropy of the system when arbitrary partitions, which are at the same
temperature as the walls, are first introduced into the system and then
removed from the system. The following® is an alternative thermody-
pamic argument for demonstrating this important result as well as the
universal dependence of p on ». Consider an enclosure eonsisting of two
surfaces and divided into two compartments by & screen that has the
property of transmitting radiation in only the narrow frequency range
between v and » -~ dv. When the two walls are at the same temperature,
no net interchange of radiant energy can cccur, according to the second
law of thermodynamics, without the expenditure of work. Mence, since the
screen i8 not movable, the spectral volume density of radiation must be
the same on the two sides of the partition at equilibrium, that is, p,(T) isa
universal function of temperature and frequency.

The veloeity of propagation of radiant energy equals the velocity of
Jight ¢. Using the same arguments as are employed in°the kinetic theory
of gases, it follows then that the radiant energy incident in unit time on
unit area of the wall, in the frequency range between v and v + dv, is

¢
i (T dv.

If this energy falls on a completely opaque surface with spectral reﬂectxwty
r,, then the fraction of the incident energy absorbed is

ZoAT)(1 — 1) .

But, at equilibrium, the energy absorbed by unit area in unit time must
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be equal to the energy'emitted from unit area in unit time. That is,
c
7D — 1y dv = T pu(Des d, (1-6)

where ¢, is called the spectral emissivity. Reference to Eq. (1-6) yields
Kirchhoff’s law for the case of a completely opaque surface: -

Cj: =1 - Ty, : (1“7)

A blackbody is defined as a substance that absorbs all the incident
radiation. Thus, for a blackbody, 7, = 0 and €, = 1forall ». The radiant
energy emitted from unit area of a blackbody at a specified temperature
in unit time, into a solid angle of 27 steradians, in the frequency range
between » and v + dv, is '

RS dv = 5 puT) dv. (1-8)

Evidently RS represents the spectral radiancy for a blackbody emitter.

According to the principles of quantum statistics, we may determine the
function p,(T) by computing the equilibrium distribution of photons for
which the entropy of the radiation field is a maximum and noting that
the energy of a photon of frequency » is k¥, where % is Planck’s constant. .
If the radiation field is treated as an Einstein-Bose gas, Planck’s equation
for the volume density of radiation is obtained,’® namely,

8rrh® 1
D & = =~ esmwam—1% &9

where & is the Boltzmann constant.

A heuristic derivation of Eq. (1-9) may be obtained by observing
“that the number of characteristic electromagnetic frequencies n, dv per
unit volume is :

3,4)

2
n, dv = ’%-"3— v (1-10)

in the frequency interval between v and v -+ dv. The mean energy asso-
ciated with these vibrations is

= Y n=o nhv [exp (—nhv/kT)] _ hy : (1-11)
Zﬁ,o [exp (—nhv/kT)] [exp (b /kT)] — 1

i ‘the nth harmonic of frequency nhv occurs with probability exp (—nhv/
kT). If we now make the identification . '

py dV = nyE dV,
we obtain Eq. (1—9) from Egs. (1-10) and (1-11). It is interestirig to not.
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that Eq. (1-11) is consistent with the simplest functional form expressing
the entropy of a radiation field in terms of the energy of harmonic oscilla~

tors. It was originally obtained by Planck as an interpolation relation be--

tween the Wien and the Rayleigh-Jeans formulas (see Section 1-6), which
were known to be valid for large and small values of hv/kT, respectively.®

1-5 The Stefan-Boltzmann law and the thermodynamic functions for
the madiation field. By using Eq. (1-9) we may derive an explicit relation
for the constant appearing in Eq. (1~4). Thus

sm T2
_/ pvdy = T)/; (exp z) — i de

The integral appearing in the preceding expression is evaluated most son-
veniently by using the following relations:

[expz) — 171 = 3 exp (—na),

~ m=}]

[ 3 _ __E
/0 z° [exp (—nx)] dz =i’

and

In this manner it is found that 7

= e T4 {1-12)

and the constant in Eq. (1-4) is seen to be

8ktr®
45k3c3
The integral

B dr =L [T = E et -
/0 RY(T)dv = 3 [o puT) dv= 5 5 = oT (1-13)
givés the total intensity of radiation emitted from unit area of a blackbody

according to the Stefan-Boltzmann law, and

2k *x®

= 18ksc (1-14)

is known as the Stefan-Boltzmann constant.
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In view of the general thermgdynamic relation

- (—)

1

T
8 _ / 32k
v = Bhice

it follows that
T3 (1-15)

since the entropy density of radiatiop must vanish at zero temperature,
by Nernst’s theorem. Also, the Helmholtz free energy per unit volume is

e g, 25 OFr NV m4 ; _
v=7v Iv="37v= " mpmal (1-16)

whence it follows that the radiation pressure is

_ (e@\ _ 18 8%k,
p'“““‘(ﬁ?)g»_ﬁ?_m?c'é:"' - D

This Jast relation for the radiation pressure has been used previously in
Eq: (1-2). Finally, we find that the Gibbs {ree energy F of the equilibrium
radiation ﬁeld vanishes, since

F=G-+ pradV = 0. (1—18)

