CONTENTS

Снасте	R 1. THERMAL RADIATION
1-1	Introduction
1-2	Definitions and symbols
1-3	Equilibrium energy density of radiation in an enclosure
1-4	Kirchhoff's law and Planck's equation
1-5	The Stefan-Boltzmann law and the thermodynamic functions for
	the radiation field
16	Blackbody radiation laws
17	Nonblack radiators
1-8	Basic laws for distributed radiators
• •	
Снарті	
2-1	Einstein coefficients and integrated absorption
2-2	Oscillator strengths
2-3	
2-4	Representative numerical values
Снарти	er 3. Spectral Line Profiles
3-1	Natural line broadening
32	Collision broadening
3-3	Doppler broadening
3-4	Spectral absorption coefficients for lines with dispersion contour or
	Doppler broadening
3-5	Spectral absorption coefficients for lines with combined Doppler,
	collision, and natural line broadening
3-6	The first-order Stark effect for hydrogen atoms
CHAPTO	ER 4. RADIATION FROM ISOLATED SPECTRAL LINES
A 1	
4-1	Introduction
42	Lines with pure Doppler broadening
43	The state of the s
4-4	
4-5	The curves of growth and nomograms for the evaluation of line
	radiancies
4-6	Representative calculations of line profiles and radiancies
Снарт	ER 5. MEASUREMENT OF TRANSMISSIVITY AND ABSORPTIVITY
VIIAI II	FOR ISOLATED SPECTRAL LINES
5-1	Introduction
52	Integrated transmissivity from absorption experiments

 \mathbf{x}

53	Fractional transmissivity from absorption experiments
5-4	Integrated absorptivity from absorption experiments
5-5	Integrated absorptivity (or emissivity) from emission experi-
	· · · · · · · · · · · · · · · · · · ·
56	ments
5-7	Instrumental losses associated with lack of experimental sensi-
•	tivity
•	biving
CHAPTEI	
	Intensities for Gases
<i>a</i> 1	Introduction
6-1	
62	Extrapolation to zero optical path length
6-3	Use of the curves of growth
6-4	Pressure broadening
6-5	Single- and multiple-path absorption measurements for isolated
	spectral lines
6-6	Optical dispersion measurements for the determination of abso-
	lute infrared intensities
6-7	Miscellaneous procedures 78
6-8	Consistency tests for measured line intensities
6-9	Measurements for entire infrared vibration-rotation bands of
	CO
6_10	Measurements for the ultraviolet γ -bands of NO
	The effect of pressure on integrated intensities of active and inac-
0-11	tive infrared vibration-rotation bands
0.50	Measurements for rotational lines of OH
6-13	Measurements for atomic lines
Силрте	7. THEORETICAL CALCULATIONS OF ABSOLUTE AND RELATIVE
***************************************	INTENSITIES FOR ATOMIC AND MOLECULAR SPECTRAL LINES 115
	_
7-1	Time-dependent wave equation
7-2	Hamiltonian operator for an electromagnetic radiation field 116
7-3	Einstein coefficients and matrix elements
7-4	Magnetic dipole and electric quadrupole radiation , 123
7-5	Matrix elements, selection rules, and intensities for diatomic
	molecules
7-6	Matrix elements, selection rules, and infrared intensities for poly-
	atomic molecules (CO ₂ and H ₂ O)
7-7	
	free-bound transitions
7 0	Theoretical expressions for free-free and bound-free absorption
7–8	
# A	Absorption and emission of radiation by hydrogen atoms, ions,
7–9	
7-10	Polyelectronic atoms

CONTENTS

xi

Снарте	· · · · · · · · · · · · · · · · · · ·	77
0.1		
8-1 8-2	Introduction 1 Lower limits; equally spaced and equally intense spectral lines.	77
		78
8-3		84
8-4	Experimental results for the first evertone of CO	92
8-5	Apparent optical collision diameters for collisions between CO	
		97
8-6	Numerical calculations of average rotational half-widths for real	
		98
8-7	•	
	widths for real vibration-rotation bands	04
CHAPTE		
	VIBRATION-ROTATION BANDS	10
9-1	Introduction	16
9-2		16
93		18
9-4	Alternative procedures for the determination of the product of	
	integrated intensity and line width	21
9-5		2 2
Oz. 1 mars	R 10. OPTICAL DISPERSION	
		2 5
10-1		2 5
10-2		26
10-3	Atomic and electronic polarization	27
10-4		29
10-5	Experimental procedures for the determination of optical disper-	
		30
10-6		30
10-7		32
10-8	Interferometric measurements	35
10-9		35
		36
10-11	Experimental results obtained in infrared dispersion measure-	~-
	ments on gases	37
Снартег		4 2
11-1	Introduction	1 2
11-2		1 7
11-3		51
11-4	Theoretical estimates for effective bandwidths, limiting emis-	
		55

