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Foreword

Michael J. Flynn, Stanford University

Parallel processors are the future of computer design. The replicability of technology
has proven an ever-increasing impetus towards parallel processor implementations. The
demand for increasing performance in important applications is another persuasive
argument. However, building efficient, scalable parallel processors has proven to be a
very difficult problem.

For decades, it seemed that large-scale (» > 100 processors) parallel processors could
be realized efficiently with just a little bit more effort and research. This has not proven so.
It has been difficult to find the prerequisite parallelism in programs, and when this
parallelism was found, it did not translate into a speedup of program execution propor-
tional to the number of processing elements involved. This has been especially true when
n exceeds 100.

One important problem in the realization of efficient parallel processors is the com-
putational model that underlies the program model and language used to represent applica-
tions. This model was developed for and efficiently suits the single processor. Because our
linguistic notions of sequential specification of actions are familiar, they are readily
mapped onto a serial computational and programming model. Attempts to remap these
representations onto the parallel model have proved so far quite inefficient.

There are three legs that support the understanding of efficient parallel processing:
computational models, underlying alternatives, and the programming paradigms. This
book is uniquely concerned about all three issues. Metrics for performance provide a
quantitative basis for understanding basic models of computation.

Professors Hwang and Xu comprehensively analyze hardware models of processors,
interconnection networks, and serial wide area networks giving a complete picture of the
hardware state of the art. Their coverage extends from the hardware ILP (instructional
level parallelism) to forms of parallelism achieved by NOW (networks of workstations).
Their systems viewpoint integrates the computational model, the hardware, and the
programming model in a review of major parallel processor implementation efforts that
are currently underway.

It is in this integration of hardware and software that this book is most valuable. It is
only by understanding the mapping from application onto system and into processor con-
figuration that we can expect the consistent progress in building efficient scalable parallel
processor systems.
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Preface

Oh, A Digital World!

This book covers scalable architecture and parallel programming of multiprocessors,
multicomputers, and network-based cluster platforms. Digital technology has made the
computer industry. Now, digital technology is making another wave of fundamental
impact to telecommunications and information industries. Converting everything to digital
is the key to future success in a highly automated society.

The crossbreeding of technologies demands a new generation of computers that can
adapt to scalable, parallel, and distributed computing. These changes in computer and
information technologies has prompted computer professionals to study the material
presented in this text. The ultimate goal is to become ready for new challenges in the 21st

Century.

A Glance at the Book
The book consists of 14 chapters presented in four parts. We provide a balanced
coverage of four aspects: principles, technology, architecture, and programming:
¢ In Part I, three chapters cover scalable computer platforms and models, basics of
parallel programming, and parallel performance metrics.
® Part II assesses commodity microprocessors, distributed cache and memory
architecture, switched interconnects, Gigabit networks, and communications.

e Part IlI covers symmetric multiprocessors (SMP) and cache-coherent, nonuniform
memory-access (CC-NUMA) machines, clusters of workstations (COW), and
massively parallel processors (MPP).

¢ Part IV presents parallel languages, programming models with emphasis on Unix
programming environments, message passing, data parallelism, and the use of
PVM, MPI, Fortran 90, and HPF on scalable computers.

A Trilogy on Computer Systems
Over a period of 15 years, Hwang and his associates have produced a trilogy on
computer systems, all published by McGraw-Hill Book Company.

* Computer Architecture and Parallel Processing,
by K. Hwang and F. A. Briggs (1983)

* Advanced Computer Architecture:
Parallelism, Scalability, Programmability, by K. Hwang (1993)

* Scalable Parallel Computing:
Technology, Architecture, Programming, by K. Hwang and Z. Xu (1998)

XVI



Preface XVII

More than 90% of the topics treated in this book are based on new technological
advances and research development within the past 5 years. This book is newly written,
not a revision of Hwang’s previous books. Unique features are highlighted below:

Hot Chips and Interconnects

We assess commodity microprocessors and hot chips for building scalable multipro-
cessors and multicomputer clusters. Distributed cache/memory and Gigabit networks are
studied along with latency hiding mechanisms. In particular, we study multiprocessor
buses and crossbar switches, SAN (System Area Network), and LAN (Local Area
Network) such as Gigabit Ethernet, SCI (Scalable Coherence Interface), and ATM (4syn-
chronous Transfer Mode) networks.

Scalable Platforms and Clusters

We focus on scalable architectures, fast messaging mechanisms, latency hiding,
distributed shared memory, cache coherence protocols, and memory consistency models.
We cover software extensions for higher availability, single system image, failure
recovery systems, and job management in clusters of computers.

Case studies include the HP/Convex Exemplar, Cray T3D/T3E, IBM SP2, Digital
TruCluster, Microsoft Wolfpack, Sun Ultra Enterprise 10000, SGI Origin 2000, Sequent
NUMA-Q, Intel/Sandia ASCI Option Red. We discuss the lessons learned from Stanford
Dash, Berkeley NOW, Princeton SHRIMP, and Rice TreadMarks.

