Scalable Parallel
Computing

Technology, Architecture,

Programmmg

ﬁﬁﬁﬁ
LIRS N %*@5%*(%*;5

| ~ Kai Hwang Zhiwei Xu ¥

A A o I WCB
China Machine Press MecGraw-Hill

A AP

o B TR
BA. BHSHE

(3£ k)

Scalable Parallel Computing

Technology, Architecture, Programming

Kai Hwang Zhiwei Xu ¥

LW T W B AR

China Machine Press

WCB
fitd Mc Graw Hill

Kai Hwang, Zhiwei Xu: Scalable Parallel Computing: Technology, Architecture,
Programming.

Copyright © 1998 by The McGraw-Hill Companies, Inc. All rights reserved. Jointly
published by China Machine Press/McGraw-Hill. This edition may be sold in the People's
Republic of China only. This book cannot be re-exported and is not for sale outside the
People's Republic of China.

FH IR ENR MMcGraw-Hill2¥ B AUHLAE Tl AR /E v E KRG S K AR &
7, REHMFEAT, THRLMEME PR, EHIST FABHIEMERS .

IR, RERLE.

RISBN: 007-1164456
ABRENEIZS: EF: 01-99-1094
B P RS B (CIP)¥8

AP RIHMTUHR: BAR. SERE i Hwang K), REHXu 2)%F. - RENA.
—4b3T: MU Lok HikRE:, 1999.5

GHEHLEEAS)

F4&JEC: Scalable Parallel Computing: Technology, Architecture, - Programming

ISBN 7-111-07176-X

1.9« D0.0%-- Ot W HfF4®-Fx IV.TP274

" Al A P 5 1B CIPE A% F-(1999) % 09070 5

H AR A BILE debi B AS22% WhH%ES100037)
e BERBENEDR - FrEHEALRRITRRAT
19994E5 A8 1R 5 15 EN R

787mm x 1092mm 1/16 - 51.5E)3k

EN%: 0 001-5 00041

EHr: 69.007¢

A4, AR, ST, B, dHEHRTHRLR

Trademark Notice

ANSI Standards X3T11, X3T9, and X3HS are
trademarks of the American National Stan-
dards Institute.

ALLICACHE and KSR-1 are trademarks of
Kendall Square Research.

X Window, Alewife, J-Machine, and *T are
trademarks of Massachusetts Institute of
Technology.

CM-2, CM-5, C*, *Lisp, CM Fortran, and
CMOST are trademarks of Thinking Machines
Corporation.

HP/Convex Exemplar is a trademarks of
Hewlett-Packard Company and Convex Com-
puter Systems.

Cray 1, Cray 2, Y-MP, C90, CRAFT, T3D,
T3E, UNICOS are trademarks of Cray
Research, Inc.

Dash and SPLASH are trademarks of
Stanford University.

Ethernet is a trademark of Xerox Corporation.

Gigabit Ethernet is trademark of the Gigabit
Ethernet Alliance.

SCI, POSIX Threads, and Futurebus+ are
trademarks of the Institute of Electrical and
Electronic Engineering, Inc.

Illiac 1V, Cedar, and Parafrase are trademarks
of University of Illinois.
Intel 80x86, 1960, i860, SHV, Paragon, Intel

Hypercube, Pentium, Pentium Pro, and Pen-
tium-II are trademarks of Intel Corporation.

MIPS R2000, R4000, and R10000 are
trademarks of SGI/MIPS Technology, Inc.

Mach/OS, C.mmp, and Cm* are trademarks of
Camegie-Mellon University.

NYU Ultracomputer is a trademark of New
York University.

SX/4 is a trademark of NEC Information
Systems.

Symmetry and NUMA-Q are trademarks of
Sequent Computers.

Gigaplane, Gigaplane-XB, S-Bus, TSO, PSO,
NFS, SPARC, Ultra Enterprise, SPARCcluster,
SPARCstation, and Solaris MC are trademarks

of Sun Microsystems, Inc.
Tera is a trademark of Tera Computer Systems.

Cosmic Cube and Mosaic C are trademarks of
California Institute of Technology.

UNIX 4.3 BSD, NOW, GLUnix, IRAM, xFS,
and 4.4BSD are trademarks of the University
of California at Berkeley.