11-5	Calculations for selected diatomic molecules	262
11-6	Approximate analytic expressions for effective bandwidths and	
	emissivities at elevated pressures	264
11-7	Improved representation for the spectral absorption coefficient .	267
11-8	Calculations for just-overlapping spectral lines	275
11-9	Diatomic molecules with nonoverlapping rotational lines (disper-	
	sion contour)	280
11-10	Numerical calculations for CO at 300°K	280
	Analytical representations for distomic molecules at 300°K	288
	Analytical representations for diatomic molecules at arbitrary	
	temperatures	294
11-13	Calculations for CO ₂ with overlapping rotational lines	308
	Semiempirical correlation of infrared emissivities for heated water	000
	vapor	316
1115	The Mayer-Goody statistical model of a disordered absorption	010
	band	317
11-16	Mean emissivities	319
	The engineering emissivity for water vapor	320
	Outline of emissivity calculations for water vapor using the	920
11 10	statistical model	321
1110	Critique of correlation of water emissivities.	327
	Correlation of water emissivity data in terms of a just-overlapping	041
11 20	line model and effective bandwidths	327
3191	Band emissivities for molecules with dispersion lines using a locally	341
11-21	statistical model	334
	Statistical model	204
Снарте	The state of the s	
	ABSORPTIVETIES FOR BLACKBODY RADIATION; LIMITS OF	
	VALIDITY OF EFFECTIVE BANDWIDTH ESTIMATES	359
12-1	Relation between isothermal absorptivities and isothermal gas	
	emissivities	359
12-2	Limits of validity of the effective bandwidth approximation	370
	the state of the s	010
Снарте	The state of the s	
	TRANSFER PROBLEMS FOR NONUNIFORM GASES IN	
	TERMS OF DERIVATIVES OF HEMISPHERICAL EMISSIVITIES	380
13-1	Formulation of radiative transfer problems in terms of derivatives	
	of local emissivities	380
13-2	Basic transfer equations for uniform gases	383
13-3	Radiative transfer calculations for vibration-rotation bands with	000
, 0	constant average absorption coefficients	385
13-4	Radiative transfer problems for continuum radiation produced by	000
10 1	free-free transitions.	900
13-5	A numerical example	388 389
10-0	A numerical example	589

4	CONTENTS	XIII
Снартен	a 14. The Emissivity of Heated Air	393
14-1	Introduction	393
14-2	Stagnation-point heat transfer	393
14-3	Constituents of heated air that contribute to the total radiant-	
11 0	heat transfer	395
14-4	Emissivity calculations for the β - and γ -bands of NO	396
14-5	A simplified treatment for preliminary estimates	398
14-6	Calculations using relations applicable for band systems with randomly distributed vibration-rotation bands containing randomly distributed spectral lines	399
14-7	Numerical emissivity calculations for NO according to Kivel, Mayer, and Bethe	429
14-8	Concluding remarks on emissivity calculations for the β - and γ -bands of NO	433
14-9	Infrared emissivity calculations for NO at very high temperatures	434
14-10	Emissivity calculations for other constituents of hot air	437
	Emissivity calculations for very thin layers of heated molecular	
14-12	systems in air	437
14-13	producing free-bound and free-free transitions	44) 44)
Снарте	r 15. Emissivity Estimates for Hydrogen Atoms	446
151	Introduction	446
15-2	The spectral absorption coefficients for continuum and for line radiation	446
153	Emissivity calculations	449
Снарте		
	FLAME TEMPERATURES	45
16-1	Introduction	45
16-2	Brightness temperatures	45
16-3	The two-color technique	45
16-4	The reversal technique.	46
16-5	Modification of the line-reversal and two-color techniques	46
16-6	The two-path method	46
16-7	The compensated hot-wire method	4 6'
16-8	Temperature measurements on nonisothermal combustion flames	468
Снарте	R 17. Population Temperatures and Translational Temperatures for Free Radicals in Flames	47
17 -1	Principles of measurement for the quantitative determination of relative integrated intensities	47

