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1 A mathematical model relating
to herbicide resistance

LEE A SEGEL Weizmann Institute for Science and Rensselaer
Polytechnic Institute

1.1 Introduction

Since correct attitudes are almost as important as professional skill
in successful industrial applications of mathematics, I will depart
somewhat from the usual impersonal scientific style in these notes,
to insert appropriate advice and comments where it seems relev-
ant. A conventional account of the research described here, less
detailed in several respects but containing many more biological
comments and some further mathematical modeling, can be found
in [1].

My involvement with this project began when 1 was approached
by a colleague at the Weizmann Institute, Dr Jonathan Gressel of
the Plant Physiology Department. Dr Gressel asked if I could
provide a mathematical model to underpin some of his ideas on why
plants seem not to develop resistance to herbicides.

(Comment: Perhaps the single most important attribute of a
successful academic researcher is the ability to discern important
problems and to pursue them until a successful conclusion is
reached, almost regardless of how long this takes. By contrast, an
industrial researcher will usually operate as a ‘problem solver’. He
should love the challenge of an office door that is open to a diverse
set of people who can describe, with varying degrees of com-
prehensibility, problems from many different fields on which they
would like a mathematician’s help, usually with temporal and
economic constraints that mandate the goal of better understanding
a phenomenon, not fully understanding it.)

Conversations with Dr Gressel resulted in the following general
outline of the problem.

Repeated use of various antibiotics has resulted in the appear-
ance of bacteria that are resistant to attack by these agents, and an
analogous phenomenon has arisen with respect to insect resistance
to insecticides. It appears, however, that little weed resistance
to herbicides has been observed by farmers and agricultural
specialists. The question is, why not”
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Under normal conditions, without herbicide spraying, one ex-
pects a cycle of seed germination (some seeds pass from a dormant
to a growing condition), establishment (tiny young plants or shoots
appear), growth to maturity, and scattering of seeds from each
mature plant at the end of the growing season.

(Comment: One or more of the italicized words may be new to
the reader, although there is nothing difficult in their definitions. In
general, mastering the jargon of a new field is fundamentally a
trivial task, but one which must be undertaken at once. I have
found it helpful on occasion to compile a little word-list, just like a
vocabulary list that one prepares when studying a foreign language.
But here the task is relatively easy, for mastery of just a dozen or
two new terms is often enough to break the terminology barrier.)

Two facets of typical weed growth bear special mention. One is
that whatever the vicissitudes suffered by the weeds during the
year, there is approximately a uniform number of germinating
seeds per unit area at the beginning of the next season. Gressel
calls this the Parkinson effect, for it is reminiscent of ‘Parkinson’s
law’ that the amount of work expands to fill the available work-
time. -

A second special facet of weed growth, related to the first, is that
far more dormant seeds can be found in the ground than will
germinate in a given year, and that seeds retain their ability to
germinate for a number of years. A typical finding concerning the
slowly decaying viability of seeds is illustrated in Figure 1.1.
Gressel felt that this ‘seed bank’ effect was an important factor in
explaining the nonappearance of resistant strains. His reasoning
began with the expectation that, in a large population of weed
seeds or plants, there would be a few mutants that would be
resistant to herbicide killing. Herbicide treatments are usually
applied at the beginning of the growing season, when the weeds
have just become established. These treatments should considera-
bly increase the proportion of resistant shoots, compared to the
susceptibles that are largely killed by the herbicide. (Typically, 10
percent or at best 1 percent, of the susceptibles remain after a
spraying, and we can probably assume that the resistants are
virtually unaffected.) But the effect of the resulting increase of
resistant seeds will be markedly diminished by the presence in the
ground of an overwhelming number of susceptible seeds in the
seed bank. :

A certain very small fraction of seeds each season is expected



Formulation of a mathematical model 3

-
o
Q o
z
3
3
2 o
o
| 4
2
< ¢
£
£ o
&
o
o
o
| Q
1 5 10

Years in ground, 77

Fig. 1.1 Probability P that a seed will germinate (under optimal conditions) as a
function of f, its years in the ground. O, conjectured ‘typical’ experimental
points; —, an approximation to the experimental results.

to mutate from susceptible to resistant or vice versa. This fraction
could be as low as one in 10'°. Usually the mutants, while resistant
to herbicides, will be ‘less fit’ in other respects, for example in the
number of seeds produced per plant.

1.2 Formulation of a mathematical model

(Pedagogical note: At this point in the lectures I stopped and asked
the class to tell me what to do next. I requested that they begin by
telling me any possibly relevant mathematical or semi-
mathematical statement to write on the blackboard.