DEC, DECsafe, VAX, VAXCluster, VMS, Dig-
ital Unix, TruCluster, Digital NT Cluster,
Alpha 21164, and Alpha AXP are trademarks
of Digital Equipment Corporation.

Apollo Domain, HP, Series 9000, PA-RISC,
and UX are trademarks of the Hewlett-Packard
Company.

IBM PC, AIX, ESSL, 801, RP3, EUI, HACMP,
IBM, LoadLeveller, NetView, POWER, Pow-
erPC, RS/6000, S/370, S/390, SP2, SP, and
Sysplex are trademarks of International Busi-
ness Machines Corporation.

Lifekeeper, NCR and Teradata are trademarks
of National Cash Register.

M680x0 is trademark of Motorola Corporation.

OSF/1, DCE, and DFS are trademarks of the
Open Software Foundation, Inc.

Oracle Parallel Server is a trademark of Oracle
Corporation.

Express is a trademark of Parasoft Corporation.

Load Sharing Facility is a trademark of
Platform Computing Corporation.

Origin 2000, Power C, POWER CHALLEN-
GEarray, and Cellular IRIX are trademarks of
Silicon Graphics Computer Systems.

Sybase is a trademark of Sybase, Inc.

UNIX and SVRS are trademarks of X/Open
Company, Ltd.

Microsoft, Wolfpack, and Windows NT are
trademarks of Microsoft Corporation.

OpenMP is a trademark of OpenMP Standards
Evaluation Board.

Myrinet is a trademark of Myricom, Inc.

About the Authors

Kai Hwang presently holds a Chair Professor of Computer Engineering at the
University of Hong Kong (HKU), while taking a research leave from the University of
Southern California (USC). He has been engaged in higher education and computer
research for 26 years, after earning the Ph.D. in Electrical Engineering and Computer
Science from the University of California at Berkeley. His work on this book started at the
USC and was mostly completed at the HKU.

An IEEE Fellow, he has published extensively in the areas of computer architecture,
digital arithmetic, parallel processing, and distributed computing. He is the founding
Editor-in-Chief of the Journal of Parallel and Distributed Computing. He has chaired the
international conferences: ICPP86, ARITH-7, IPPS96, ICAPP 96, and HPCA-4 in 1998.
He has received several achievement awards for outstanding research and academic con-
tributions to the field of parallel computing.

He has lectured worldwide and performed consulting and advisory work for US
National Academy of Sciences, MIT Lincoln Laboratory, IBM Fishkill, TriTech in
Singapore, Fujitsu and ETL in Japan, GMD in Germany, CERN School of Computing,
and Academia Sinica in China. Presently, he leads a research group at HKU in developing
an ATM-based multicomputer cluster for high-performance computing and distributed
multimedia, Intranet, and Internet applications.

Zhiwei Xu is a Professor and Chief Architect at the National Center for Intelligent
Computing Systems (NCIC), Chinese Academy of Sciences, Beijing, China. He is also a
Honorary Research Fellow of HKU. He received a Ph.D. in Computer Engineering from
the University of Southern California. He participated in the STAP/MPP benchmark
projects led by Dr. Hwang at USC and HKU during the past 5 years.

He has taught at the Rutgers University and New York Polytechnic University. He
has published in the areas of parallel languages, pipelined vector processing, and
benchmark evaluation of massively parallel processors. Presently, he leads a design group
at NCIC in building a series of cluster-based superservers in China. His current research
interest lies mainly in network-based cluster computing and the software environments for
parallel programming.

v

Dedication

To my family, for their love and support -- k.h.

To my high-school teacher,
Ms. Zhang Dahua, who taught me the
serenity of science at a tumultuous time -- z.x.

Foreword

Michael J. Flynn, Stanford University

Parallel processors are the future of computer design. The replicability of technology
has proven an ever-increasing impetus towards parallel processor implementations. The
demand for increasing performance in important applications is another persuasive
argument. However, building efficient, scalable parallel processors has proven to be a
very difficult problem.

For decades, it seemed that large-scale (» > 100 processors) parallel processors could
be realized efficiently with just a little bit more effort and research. This has not proven so.
It has been difficult to find the prerequisite parallelism in programs, and when this
parallelism was found, it did not translate into a speedup of program execution propor-
tional to the number of processing elements involved. This has been especially true when
n exceeds 100.