CONTENTS

17-2	Dennitions of population temperatures and of translational	
	temperatures	479
17-3	Quantitative studies of apparent rotational temperatures of OH	
	derived from peak and total emission and absorption data for	
	spectral lines with Doppler contour	482
17-4	The effect of self-absorption on apparent population temperatures	
	in emission experiments	48
17-5	The effect of self-absorption on apparent population temperatures	
	in absorption experiments	48
1 7-6	The effect of self-absorption on the use of isointensity methods.	490
17-7	Errors in conventional procedures for bimodal distributions of	
	OH in the absence of self-absorption	493
17-8	Apparent temperatures for two adjacent isothermal regions.	49
17 - 9	Inferential evidence in the evaluation of apparent rotational	
	temperatures of OH	49
17-10	Effect of spectral line shape on apparent rotational temperatures	
	of OH	498
17-11	Two-path experiments for isothermal systems	502
17-12	Two-path emission experiments for two adjacent isothermal	
	regions (spectral lines with Doppler contour, peak radiancies) .	50
17-13	Absorption experiment for two adjacent isothermal regions	
	(spectral lines with Doppler contour, peak radiancies)	500
17-14	Two-path experiments for two adjacent isothermal regions	
	(spectral lines with combined Doppler and collision broadening,	
	peak radiancies)	50
17-15	Peak absorption experiments for two adjacent isothermal regions	
	(spectral lines with combined Doppler and collision broadening)	50
17-16	Total radiancies for emission of radiation from flames consisting	
	of two adjacent isothermal regions (spectral lines with Doppler	
	contour)	501
17-17	Experimental determination of rotational temperatures and con-	
	centrations of OH in self-absorbed flames from emission spectra.	51
17-18	Theoretical calculations on two-path to single-path intensity ratios	51
17-19	Experimental technique	513

18-3	Approximate method for the calculation of progressiveness of pressure-time curves	530
18-4	Calculation of the mass absorption coefficient by a trial and error procedure	539
18–5	Temperature rise in a cylindrical powder grain burning from one end only, caused by the absorption of radiant energy.	543
186	Effect of radiation on the rate of burning of perforated powder grains	548
18-7 18-8	Calculation of the temperature rise of perforated powder grains. Approximate methods for the calculation of the effect of radiation	540
	on linear burning rates	548
18-9	Comparison of theory and experiment	551
	Average temperature rise of perforated powder grains. Qualitative experimental verification of the change in burning rate	554
•	of rocket powders with radiation path length	55€
Снарте	R 19. Approximate Estimates of Radiant-Heat Transfer and Temperature Changes for Propellants in Liquid-Fuel Rocket Motors	562
19–1	Receivers moving along the axis of a right circular cylindrical chamber.	562
19-2	Receivers moving along the axis of the cylinder at uniform velocity	564
19–3	An approximate estimate for the maximum temperature rise of a small volume element resulting from the absorption of radiant	002
•	energy	566
Appendi	x. Evaluation of Band Emissivities	570
AUTHOR	Index	575
erran	Tunne	

CHAPTER 1

THERMAL RADIATION

1-1 Introduction. Radiant-energy transfer is of fundamental importance in the solution of many problems in applied science. Examples of interesting practical applications are theoretical calculations of radiant-heat transfer, flame-temperature measurements, determinations of gas composition and excitation behind shock fronts, and spectroscopic analysis of isothermal multicomponent gas mixtures. Usually a satisfactory (theoretical) description of the phenomena involved is feasible only for equilibrium (thermal) radiation. For this reason it is appropriate to begin a course on applications of radiant-energy transfer with a survey of fundamental laws and a (qualitative) outline of the methods used for calculations of thermal radiation characteristics.

Although the Planck blackbody distribution formula and Kirchhoff's law are generally familiar from introductory surveys of physics, (1-5)† it is desirable to review briefly the origin and significance of these relations after first presenting a brief summary of nomenclature and definitions.