Parallel Software Environments

This book devotes more than half of the material to software tools and parallel
programming systems. In the shared-memory approach, we study the ANSI X3HS5,
Pthreads, SGI Power C; OpenMP, and C// language. We study Solaris MC and LSF (Load
Sharing Facility) for availability, single system image, and cluster job management.

For parallel programming, we study data-parallel, message-passing, shared-memory,
and implicit paradigms. We study MPI (Message-Passing Interface), PVM (Parallel
Virtual Machine), Fortran 90, and HPF (High Performance Fortran) for explicit paral-
lelism; and languages and compliers for implicit parallelism.

Benchmark-based Evaluation

This book benefits from our benchmarking experience with six scalable computers:
namely, the SP2 at Maui High Performance Computer Center, the T3D/T3E and Paragon
at the San Diego Supercomputer Center, the T3D at Cray Eagan Data Center, the SP2, SGI
server, and Pearl cluster at the University of Hong Kong.

Collective MPI communications in various machine platforms are evaluated with
firsthand benchmark results. We reveal architectural implications from NASA parallel
NAS and USC/HKU STAP benchmark results. These benchmark performance results are
evaluated along with scalability analysis over machine sizes and problem sizes.



XV Preface

Web Resources

In a rapidly changing world, any computer book becomes obsolete in a few years. We
have strived to prolong the life cycle of this book by selecting practical topics and
discussing fundamental issues that can last over generations of computer systems.
Examples and quantitative data are drawn from real designs or benchmark experiments.

We have complied at the end of the book an extensive Web Resources List, linking to
thousands of home pages of computer companies, research projects, information
technology centers, and major application groups across academic, business, and
government sectors. An on-line home site of this list is also maintained at HKU. See
Guide for Instructors/Students to access our home pages.
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Guide to Instructors/Readers

This book is designed as a standard text for classroom adoption in Computer Science
or Computer Engineering curriculum at college/university levels. Suitable courses
include: Computer Architecture, Parallel Processing, Distributed Computing, Concurrent
Programming, Network-based Computing, Computer Engineering, etc.

Flowchart for Reading The flowchart shows the logical flow of the 14 chapters in
this book. The four parts are indicated on the side labels. There are two chapters in theory
and modeling (slashed boxes), six unshaded boxes for hardware and architecture chapters,
and six shaded boxes for software and programming chapters.

Part L.
Models and
Performance

Part II.

Enabling {
Technology

Part III.
Systems
Architecture

Part IV.
Parallel

Programming

Legends: Models Hardware Software

s S o=

Course Offerings
Suggested below are five possible course offerings in adopting this book for use in an
one-semester course with 45 hours of lectures:

Computer Architecture: For hardware-oriented students in Electrical and
Computer Engineering programs, cover Chapters 1, 3-6, and 8-11.

Parallel Programming: For programming and software-oriented students in
Computer Science programs, Chapters 1, 2, 7-10, and 12-14 are suitable.

XIX



XX Guide to Instructors/Readers

¢ Parallel Processing: For mixed students from Computer Science/Engineering
and Electrical Engineering programs, cover Chapters 1, 2, 4-6, 8-10, and 12.

¢ Distributed Computing: For mixed CS and EE students, Chapters 1, 2, 5-7, 9-
10, and 13-14 are suitable for one-semester use.

e Computer Engineering: An advanced course in computer technology and
software system design. Chapters 1, 2, 4-7, and 8-10 should be covered.

All readers should start with the material in chapter 1. Engineering students may read
more of the technology and architecture chapters on the left side and software-oriented
students on the right subtree of the flowchart. Logically, the reading of this book should
flow from the top to the bottom chapters shown by the arrows.

Tt = six hardware and architecture chapters form the core of the course in Computer
Arcaite ture or in Computer Engineering. The six chapters in software and programming
form tt.e core for the Parallel Programming course. The Parallel Processing course
covers all scalable parallel systems with more emphasis on shared-memory multipro-
cessing. The Distributed Computing course emphasizes message-passing systems and
network-based cluster computing.

Instructor’s Manual

An Instructor s Manual is available to proven instructors without charge. The
Manual provides solutions to selected homework problems, viewing-graph masters, some
sample tests, and topics suggested for term projects.

Instructors can request the Manual by writing to: Lynn Cox, McGraw-Hill College
Division, 55 Francisco Street, Suite 200, San Franscico, CA. 94133-2117, U.S.A. or
submit a written request to Fax No. 415-989-7702.

Web Site Access

As an updated reference, the book is also intended for self-study use by system
designers, academic researchers, application programmers, system analysts, resource
managers, solution providers, and computer professionals in general. To avoid becoming
obsolete, readers are invited to visit our Web site for updated WWW links.

http:/ ‘www.cs.hku.hk/~kaihwang/book98.html

This Web site is updated dynamically. If you want your organization or your projects to be
acded into the list. Contact Dr. C. L. Wang of the University of Hong Kong by Email:

cilwang@cs.bhku.hk.
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