One important problem in the realization of efficient parallel processors is the com-
putational model that underlies the program model and language used to represent applica-
tions. This model was developed for and efficiently suits the single processor. Because our
linguistic notions of sequential specification of actions are familiar, they are readily
mapped onto a serial computational and programming model. Attempts to remap these
representations onto the parallel model have proved so far quite inefficient.

There are three legs that support the understanding of efficient parallel processing:
computational models, underlying alternatives, and the programming paradigms. This
book is uniquely concerned about all three issues. Metrics for performance provide a
quantitative basis for understanding basic models of computation.

Professors Hwang and Xu comprehensively analyze hardware models of processors,
interconnection networks, and serial wide area networks giving a complete picture of the
hardware state of the art. Their coverage extends from the hardware ILP (instructional
level parallelism) to forms of parallelism achieved by NOW (networks of workstations).
Their systems viewpoint integrates the computational model, the hardware, and the
programming model in a review of major parallel processor implementation efforts that
are currently underway.

It is in this integration of hardware and software that this book is most valuable. It is
only by understanding the mapping from application onto system and into processor con-
figuration that we can expect the consistent progress in building efficient scalable parallel
processor systems.

XV

Preface

Oh, A Digital World!

This book covers scalable architecture and parallel programming of multiprocessors,
multicomputers, and network-based cluster platforms. Digital technology has made the
computer industry. Now, digital technology is making another wave of fundamental
impact to telecommunications and information industries. Converting everything to digital
is the key to future success in a highly automated society.

The crossbreeding of technologies demands a new generation of computers that can
adapt to scalable, parallel, and distributed computing. These changes in computer and
information technologies has prompted computer professionals to study the material
presented in this text. The ultimate goal is to become ready for new challenges in the 21st

Century.

A Glance at the Book
The book consists of 14 chapters presented in four parts. We provide a balanced
coverage of four aspects: principles, technology, architecture, and programming:
¢ In Part I, three chapters cover scalable computer platforms and models, basics of
parallel programming, and parallel performance metrics.
® Part II assesses commodity microprocessors, distributed cache and memory
architecture, switched interconnects, Gigabit networks, and communications.

e Part IlI covers symmetric multiprocessors (SMP) and cache-coherent, nonuniform
memory-access (CC-NUMA) machines, clusters of workstations (COW), and
massively parallel processors (MPP).

¢ Part IV presents parallel languages, programming models with emphasis on Unix
programming environments, message passing, data parallelism, and the use of
PVM, MPI, Fortran 90, and HPF on scalable computers.

A Trilogy on Computer Systems
Over a period of 15 years, Hwang and his associates have produced a trilogy on
computer systems, all published by McGraw-Hill Book Company.

* Computer Architecture and Parallel Processing,
by K. Hwang and F. A. Briggs (1983)

* Advanced Computer Architecture:
Parallelism, Scalability, Programmability, by K. Hwang (1993)

* Scalable Parallel Computing:
Technology, Architecture, Programming, by K. Hwang and Z. Xu (1998)

XVI

Preface XVII

More than 90% of the topics treated in this book are based on new technological
advances and research development within the past 5 years. This book is newly written,
not a revision of Hwang’s previous books. Unique features are highlighted below:

Hot Chips and Interconnects

We assess commodity microprocessors and hot chips for building scalable multipro-
cessors and multicomputer clusters. Distributed cache/memory and Gigabit networks are
studied along with latency hiding mechanisms. In particular, we study multiprocessor
buses and crossbar switches, SAN (System Area Network), and LAN (Local Area
Network) such as Gigabit Ethernet, SCI (Scalable Coherence Interface), and ATM (4syn-
chronous Transfer Mode) networks.

Scalable Platforms and Clusters

We focus on scalable architectures, fast messaging mechanisms, latency hiding,
distributed shared memory, cache coherence protocols, and memory consistency models.
We cover software extensions for higher availability, single system image, failure
recovery systems, and job management in clusters of computers.

Case studies include the HP/Convex Exemplar, Cray T3D/T3E, IBM SP2, Digital
TruCluster, Microsoft Wolfpack, Sun Ultra Enterprise 10000, SGI Origin 2000, Sequent
NUMA-Q, Intel/Sandia ASCI Option Red. We discuss the lessons learned from Stanford
Dash, Berkeley NOW, Princeton SHRIMP, and Rice TreadMarks.