1-2 Definitions and symbols. Because of the large number of measurable parameters involved in quantitative studies of radiant-energy transfer, it is of the utmost importance to adopt a consistent set of definitions and symbols. A compilation of useful quantities appears in Table 1-1. Spectral parameters will be derived by appending to the parent symbol borrowed from Table 1-1 the subscripts λ , ν , or ω , which then identify observable quantities in the wavelength range between λ and $\lambda + d\lambda$, in the frequency range between ν and $\nu + d\nu$, and in the wave number range between ω and $\omega + d\omega$. The emitted radiant flux, radiant intensity, radiancy, and steradiancy characteristic of a blackbody (discussed later in this chapter) source will be identified by the superscript °.

In our quantitative theoretical studies of gas emissivities we shall be largely concerned with attempts to calculate from first principles the total $(R = \int_0^\infty R_\lambda \ d\lambda)$ and spectral $(R_\lambda \ d\lambda)$ radiancies for uniformly distributed gaseous emitters.

[†] See the references at the end of the chapter.

Table 1-1. Definitions and symbols of several observable quantities used in radiant energy transfer studies. (After Worthing and Halliday. (5))

					, _	· · · · · · · · · · · · · · · · · · ·	·	
	Numerical value for a spherical source with a diameter of I cm emitting 100 watts		1	100 watts	I	100/4π watts/str = 7.96 watts/str	$100/\pi$ watts/cm ² = 31.8 watts/cm ²	
, farming ,	Representative units	ergs, joules	ergs/cm³	ergs/sec, watts	watts	watts/str (str = steradian)	watts/c $ m cm^2$	$ m watts/cm^2$
(. (anything print Green, to	Definition	Radiant energy.	Radiant energy per unit volume = radiant energy density.	Emitted radiant flux = radiant energy emitted from a given source in unit time.	Radiant flux (not emitted from a specified source).	Radiant intensity = radiant flux emitted from a given source per unit of solid angle. The radiant intensity may vary with the direction of observation.	Radiancy† = radiant flux emitted from a given source per unit area of emitter (into an angle of 2π steradians).	Radiant flux density (not of a source).
	Symbol	ω	$\frac{Ap}{3p} = d$	$\mathfrak{F}_{\bullet} = \frac{d\mathcal{E}}{dt}$	$\frac{d}{dt} = \frac{d}{dt}$	$J = \frac{d}{d\Omega}(\mathfrak{F}_e)$	$R = \frac{d}{dAr} (\mathfrak{F}_s)$	$W = \frac{d}{dAr}(\mathfrak{F})$

7.96/(π/4) watts/str·cm² = 10.13 watts/str·cm² or 31.8/π watts/cm²·str = 10.13 watts/cm²·str = subtended by the projected surface is π steradians.)	For a surface located at a distance L from a source with radiant intensity J , $H = \frac{1}{dAr} \left(J \frac{dAr \cos \theta}{L^2} \right) = \frac{J \cos \theta}{2},$ where θ is the angle between the normal to the emitting source and the line connecting the center of the receiving surface with the source. For $L = 200$ cm and $\theta = 20^\circ$, $H = 1.87$ watts/m ² .
watts/cm ² ·str	watts/cm ²
Steradiancy of or specific intensity of a source = radiant flux emitted per unit of solid angle per unit area of the projection of the emitter surface on a plane which is perpendicular to the direction of observation = radiant intensity per unit of projected area = radiancy per unit of solid angle measured with respect to the projected area.	Irradiancy† or incident flux of a surface = rate at which radiant energy is received by a given surface per unit area in unit time.
$B_{\text{str}} = \frac{1}{\cos \theta} \frac{d}{dAr} \frac{d\mathfrak{F}_{\bullet}}{d\Omega}$ $= \frac{1}{\cos \theta} \frac{dA}{dAr}$ $= \frac{1}{\cos \theta} \frac{dH}{d\Omega}$ $(\theta = \text{angle measured relative to the direction of observation.)}$	I or H or $R = \frac{d\mathcal{F}_i}{dAr}$ (The subscript i here identifies incident radiation.)

† Following Worthing, (6) the ending -ancy is used in this table to identify a property per unit surface area.

