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1.1

Optical Radiation and Light

Designation of
Wavelength range Radiation
100 nm — 280 nm Uv -C
280nm - 31Snm | UV-B
315 nm - 380 nm UvV - A
380 nm — 440 nm Light — violet
440 nm — 495 nm Light — blue
495 nm —~ 558 nm Light — green
580 nm — 640 nm | Light — yellow
640 nm — 750 nm | Light — red '
750 nm — 1 400 nm IR-A ,
14 pm—  3pm | IR—B
3 um-—-1000um | IR -C ‘

Table 1.1

Subdivision of the optical radiation
spectrum according to DIN 5031

1
Physics of Optical Radiation

1.1.1
Basic Definitions

Optical radiation is understood to mean
electromagnetic radiation in the range of
wavelengths between 10 nm and 1 mm. This
range is illustrated in Figure 1.1 as part of
the whole electromagnetic spectrum. The
optical radiation band consists of the sub-
ranges UV (Ultraviolet), visible radiation
(Light) and IR (infra-red). The transitions -
between the individual ranges are fluid.
According to DIN 5031, Part 7, the UV
range starts at 100 nm. The UV and’'IR
ranges are divided into sub-groups A, B and
C and the visible range into the relevant
colours, as shown in Table 1.1. The
expression “Light” only relates to the
optical radiation perceived and evaluated
by the human eye.

1.1.2
The quantum nature of radiation

Until the beginning of this century,
electromagnetic radiation, including optical
radiation, was considered to be continuous
trains of waves.
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Figure 1.1

Electromagnetic Radiation Spectrum




Physical investigations and considerdations
on the phenomena of the external photo-
electric effect led, however, to the
recognition of the fact that radiation does
not interact with matter continuously, but
in small portions which cannot be further
sub-divided, the so-called quanta. Such a
radiation quantum, also called a photon,
corresponds to a certain amount of energy,
dependent on the frequency of the radiation,
which has 2 minimum value for any given
frequency. For the relationship between

the energy and the frequency of a quantum
of radiation, the equation
=h.v (1.1)

2

Wen

applies, where h = 662 . 1073 watt. sac
,(W.sz) Planck’s constant and ¥ = the
frequency of the radiation in Hz.

In the optical range, the amounts of energy
in the individual quanta are so small that
the quantum structure of such radiation is
beyond the limits of most conventional
measurement methods and observations.

All quanta arise from changes in energy in
atoms and molecules. The radiations which
are of importance for opto-electronics have
their origin in the outer electron orbits of
the atoms. In the normal state, each electron
is in the physically lowest possible level,
where it has a certain amount of potential
and kinetic energy. By excitation processes,
e.g., by the introduction of electrical,
thermal or radiant energy, electrons can
temporarily leave their basic state and
_occupy a higher level with a correspondingly
higher energy content. This state is not
stable; therefore after a very short time

the excited electrons fall back to the basic
state, while emitting a quantum of radiation,
the frequency of which, as shown in
formula (1.1), corresponds to the energy
difference between the two levels.

1.1.3
The dualism of waves and particles

If the nature of electromagnetic radiation is

investigated, then dependent upon the
experimental conditions, sometimes it
appears to behave like a wave, but at other
times like a stream of particles (corpuscles).
Therefore, when describing radiation, these
two aspects are considered.

Electromagnetic radiation can be demon-
strated to exhibit typical wave characteris-
tics such as interference,‘refraction and
polarisation, which can obviously be
interpreted by the periodic nature of a
wave-train. In theoretical physics, the
propagation of electromagnetic radiation is
derived from a wave process with the aid of
Maxwell’s equations.

From the corpuscular viewpoint, radiation

takes on the character of a stream of
particles. Each photon is then considered
as an elementary particle with zero
stationary mass, moving at the speed of
light. The shorter the wavelength of
radiation, the more prominent does the
corpuscular nature become in comparison
with the wave character. In the range of
gamma rays, therefore, their particle nature
becomes the predominant characteristic.

1.1.4
Wavelength and propagation speed

The speed of propagation of light in vacuo,
and also approximately in the atmosphere,
is ¢ = 2998 . 108 m/s.

For practical calculations, the rounded
value of ¢ = 3. 10% m/s is adequate. The
relationship between the three fundamental
values, speed of light c,, wavelength X and
frequency V is given by

Co = ALY (1.2)
By combining the equations (1.1) and (1.2),
the wavelength of a photon can be
calcilated, if the photon energy Wpy, is
known.
.n

A=2

Wph (1.3)




The photon energy is usually stated in
electron volts (eV). One electron volt corres-
ponds to the kinetic energy received by an
electron through acceleration in an electric .
field with a potential difference of one volt.

For the conversion of eV into the SI unit
Wsorl:

1eV =1.602.10"1° Watt secs (Ws)
1 eV = 1.602.107° Joules (J)

The equation (1.3) can be simpliﬁed asa
numerical equation, if the numerical values
of the natural constants and the conversion
factor for eV into Ws are inserted:

3.10%. 6-62.107%
Wpp - 16 . 107"°

Where A is measured in 4m
C  is measured in ms
and Wpy, is measured in eV

This results in the numerical equation

124
Wph (1.4)

From these equations Iit can be seen, that
the greater the energy of the photons, the
shorter does the wavelength of the electro-
magnetic wave becomes.