It is my experience that this ‘Socratic’ approach to modeling is
very successful. (a) With guidance of a greater or lesser extent,
depending on how much time can be devoted to the exercise,
students can collectively do most of the work necessary to form-
ulate the desired model. Naturally, this is easier in problems like
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the present one where little background is required and the situa-
tion is close to everyday experience. (b) Next to a genuine model-
making experience, this approach provides the best training in
model-building. Less good but still effective is very careful and
responsible examination of classical models, with the same equa-
tion being derived by a number of different approaches (see Lin
and Segel {4], Section 14.1). (c) Students, or subject matter experts
who have come to the applied mathematician for assistance, are
often unimpressed on being presented with a simple mathematical
model. They are far more appreciative when they have struggled
themselves with the formulation.)

Let us first attempt to model the ‘normal’ situation, in the
absence of herbicide treatment. We will take into consideration
both susceptible and resistant strains, however, with the latter less
fit than the former (anticipating a later modification of the model
to take account of the effect of herbicide). It seems natural to take
a discrete approach to the problem, when one keeps track of the
various effects during the nth year and thus sees what will emerge
during the (n+ 1)th.

The Parkinson effect can be modeled simply by assuming that
the same number N seeds per unit area will germinate. Of these, in
the nth year a percentage o, will be susceptibles and a percentage
p. will be resistants. These percentages will depend on the relative
numbers of susceptible and resistant seeds in the seedbank, and on
the relative viabilities of these seeds. In a first model, which should
normally be the simplest reasonable description of the situation, let
us assume that seeds in the bank retain their initial viability for i1
years and then cease altogether to be viable. This amounts to
replacing the actual declining viability by a step function (see
Figure 1.1).

We shall also assume (which is often the case) that only a
relatively small number of the seeds in the bank ever actually
germinate, so that in tallying the seeds in the bank one need only
keep track of ‘deposits’; withdrawals can be neglected in calculat-
ing g, and p,.

Let N® and N® be the number of susceptible and resistant
seeds deposited in the ground at the end of the ith growing season.
To determine the percentage of the N annually germinating seeds
that are of the two categories, we shall merely count the total seeds
in the ground for the past i years and weight the count by a
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relative germination factor x. This gives

Poa-i N X isa- -n—i NI
S INS T RNE] TS INS xN®Y

g, =

(1.1a,b)

The factor x, x >0, has been introduced here in such a way as to
preserve the relationship

o, +p. =1, (1.2)

necessitated by the fact that o, and p, are essentially probabilities
of mutually exclusive events. In most circumstances the number of
resistant seeds will be very low, so that the term xN{™ can be
neglected in the denominators of the expressions in (1.1). Then the
meaning of y is clear; it is the relative probability that a resistant
seed will germinate. We shall assume that x <1 reflects one aspect
of the expected poor relative performance of the resistants in all
respects except tolerance of herbicide.

Of the seeds that germinate, let Bs (Br) be the proportion of
susceptibles (resistants) that become established, ¥s (Yr) the pro-
portion of established plants that survive to the end of the season,
and vs (vg) the number of seeds per survivor. Finally, let a fraction
u of each type of seed mutate to another type. With all this, the
number of seeds deposited in the ground at the end of the nth
growing season will be given by

AN$15) = UnN¢S(1 - P‘) + ""pnN(bR,

N® = p.Nebul1 = 1) + w0 Nebs, (1.32.0)
where

bs = Bsisvs, br = Br¥rrr. (1.4a.b)

If we substitute into the above equations the expressions (1.1a) and
(1.1b) for the probabilities o, and p, we find that the difference
equations thus generated will describe the evolution of the weed
population, providing that we-prescribe an ‘initial situation’ of n
years duration.

The boxed equations (1.1) and (1.3) provide what might be
termed a ‘basic mathematical model of the phenomenon under
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investigation. True, we have yet to incorporate the effect of her-
bicide spraying, but this only requires introduction of a factor as
(agr) to describe the proportion of newly established susceptibles
(resistants) that survive the spray treatment.

Formulation of the basic model is often the most difficult step in
the analysis. Once such a model is available, however, one begins
to feel a measure of optimism that the analysis will eventually
prove fruitful. The basic model may be rather intractable, so that
simplifications will be mandated; additions and corrections may
have to be made, but at least one has translated the essence of the
given situation into a meaningful mathematical problem.