1-3 Equilibrium energy density of radiation in an enclosure.† Consider a vacuum in an enclosure ("Hohlraum") of arbitrary shape. At equilibrium the walls of the enclosure absorb and emit radiant energy in such a way that the evacuated space contains, at any given time, a definite equilibrium number of photons of specified frequency and energy. The entropy of the radiation field per unit volume must remain unchanged when new partitions made of material at the same temperature as the walls are first inserted reversibly into and then removed reversibly from the enclosure. (6) Therefore, because the entropy per unit volume must be a unique function of the energy per unit volume, it follows that the equilibrium energy density of radiation cannot depend either on the size of the enclosure or on the materials used for construction. The total energy of the radiation field is an extensive property and depends, at a given temperature, only on the volume of the enclosure.

We may apply the universal thermodynamic relation for the rate of change of entropy (S) with volume (V) at constant temperature (T) to the radiation field, which must then be assumed to exert on the walls of the enclosure a pressure $(p_{\rm rad})$ that varies with temperature at constant volume, i.e.,

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p_{rad}}{\partial T}\right)_V. \tag{1-1}$$

However, it is well known from the electromagnetic theory of radiation (compare Eq. 1-17) that

$$p_{\rm rad} = \frac{1}{3} \frac{\varepsilon}{V}, \qquad (1-2)$$

where & denotes the total (internal) energy in the radiation field. Application of another universal thermodynamic relation to the radiation field vields the expression

$$T\left(\frac{\partial p_{\rm rad}}{\partial T}\right)_V = p_{\rm rad} + \left(\frac{\partial \mathcal{E}}{\partial V}\right)_T,$$
 (1-3)

where we may identify the last term with $3p_{rad}$ if we consider a constant-pressure process in which the volume of the enclosure and the total radiant energy ε are increased from zero. Hence

$$T\left(\frac{\partial p_{\rm rad}}{\partial T}\right)_V = 4p_{\rm rad}$$

[†] Throughout the following exposition the aim is an efficient demonstration of useful relations. No attempt will be made to classify historical developments in their proper perspective. The reader interested in the evolution of the science concerned with radiant-transfer problems will find the discussion by Worthing and Halliday. (5) particularly informative.

or.

$$p_{\rm rad} = \frac{1}{3} \frac{\varepsilon}{V} = {\rm constant} \times T^4.$$
 (1-4)

That is, the energy density of the radiation field (E/V) increases as the fourth power of the temperature.

1-4 Kirchhoff's law and Planck's equation. To identify the constant multiplicative factor appearing in Eq. (1-4), it is necessary to utilize more detailed arguments. First we define the spectral volume density of radiant energy,

$$\rho_{\nu}(T) = \frac{\varepsilon_{\nu}(T)}{V}, \qquad (1-5)$$

as the radiant energy per unit volume in the frequency range between v and $\nu + d\nu$. That the spectral volume density of radiant energy must be a universal function of the temperature follows from the invariance of the entropy of the system when arbitrary partitions, which are at the same temperature as the walls, are first introduced into the system and then removed from the system. The following (3) is an alternative thermodynamic argument for demonstrating this important result as well as the universal dependence of ρ on ν . Consider an enclosure consisting of two surfaces and divided into two compartments by a screen that has the property of transmitting radiation in only the narrow frequency range between ν and $\nu + d\nu$. When the two walls are at the same temperature, no net interchange of radiant energy can occur, according to the second law of thermodynamics, without the expenditure of work. Hence, since the screen is not movable, the spectral volume density of radiation must be the same on the two sides of the partition at equilibrium, that is, $\rho_{\nu}(T)$ is a universal function of temperature and frequency.

The velocity of propagation of radiant energy equals the velocity of light c. Using the same arguments as are employed in the kinetic theory of gases, it follows then that the radiant energy incident in unit time on unit area of the wall, in the frequency range between ν and $\nu + d\nu$, is

$$\frac{c}{4}\,\rho_{\nu}(T)\,\,d\nu.$$

If this energy falls on a completely opaque surface with spectral reflectivity r_{ν} , then the fraction of the incident energy absorbed is

$$\frac{c}{4}\,\rho_{\nu}(T)(1\,-\,r_{\nu})\;d\nu.$$

But, at equilibrium, the energy absorbed by unit area in unit time must

be equal to the energy emitted from unit area in unit time. That is,

$$\frac{c}{4} \rho_{\nu}(T)(1-r)_{\nu} d\nu = \frac{c}{4} \rho_{\nu}(T) \epsilon_{\nu} d\nu, \qquad (1-6)$$

where ϵ_r is called the spectral emissivity. Reference to Eq. (1-6) yields Kirchhoff's law for the case of a completely opaque surface:

$$\epsilon_{\nu} = 1 - r_{\nu}. \tag{1-7}$$

A blackbody is defined as a substance that absorbs all the incident radiation. Thus, for a blackbody, $r_{\nu} = 0$ and $\epsilon_{\nu} = 1$ for all ν . The radiant energy emitted from unit area of a blackbody at a specified temperature in unit time, into a solid angle of 2π steradians, in the frequency range between ν and $\nu + d\nu$, is