Parallel Software Environments

This book devotes more than half of the material to software tools and parallel
programming systems. In the shared-memory approach, we study the ANSI X3HS5,
Pthreads, SGI Power C; OpenMP, and C// language. We study Solaris MC and LSF (Load
Sharing Facility) for availability, single system image, and cluster job management.

For parallel programming, we study data-parallel, message-passing, shared-memory,
and implicit paradigms. We study MPI (Message-Passing Interface), PVM (Parallel
Virtual Machine), Fortran 90, and HPF (High Performance Fortran) for explicit paral-
lelism; and languages and compliers for implicit parallelism.

Benchmark-based Evaluation

This book benefits from our benchmarking experience with six scalable computers:
namely, the SP2 at Maui High Performance Computer Center, the T3D/T3E and Paragon
at the San Diego Supercomputer Center, the T3D at Cray Eagan Data Center, the SP2, SGI
server, and Pearl cluster at the University of Hong Kong.

Collective MPI communications in various machine platforms are evaluated with
firsthand benchmark results. We reveal architectural implications from NASA parallel
NAS and USC/HKU STAP benchmark results. These benchmark performance results are
evaluated along with scalability analysis over machine sizes and problem sizes.

XV Preface

Web Resources

In a rapidly changing world, any computer book becomes obsolete in a few years. We
have strived to prolong the life cycle of this book by selecting practical topics and
discussing fundamental issues that can last over generations of computer systems.
Examples and quantitative data are drawn from real designs or benchmark experiments.

We have complied at the end of the book an extensive Web Resources List, linking to
thousands of home pages of computer companies, research projects, information
technology centers, and major application groups across academic, business, and
government sectors. An on-line home site of this list is also maintained at HKU. See
Guide for Instructors/Students to access our home pages.

Acknowledgments

We thank the professional reviews of our draft manuscript by six leading experts in
this field. Their suggestions are very useful in revising the manuscript to its present form
and contents. We appreciate Choming Wang for preparing the indices and the help from
Dr. Cho-Li Wang in maintaining the book’s Web site at HKU.

Intellectual exchanges with Dharma Agrawal, Jean-Loup Baer, Gordon Bell, David
Culler, Jack Dongarra, Michael Flynn, Ian Foster, Jeffrey Fox, Mark Franklin, Wolfgang
Giloi, Allan Gottlieb, Anoop Gupta, John Hennessy, Ken Kennedy, Duncan Lawrie,
Charles Leiserson, Kai Li, Guojie Li, Lionel Ni, David Patterson, Gregory Pfister, John
Rice, Sartaj Sahni, Chuck Seitz, Bruce Shriver, H. J. Siegel, Burton Smith, Daniel Tabak,
H. C. Torng, and Ben Wah are always inspiring and appreciated.

We appreciate the sponsorship from McGraw-Hill editors, Eric Munson, Lynn Cox,
and Betsy Jones. The production work from Richard DeVitto, Francis Owen, and Nina
Kreiden and assistance from Polly Leung of HKU are gratefully acknowledged.

During the courses of writing this book, research funding supports from MIT Lincoln
Laboratory, Hong Kong Research Grants Council, and the University of Hong Kong are
appreciated. In particular, the excellent facilities and environment provided by HKU make
the writing of this book a very pleasant undertakin,

Points of Feedback
For all technical contacts, suggestions, corrections, or exchanges of information,
readers and university instructors are advised to contact either author via Email:

kaihwang@cs.hku.hk zxu@apple.ncic.ac.cn
We appreciate your feedback and hope you enjoy reading the book.

Kai Hwang
Zhiwei Xu
November 15, 1997
Hong Kong

Guide to Instructors/Readers

This book is designed as a standard text for classroom adoption in Computer Science
or Computer Engineering curriculum at college/university levels. Suitable courses
include: Computer Architecture, Parallel Processing, Distributed Computing, Concurrent
Programming, Network-based Computing, Computer Engineering, etc.

Flowchart for Reading The flowchart shows the logical flow of the 14 chapters in
this book. The four parts are indicated on the side labels. There are two chapters in theory
and modeling (slashed boxes), six unshaded boxes for hardware and architecture chapters,
and six shaded boxes for software and programming chapters.

Part L.
Models and
Performance

Part II.