1-6 Blackbody radiation laws. In Section 1-4 we defined a blackbody
a8 a substance with zero reflectivity. Actually we were considering an
enclosure that does not transmit any radiant energy. The general defini-
tion of a blackbody is that of a substance which neither transmits nor
reflects any radiation it receives; a blackbody absorbs all the incident radi-
ation. From the thermodynamic considerations given in Sections 1-1
through 1-5 it follows that the equilibrium energy of radiation emitted
from unit area. of a blackbody in unit time at a fixed temperature represents
an upper limit for the thermally emitted energy from unit area for any
substance which is at the same temperature as the blackbody. This defini-
tion of a blackbody and the quantum-mechanieal prineiple of equipartition
of energy have been shown to be sufficient to establish the Planck black-
body distribution law, which expresses the equilibrium rate at which
radiant energy is emitted from a blackbody as a function of frequency and
temperature 7. The Planck blackbody distribution law has been abun-
dantly confirmed by experiment, (%:¢-8

According to Eqgs. (1-8) and (1-9), the spectral (monochromatic) black-
body radiancy is given by the expression

dX

BN = 53 oo o/ ATV = 419
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where ¢, /7 and ¢, are known as the first and second radiation constants.
The quantities ¢; and ¢z may, of course, be expressed in terms of the
fundamental physical constants ¢, h, and k. Thus¢; = 2wc?h >~ 3.742 X
107% erg-em®sec ™! and ¢ = Ac/k ~ 1.439 cm °K.

For AT £ 0.3 em-°K, with an accuracy of better than 1%, R} d\ is
given hy Wien’s radiation law,

(R ws =9 %2\ gn: -
\R)\)I\an dnx = NG (eXp T )d)\, ; (1 20)

for AT > 77 ecm-°K, the Rayleigh-Jeans radiation formula,

(Rus dh = £15 (1-21)

gives an accuracy of better than 19%,.

Tor a given temperature, the maximum value of RS is found from Eq.
(1-19) to be

’ '71 5
(RR)max == 21.20¢, (C—) (1-22)
-2

and is seen to occur at the wavelength Ayax determined by Wien's dis-
placement law, ‘

AT = 2~ 0.2808 cm-°K. (1-23)

The total radiant energy emitted from unit area in unit time by a black-
body over all wavelengths into a solid angle of 2 steradians is

R® = [: R d\ = oT? ‘ (1-24)

where the Stefan-Boltzmann constant ¢ has the numerical value ¢ o

5.670 X 10~ % erg-cin ™% (°K)~*sec™. The quantity R° represents the

integrated blackbody radiancy and is sometimes referred to also as the

total emissive power of a blackbody.
The quantities '
o Y

R:) (R;)man —(-R%E:;; y [0 Ig:' d}\ly RO'

and
1 A e o,
-5 jo Ry d\

have been tabulated for many of the wavelengths and/or temperatures
that are likely to be encountered in practice.'?>

The relation ¥ = ¢/}, between frequency v and wavelength A, where ¢
is the velocity of light (¢ = 2.998 X 10'° cm-sec™") has already been
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used; the wave number w is the reciprocal of the wavelength, that is,
w = 1/\. It is apparent that the spectral blackbody radiancy in the fre-
quency range between v and v + dv at the temperature 7T is given by the
expression

2mhy?® dv

By dv = ¢ lexp (w/kTH) — 1 (1-25)

Similarly, R dw is determined according to the equation

dw

o 3 2 3
R, dw = 2mhc*w foxp G /KT)] =

(1-26)

It is often helpful to note,appropriate units for the various radiation
functions: p may be expressed in ergs/cm?, ¢p and R in ergs/cm?sec,
p, in ergs/cm®-sec™?, p, in ergs/om*em™!, R, in ergs/em?sec-em™!
R, in ergs/em®sec-u, etc. Thus we find, for example, that R, =
(c/4)p. = (c?/4)p,, etc. ’ '

1~7 Nonblack radiators. Before describing some of the properties of
(solid) nonblack radiators, it is desirable to restate Kirchhoff’s law in a
. slightly different form from the one used in Section 1-4.

Consider two boxes that are at the same temperature, one made of a
completely black material, the other of an opaque nonblack substance.
Since the temperature is the same in the two enclosures, the volume density
of radient energy p,(7") and the irradiancy for the enclesures, H°, must be
the same. The equilibrium requirement for the blackbody box shows im-
mediately that H®° = (c/4)p = R°. On the other hand, for the nonblack
enclosure the equilibrium condition is expressed by the relation

H® = rH°+ R, (1-27)

where r represents the (total) reflectivityt of the nonblack surface. Smce
H°® = R®, it follows from Eq. (1-27) that

R={1—~7rER" = ek°

t Worthing® uses the ending -ivity to identify a property that is independent
of the shape or size for a given (pure) substance. The ending -ance is used for
properties that are functions of the shape or size. When this nomenclature is’
_ employed, it i8 clearly necessary to speak of transmittance and absorbance,

rather than of transmissivity and abserptivity, for nonopaque solids, liquids,
and gases. However, following conventional terminology for gas radiation, we
shall not make Worthing’s differentiation and instead shall always use the terms
reﬂectxvnty, absorptivity, and emissivity even when these parameters depend
on the size and/or shape of the substance under consideration.