 $R_{\nu}^{\circ} d\nu = \frac{c}{4} \rho_{\nu}(T) d\nu. \qquad (1-8)$

Evidently R_{ν}° represents the spectral radiancy for a blackbody emitter.

According to the principles of quantum statistics, we may determine the function $\rho_{\nu}(T)$ by computing the equilibrium distribution of photons for which the entropy of the radiation field is a maximum and noting that the energy of a photon of frequency ν is $h\nu$, where h is Planck's constant. If the radiation field is treated as an Einstein-Bose gas, Planck's equation for the volume density of radiation is obtained, (3) namely,

$$\rho_{\nu}(T) \ d\nu = \frac{8\pi h \nu^3}{c^3} \frac{1}{\left[\exp{(h\nu/kT)}\right] - 1} \ d\nu, \tag{1-9}$$

where k is the Boltzmann constant.

A heuristic derivation of Eq. (1-9) may be obtained by observing $^{(3,4)}$ that the number of characteristic electromagnetic frequencies $n_{\nu} d\nu$ per unit volume is

 $n_{\nu} \, d\nu \, = \, \frac{8\pi \nu^2}{c^3} \, d\nu \tag{1-10}$

in the frequency interval between ν and $\nu + d\nu$. The mean energy associated with these vibrations is

$$E = \frac{\sum_{n=0}^{\infty} nh\nu \left[\exp \left(-nh\nu/kT \right) \right]}{\sum_{n=0}^{\infty} \left[\exp \left(-nh\nu/kT \right) \right]} = \frac{h\nu}{\left[\exp \left(h\nu/kT \right) \right] - 1}$$
(1-11)

if the nth harmonic of frequency $nh\nu$ occurs with probability exp $(-nh\nu/kT)$. If we now make the identification

$$\rho_{\nu} d\nu = n_{\nu} \overline{E} d\nu,$$

we obtain Eq. (1-9) from Eqs. (1-10) and (1-11). It is interesting to note

that Eq. (1-11) is consistent with the simplest functional form expressing the entropy of a radiation field in terms of the energy of harmonic oscillators. It was originally obtained by Planck as an interpolation relation between the Wien and the Rayleigh-Jeans formulas (see Section 1-6), which were known to be valid for large and small values of $h\nu/kT$, respectively. (4)

1-5 The Stefan-Boltzmann law and the thermodynamic functions for the radiation field. By using Eq. (1-9) we may derive an explicit relation for the constant appearing in Eq. (1-4). Thus

$$\bullet \quad \frac{\mathcal{E}}{V} = \int_0^\infty \rho_\nu \, d\nu = \frac{8\pi h}{c^3} \left(\frac{kT}{h}\right)^4 \int_0^\infty \frac{x^3}{(\exp x) - 1} \, dx.$$

The integral appearing in the preceding expression is evaluated most conveniently by using the following relations:

$$[(\exp x) - 1]^{-1} = \sum_{n=1}^{\infty} \exp(-nx),$$

$$\int_0^\infty x^3 \left[\exp \left(-nx \right) \right] dx = \frac{6}{n^4} \,,$$

and

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

In this manner it is found that

$$\frac{\mathcal{E}}{V} = \frac{8k^4\pi^5}{15h^3c^3} T^4, \tag{1-12}$$

and the constant in Eq. (1-4) is seen to be

$$\frac{8k^4\pi^5}{45h^3c^3}$$

The integral

$$\int_0^\infty R_{\nu}^{\circ}(T) \ d\nu = \frac{c}{4} \int_0^\infty \rho_{\nu}(T) \ d\nu = \frac{c}{4} \frac{\mathcal{E}}{V} = \sigma T^4 \tag{1-13}$$

gives the total intensity of radiation emitted from unit area of a blackbody according to the Stefan-Boltzmann law, and

$$\sigma = \frac{2k^4\pi^5}{15h^3c^2} \tag{1-14}$$

is known as the Stefan-Boltzmann constant.