Enabling {
Technology

Part III.
Systems
Architecture

Part IV.
Parallel

Programming

Legends: Models Hardware Software

s S o=

Course Offerings
Suggested below are five possible course offerings in adopting this book for use in an
one-semester course with 45 hours of lectures:

Computer Architecture: For hardware-oriented students in Electrical and
Computer Engineering programs, cover Chapters 1, 3-6, and 8-11.

Parallel Programming: For programming and software-oriented students in
Computer Science programs, Chapters 1, 2, 7-10, and 12-14 are suitable.

XIX

XX Guide to Instructors/Readers

¢ Parallel Processing: For mixed students from Computer Science/Engineering
and Electrical Engineering programs, cover Chapters 1, 2, 4-6, 8-10, and 12.

¢ Distributed Computing: For mixed CS and EE students, Chapters 1, 2, 5-7, 9-
10, and 13-14 are suitable for one-semester use.

e Computer Engineering: An advanced course in computer technology and
software system design. Chapters 1, 2, 4-7, and 8-10 should be covered.

All readers should start with the material in chapter 1. Engineering students may read
more of the technology and architecture chapters on the left side and software-oriented
students on the right subtree of the flowchart. Logically, the reading of this book should
flow from the top to the bottom chapters shown by the arrows.

Tt = six hardware and architecture chapters form the core of the course in Computer
Arcaite ture or in Computer Engineering. The six chapters in software and programming
form tt.e core for the Parallel Programming course. The Parallel Processing course
covers all scalable parallel systems with more emphasis on shared-memory multipro-
cessing. The Distributed Computing course emphasizes message-passing systems and
network-based cluster computing.

Instructor’s Manual

An Instructor s Manual is available to proven instructors without charge. The
Manual provides solutions to selected homework problems, viewing-graph masters, some
sample tests, and topics suggested for term projects.

Instructors can request the Manual by writing to: Lynn Cox, McGraw-Hill College
Division, 55 Francisco Street, Suite 200, San Franscico, CA. 94133-2117, U.S.A. or
submit a written request to Fax No. 415-989-7702.

Web Site Access

As an updated reference, the book is also intended for self-study use by system
designers, academic researchers, application programmers, system analysts, resource
managers, solution providers, and computer professionals in general. To avoid becoming
obsolete, readers are invited to visit our Web site for updated WWW links.

http:/ ‘www.cs.hku.hk/~kaihwang/book98.html

This Web site is updated dynamically. If you want your organization or your projects to be
acded into the list. Contact Dr. C. L. Wang of the University of Hong Kong by Email:

cilwang@cs.bhku.hk.

VII

Table of Contents

About the Authors 1v
Foreword XV

Preface XVI
Guide to Instructors/Readers XIX

PartI Scalability and Clustering 1

Chapter 1 Scalable Computer Platforms and Models

1.1

1.2

1.3

14

1.5

1.6

Evolution of Computer Architecture 5
1.1.1 Computer Generations 5

1.1.2 Scalable Computer Architectures 6
1.1.3 Converging System Architectures 8

Dimensions of Scalability 9

1.2.1 Resource Scalability 9

1.2.2 Application Scalability 11

1.2.3 Technology Scalability 12
Parallel Computer Models 13

1.3.1 Semantic Attributes 14

1.3.2 Performance Attributes 17

1.3.3 Abstract Machine Models 18
1.3.4 Physical Machine Models 26
Basic Concepts of Clustering 30
1.4.1 Cluster Characteristics 30

1.4.2 Architectural Comparisons 31
1.4.3 Benefits and Difficulties of Clusters 32
Scalable Design Principles 37

1.5.1 Principle of Independence 37
1.5.2 Principle of Balanced Design 39
1.5.3 Design for Scalability 44

Bibliographic Notes and Problems 47

Chapter 2 Basics of Parallel Programming 51

2.1

2.2

Parallel Programming Overview 51

2.1.1 Why Is Parallel Programming Difficult? 52
2.1.2 Parallel Programming Environments 55
2.1.3 Parallel Programming Approaches 56