Before proceeding to consider the effect of herbicide, let us
examine the normal situation. In so doing we shall take advantage
of some intuition to simplify the equations considerably, so that
calcuiations become very simple.

Under normal conditions we expect the resistants to be at a
disadvantage, to be less fit in biological parlance. This we express
by the inequalities

x<1, br< Ps. (1.5)

The first of these we have already postulated; it refers to seed
viability. The second inequality establishes  overall susceptible
superiority in the combined areas of germination, establishment,
and reproductivity. ' '

In the absence of mutation it is fairly clear that the inferior
fitness of the resistant will lead eventually to its extinction. In
mathematical terms, one expects that, given (1.5), the solution of
equations (1.1) and (1.3), with u =0, regardless of initial condi-
tions, will be such that ‘

lim N® =0..

With mutations, a small number of resistants should remain in the
population, for every year a few susceptible seeds mutate to
resistants. The ‘back mutation’ of resistants to susceptibles should
be negligible, for this is a very small fraction of a relatively tiny
number. Thus for- realistic values of the various variables and
parameters we should be able to approximate (1.1) by o, =1,
pn < 1 (nearly all germinating seeds will be resistant) and (1.3a) by

N® ~Neps=N&. (1.6)
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To find the small number of resistants we have from (1.1b) and
(1.3b) the approximate equation

n—1
Now~L Y N® NG (1.7)

i=n—n

Here we have employed the parameter
f=xdrlds, <1, (1.8)

‘which we term the preselection fitness factor. Equation (1.7) has a
steady-state solution that we shalil denote by N®:; the subscript C
refers to the control situation, in the absence of herbicide. We find
from (1.7) that

(R _ mNos -
NE=STF (1.9)
As anticipated, the steady-state level is proportional to the muta-
tion frequency. It is possible to show (see below) that the solution
to (1.7) always approaches this steady-state value as n —> .

We have assumed that the solution of our governing equations
would tend to a state where the number of resistant plants is far
less than the number of susceptibles. After simplifying our equa-
tioweccordingly, we found a solution of the anticipated character.
This consistency gives us confidence that our answers are a good
approximation to the truth. Lin and Segel [4] (Section 6.1) discuss
instances wherein consistent approximations are nonetheless inac-
curate, but it appears that here we can be fairly certain that there
are no hidden ill-conditionings that can give rise to the ‘wretched
consistent approximations’ illustrated by Lin and Segel [4].

Let us now suppose that application of herbicide began in year
zero, after a.long sequence of normal years in which susceptible
and resistant numbers are given by the control steady-state levels
of (1.6) and (1.9). It is quite possible that the herbicide will lead to
an increase in the numbers of resistants, but the ratio of resistants
to susceptibles should nevertheless remain low for some years.
Thus the general spirit of our approximate equations can be
retained in analyzing the growth of the resistant population, al-
though we must now modify (1.7) to take account of the percen-
tage as (ar) of newly established susceptibles (resistants) that
survive spraying. This is done by multiplying ¢s (¢r) by os(ar).
Thus, in the presence of herbicide, the behavior of a relatively
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small resistant population is governed by

L

n—1
N;mzfjf Y N®4uNpsas, n=0,1,2,.... (1.10)

N i-n-i

Here the selection coefficient a is defined by

o =ag/as. (1.11)
To analyze (1.10) we first look for a steady-state solution
N(R) — N(slé)
for all n. We find that
NG = uNos/[1- af ]. (1.12)
This solution is positive and thus makes biological sense when
of =XPROR g (1.13)
sUs

Indeed, in this situation the resistant has an ‘overall ﬁtnqss’ (in-
cluding herbicide resistance) that is less than the susceptible. Thus
it is no surprise that a new steady-state level of the tesistant can
exist. We expect that the resistant level tends to the new value
from arbitrary initial conditions; evidence in favor of this view will
be presented shortly. When af >1, the solution (1.12) has no
biological meaning, but it is still a particular solution of the
governing difference equation (1.10).

A little familiarity with difference equations (for example from
Levy and Lessman [3]) reveals many analogies with differential
equations. Here we are faced with a linear inhomogeneous differ-
ence equation, so we expect (and can easily show) that the general
solution will be the sum of a particular solution of the in-
homogeneous equation plus the general solution of the homogene-
ous. Indeed, if we write

N®=N® LR (1.14)

we find that R, satisfies the homogeneous equation

n—1
R,,=9‘_-f YR, i=0,1,2.... (1.15)

R i=n-n

As mentioned, the initial situation will be taken to be the steady