In view of the general thermodynamic relation

$$\frac{1}{T} = \left(\frac{\partial S}{\partial \varepsilon}\right)_{V},$$

it follows that

$$\frac{S}{V} = \frac{1}{V} \int_0^T \frac{1}{T} d\varepsilon = \frac{32k^4 \pi^5}{45h^3 c^3} T^3, \tag{1-15}$$

since the entropy density of radiation must vanish at zero temperature, by Nernst's theorem. Also, the Helmholtz free energy per unit volume is

$$\frac{G}{V} = \frac{\mathcal{E}}{V} - T\frac{S}{V} = -\frac{1}{3}\frac{\mathcal{E}}{V} = -\frac{8\pi^5 k^4}{45h^3 c^3} T^4, \tag{1-16}$$

whence it follows that the radiation pressure is

$$p_{\rm rad} = -\left(\frac{\partial G}{\partial V}\right)_T = \frac{1}{3} \frac{\dot{E}}{V} = \frac{8\pi^5 k^4}{45h^3c^3} T^4.$$
 (1-17)

This last relation for the radiation pressure has been used previously in Eq. (1-2). Finally, we find that the Gibbs free energy F of the equilibrium radiation field vanishes, since

$$F = G + p_{\rm rad}V = 0. {(1-18)}$$

1-6 Blackbody radiation laws. In Section 1-4 we defined a blackbody as a substance with zero reflectivity. Actually we were considering an enclosure that does not transmit any radiant energy. The general definition of a blackbody is that of a substance which neither transmits nor reflects any radiation it receives; a blackbody absorbs all the incident radi-From the thermodynamic considerations given in Sections 1-1 through 1-5 it follows that the equilibrium energy of radiation emitted from unit area of a blackbody in unit time at a fixed temperature represents an upper limit for the thermally emitted energy from unit area for any substance which is at the same temperature as the blackbody. This definition of a blackbody and the quantum-mechanical principle of equipartition of energy have been shown to be sufficient to establish the Planck blackbody distribution law, which expresses the equilibrium rate at which radiant energy is emitted from a blackbody as a function of frequency and temperature T. The Planck blackbody distribution law has been abundantly confirmed by experiment. (5,6,8)

According to Eqs. (1-8) and (1-9), the spectral (monochromatic) blackbody radiancy is given by the expression

$$R_{\lambda}^{\circ} d\lambda = \frac{c_1}{\lambda^5} \frac{d\lambda}{\left[\exp\left(c_2/\lambda T\right)\right] - 1},$$
 (1-19)

where c_1/π and c_2 are known as the first and second radiation constants. The quantities c_1 and c_2 may, of course, be expressed in terms of the fundamental physical constants c, h, and k. Thus $c_1 = 2\pi c^2 h \simeq 3.742 \times 10^{-5} \text{ erg} \cdot \text{cm}^2 \cdot \text{sec}^{-1}$ and $c_2 = hc/k \simeq 1.439 \text{ cm} \cdot \text{°K}$.

For $\lambda T \leq 0.3$ cm·°K, with an accuracy of better than 1%, $R_{\lambda}^{\circ} d\lambda$ is given by Wien's radiation law,

$$(R_{\lambda}^{\circ})_{\text{Wien}} d\lambda = \frac{c_1}{\lambda^5} \left(\exp \frac{-c_2}{\lambda T} \right) d\lambda;$$
 (1-20)

for $\lambda T \geq 77$ cm. K, the Rayleigh-Jeans radiation formula,

$$(R_{\lambda}^{\circ})_{R-J} d\lambda = \frac{c_1 T}{c_2 \lambda^4} d\lambda, \qquad (1-21)$$

gives an accuracy of better than 1%.