Processes, Tasks, and Threads 59

3

VI

Table of Contents

23

2.4

25

2.6

2.2.1 Definitions of an Abstract Process 59
2.2.2 Execution Mode 62

2.2.3 Address Space 63

2.2.4 Process Context 65

2.2.5 Process Descriptor 66

2.2.6 Process Control 67

2.2.7 Variations of Process 70
Parallelism Issues 71

2.3.1 Homogeneity in Processes 72

2.3.2 Static versus Dynamic Parallelism 74
2.3.3 Process Grouping 75

234 Allocation Issues 76
Interaction/Communication Issues 77
2.4.1 Interaction Operations 77

2.4.2 Interaction Modes 80

2.4.3 Interaction Patterns 82

2.4.4 Cooperative versus Competitive Interactions 84
Semantic Issues in Parallel Programs 85
2.5.1 Program Termination 85

2.5.2 Determinacy of Programs 86
Bibliographic Notes and Problems 87

Chapter 3 Performance Metrics and Benchmarks

31

32

33

34

35

3.6

3.7

System and Application Benchmarks 91
3.1.1 Micro Benchmarks 92

3.1.2 Parallel Computing Benchmarks 96

3.1.3 Business and TPC Benchmarks 98

3.1.4 SPEC Benchmark Family 100
Performance versus Cost 102

3.2.1 Execution Time and Throughput 103
3.2.2 Utilization and Cost-Effectiveness 104
Basic Performance Metrics 108

3.3.1 Workload and Speed Metrics 108

3.3.2 Caveats in Sequential Performance 111
Performance of Parallel Computers 113

34.1 Computaﬂ'onal Characteristics 113

3.4.2 Parallelism and Interaction Overheads 115
3.4.3 Overhead Quantification 118
Performance of Parallel Programs 126

3.5.1 Performance Metrics 126

3.5.2 Auvailable Parallelism in Benchmarks 131
Scalability and Speedup Analysis 134

3.6.1 Amdahl’s Law: Fixed Problem Size 134
3.6.2 Gustafson’s Law: Fixed Time 136

3.6.3 Sunand Ni’s Law: Memory Bounding 139
3.6.4 Isoperformance Models 144

Bibliographic Notes and Problems 148

91

Table of Contents

IX

PartII Enabling Technologies 153

Chapter 4 Microprocessors as Building Blocks 155

4.1

4.2

4.3

44

4.5

4.6

4.7

System Development Trends 155

4.1.1 Advances in Hardware 156

4.1.2 Advances in Software 159

4.1.3 Advances in Applications 160

Principles of Processor Design 164

4.2.1 Basics of Instruction Pipeline 164

4.2.2 From CISC to RISC and Beyond 169

4.2.3 Architectural Enhancement Approaches 172
Microprocessor Architecture Families 174
4.3.1 Major Architecture Families 174

4.3.2 Superscalar versus Superpipelined Processors 175
4.3.3 Embedded Microprocessors 180

Case Studies of Microprocessors 182

4.4.1 Digital’s Alpha 21164 Microprocessor 182
4.42 Intel Pentium Pro Processor 186
Post-RISC, Multimedia, and VLIW 191

4.5.1 Post-RISC Processor Features 191

4.5.2 Multimedia Extensions 195

4.5.3 The VLIW Architecture 199

The Future of Microprocessors 201

4.6.1 Hardware Trends and Physical Limits 201
4.6.2 Future Workloads and Challenges 203
4.6.3 Future Microprocessor Architectures 204
Bibliographic Notes and Problems 206

Chapter 5 Distributed Memory and Latency Tolerance

5.1

5.2

53

54

Hierarchical Memory Technology 211

5.1.1 Characteristics of Storage Devices 211
5.1.2 Memory Hierarchy Properties 214

5.1.3 Memory Capacity Planning 217

Cache Coherence Protocols 220

5.2.1 Cache Coherency Problem 220

5.2.2 Snoopy Coherency Protocols 222

5.2.3 The MESI Snoopy Protocol 224
Shared-Memory Consistency 228

5.3.1 Memory Event Ordering 228

5.3.2 Memory Consistency Models 231

5.3.3 Relaxed Memory Models 234
Distributed Cache/Memory Architecture 237
5.4.1 NORMA, NUMA, COMA, and DSM Models 237
5.4.2 Directory-Based Coherency Protocol 243
5.4.3 The Stanford Dash Multiprocessor 245
5.4.4 Directory-Based Protocol in Dash 248