For a given temperature, the maximum value of R_{λ}° is found from Eq. (1-19) to be

$$(R_{\lambda}^{\circ})_{\max} = 21.20c_1 \left(\frac{T}{c_2}\right)^5$$
 (1-22)

and is seen to occur at the wavelength λ_{max} determined by Wien's displacement law,

$$\lambda_{\text{mux}}T = \frac{c_2}{4.965} \simeq 0.2898 \text{ cm} \cdot {}^{\circ}\text{K}.$$
 (1-23)

The total radiant energy emitted from unit area in unit time by a black-body over all wavelengths into a solid angle of 2π steradians is

$$R^{o} = \int_{0}^{\infty} R_{\lambda}^{o} d\lambda = \sigma T_{\gamma}^{4} \qquad (1-24)$$

where the Stefan-Boltzmann constant σ has the numerical value $\sigma \simeq 5.670 \times 10^{-5} \, \mathrm{erg \cdot cm^{-2} \cdot (°K)^{-4} \cdot sec^{-1}}$. The quantity R° represents the integrated blackbody radiancy and is sometimes referred to also as the total emissive power of a blackbody.

The quantities

$$R_{\lambda}^{\circ}$$
, $(R_{\lambda}^{\circ})_{\max}$, $\frac{R_{\lambda}^{\circ}}{(R_{\lambda}^{\circ})_{\max}}$, $\int_{0}^{\lambda} R_{\lambda'}^{\circ} d\lambda'$, R° ,

and

$$\frac{1}{R^{\circ}} \int_{0}^{\lambda} R_{\lambda'}^{\circ} d\lambda'$$

have been tabulated for many of the wavelengths and/or temperatures that are likely to be encountered in practice. (7)

The relation $\nu = c/\lambda$, between frequency ν and wavelength λ , where c is the velocity of light $(c \simeq 2.998 \times 10^{10} \text{ cm·sec}^{-1})$ has already been

used; the wave number ω is the reciprocal of the wavelength, that is, $\omega = 1/\lambda$. It is apparent that the spectral blackbody radiancy in the frequency range between ν and $\nu + d\nu$ at the temperature T is given by the expression

$$R_{\nu}^{\circ} d\nu = \frac{2\pi\hbar\nu^3}{c^2} \frac{d\nu}{[\exp{(\hbar\nu/kT)}] - 1}$$
 (1-25)

Similarly, $R_{\omega}^{\circ} d\omega$ is determined according to the equation

$$R_{\bullet}^{\circ} d\omega = 2\pi hc^{2} \omega^{3} \frac{d\omega}{\left[\exp\left(hc\omega/kT\right)\right] - 1} \cdot \tag{1-26}$$

It is often helpful to note appropriate units for the various radiation functions: ρ may be expressed in ergs/cm³, $c\rho$ and R in ergs/cm²·sec, ρ_{ν} in ergs/cm³·sec⁻¹, ρ_{ω} in ergs/cm³·cm⁻¹, R_{ω} in ergs/cm²·sec· μ , etc. Thus we find, for example, that $R_{\omega} = (c/4)\rho_{\omega} = (c^2/4)\rho_{\nu}$, etc.

1-7 Nonblack radiators. Before describing some of the properties of (solid) nonblack radiators, it is desirable to restate Kirchhoff's law in a slightly different form from the one used in Section 1-4.

Consider two boxes that are at the same temperature, one made of a completely black material, the other of an opaque nonblack substance. Since the temperature is the same in the two enclosures, the volume density of radiant energy $\rho_r(T)$ and the irradiancy for the enclosures, H° , must be the same. The equilibrium requirement for the blackbody box shows immediately that $H^\circ = (c/4)\rho = R^\circ$. On the other hand, for the nonblack enclosure the equilibrium condition is expressed by the relation

$$H^{\circ} = rH^{\circ} + R, \qquad (1-27)$$

where r represents the (total) reflectivity \dagger of the nonblack surface. Since $H^{\circ} = R^{\circ}$, it follows from Eq. (1-27) that

$$R = (1 - r)R^{\circ} = \epsilon R^{\circ}$$

[†] Worthing⁽⁵⁾ uses the ending -ivity to identify a property that is independent of the shape or size for a given (pure) substance. The ending -ance is used for properties that are functions of the shape or size. When this nomenclature is employed, it is clearly necessary to speak of transmittance and absorbance, rather than of transmissivity and absorptivity, for nonopaque solids, liquids, and gases. However, following conventional terminology for gas radiation, we shall not make Worthing's differentiation and instead shall always use the terms reflectivity, absorptivity, and emissivity even when these parameters depend on the size and/or shape of the substance under consideration.