1

X Table of Contents

5.5 Latency Tolerance Techniques 250

5.5.1 Latency Avoidance, Reduction, and Hiding 250

5.5.2 Distributed Coherent Caches 253

5.5.3 Data Prefetching Strategies 255

5.5.4 Effects of Relaxed Memory Consistency 257
5.6 Multithreaded Latency Hiding 257

5.6.1 Multithreaded Processor Model 258

5.6.2 Context-Switching Policies 260

5.6.3 Combining Latency Hiding Mechanisms 265

5.7 Bibliographic Notes and Problems 266
Chapter 6 System Interconnects and Gigabit Networks 273

6.1 Basics of Interconnection Network 273
6.1.1 Interconnection Environments 273
6.1.2 Network Components 276
6.1.3 Network Characteristics 277
6.1.4 Network Performance Metrics 280
6.2 Network Topologies and Properties 281
6.2.1 Topological and Functional Properties 281
6.2.2 Routing Schemes and Functions 283
6.2.3 Networking Topologies 286
6.3 Buses, Crossbar, and Multistage Switches 294
6.3.1 Multiprocessor Buses 294
6.3.2 Crossbar Switches 298
6.3.3 Multistage Interconnection Networks 301
6.3.4 Comparison of Switched Interconnects 305
6.4 Gigabit Network Technologies 307
6.4.1 Fiber Channel and FDDIRings 307
6.4.2 Fast Ethernet and Gigabit Ethernet 310
6.4.3 Myrinet for SAN/LAN Construction 313
6.4.4 HiPPI and SuperHiPPI 314
6.5 ATM Switches and Networks 318
6.5.1 ATM Technology 318
6.5.2 ATM Network Interfaces 320
6.5.3 Four Layers of ATM Architecture 321
6.5.4 ATM Internetwork Connectivity 324
6.6 Scalable Coherence Interface 326
6.6.1 SCI Interconnects 327
6.6.2 Implementation Issues 329
6.6.3 SCI Coherence Protocol 332
6.7 Comparison of Network Technologies 334
6.7.1 Standard Networks and Perspectives 334
6.7.2 Network Performance and Applications 335

6.8 Bibliographic Notes and Problems 337

Chapter 7 Threading, Synchronization, and Communication 343
7.1 Software Multithreading 343

Table of Contents

X1

7.2

73

7.4

7.5

7.1.1 The Thread Concept 344

7.1.2 Threads Management 346

7.1.3 Thread Synchronization 348
Synchronization Mechanisms 349

7.2.1 Atomicity versus Mutual Exclusion 349
7.2.2 High-Level Synchronization Constructs 355
7.2.3 Low-Level Synchronization Primitives 360
7.2.4 Fast Locking Mechanisms 364

The TCP/IP Communication Protocol Suite 366
7.3.1 Features of The TCP/IP Suite 367

732 UDP, TCP,andIP 371

7.3.3 The Sockets Interface 375

Fast and Efficient Communication 376

74.1 Key Problems in Communication 377

7.4.2 The Log P Communication Model 384
7.4.3 Low-Level Communications Support 386
7.4.4 Communication Algorithms 396

Bibliographic Notes and Problems 398

Part III Systems Architecture 403

Chapter 8 Symmetric and CC-NUMA Multiprocessors

8.1

82

83

84

85

8.6
8.7

SMP and CC-NUMA Technology 407

8.1.1 Multiprocessor Architecture 407

8.1.2 Commercial SMP Servers 412

8.1.3 The Intel SHV Server Board 413

Sun Ultra Enterprise 10000 System 416
8.2.1 The Ultra E-10000 Architecture 416
8.2.2 System Board Architecture 418

8.2.3 Scalability and Availability Support 418
8.2.4 Dynamic Domains and Performance 420
HP/Convex Exemplar X-Class 421

8.3.1 The Exemplar X System Architecture 421
8.3.2 Exemplar Software Environment 424
The Sequent NUMA-Q 2000 425

8.4.1 The NUMA-Q 2000 Architecture 426
8.4.2 Software Environment of NUMA-Q 430
8.4.3 Performance of the NUMA-Q 431

The SGI/Cray Origin 2000 Superserver 434
8.5.1 Design Goals of Origin 2000 Series 434
8.5.2 The Origin 2000 Architecture 435

8.5.3 The Cellular IRIX Environment 443
8.5.4 Performance of the Origin 2000 447
Comparison of CC-NUMA Architectures 447

Bibliographic Notes and Problems 451

407