1.2
Radiation and Luminescence Phenomena

1.2.1
Atomic and Band Model

For the physical explanation of radiation
phenomena and also of the photoemission
- which is described later, an understanding
of the atom and band models is necessary
The atomic model describes, in a simplified
representation, the spatial structure of an
atom, while the band model gives infor-
mation on the energy content of electrons,

both'in single atoms and also in

. combinations of several atoms, e.g., in a

crystal lattice. In Figure 1.2, the atomic
model for germanium is shown as an
example.

Figure 1.2
Model of germaniu'  1tom

Recent work has shown the atom to be
extremely complex but for simplicity it can -
be considered to be composed of negatively
charged electrons, orbiting around a

charged nucleus. The atomic nucleus itself
consists of positively charged protons bound
together with neutral particles called
neutrons. The number of protons deter-
mines which chemical element is concerned.
In an electrically neutral atom, the number
of electrons and protons is equal. The
electrons are located in specific orbits
around the nucleus, and these are grouped
into so-called shells; in Figure 1.2 these

_ shells are shown with their normal designa-

tions K, L, M and N.

Nearly all atomic nuclei with more than 82
protons and a few smaller nuclei are unstable
and disintegrate, through a process known as
as nuclear fission, spontaneously over
varying periods of time. Through this



fission process the basic elements are
converted into others. Radium, for example,
disintegrates to form the stable element
Lead, with the emission of radiation from
the nucleus which is characterised into w,
, and the short-wave y-rays. While this
radiation originates in the nucleus of the
atom, the emission and absorption of
optical radiation tdkes place within the
cloud of electrons surrounding the nucleus.

The energy state of the electrons is described
by four quantum numbers, The quantum
numbers are designated by small letters:

1
n = Principal quantum number (associated
with a particular shell)

2

1 = Secondary quantum number (sub-
group is the shell and shape of the electron
orbit)

3

m = Magnetic quantum number (location
in space of the angular momentum vector
of the orbit)

4

s = Spin quantum number (angular
momentum of the electron itself about an
imaginary axis)

All electrons associated with an atom or a
molecule differ from one another in at least
one quantum number. This principle of
exclusion of two identical electron states, the
so-called Pauli exclusion principle,
determines the maximum number of
electrons within a given shell, an inter-
mediate shell or an energy level. If all the
electrons of an atom are at their lowest
possible energy level, that is, in the inner-
most shells, then the atom is in its basic
state.

With the single atom, the electrons adopt
exactly defin;d, discrete energy states. In a

crystal, on the other hand, because of the
interaction of the electrons belonging to the
different atomic nuclei, the previous
discrete bands divide into ranges, the energy
bands. These ranges are illustrated in the
so-called band model, while in semi-
conductor technology one restricts oneself
to the valency band and the conduction -
band, which are of interest here, with a
“forbidden gap or band™ between them.
Figure 1.3 shows a few examples.

In the cases of metals and insulators, the
valency band is occupied by electrons, which
are fixed in their places. Thus, no movable
electrical charges are possible within the
valency band. In the case of insulators,

the conduction band is unoccupied, -

ie., it is free of charge carriers, while in the
case of a metal each atom gives up one or
more electrons into this band. These
electrons are then very loosely bound to 2
given atomic nucleus and are therefore free
to move in the crystat lattice. Their number
and mobility in the conduction band
determines the conductivity of the substance.
In contrast to the metals, which are known
to be good electrical conductors, the
semiconductor, at low temperatures has
almost all electrons in the valency band, so

that it is then aimost an insulator. With

rising temperature, more and more covalent
bonds’ break apart, since through the

. external supply of energy in the form of

heat, a certain number of electrons can
leave the valency band and move up into
the conduction band. This is possible
without.difficulty with semiconductors,
since the width of the forbidden band is
very narrow in comparison with that of
insulators. A hole, is then produced in the
valency band and behaves like a positively
charged particle which can migrate within
the band. The presence of holes in the
valency band and electrons in the
conduciion band causes the conductivity of
semiconductor materials to lie somewhere
between those of metals and insulators. The
width of the forbidden band, which is

] Chemical hond between the atoms of the crystal lattice
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Figure 1.3
Energy bands of a few materials

generally stated in eV, determines the
necessary minimum energy, which must be
supplied to an electron, in order to raise it

from the valency band to the conduction band.

In the preparation of semiconductor
devices “impurities” are intentionally added
in small, defined quantities to the undoped
or “intrinsic” semiconductor material.
Silicon and germanium are two quadrivalent
or group 1V semiconductors which are
commonly used for producing useful
electrical devices. However, semiconducting
compound materials such as gallium
arsenide can also have characteristics which
can be readily utilised. The conductivity of
the basic material is modified as required
by adding either trivalent (group III) atoms,
so called “acceptors,” to give P-material or
pentavalent (group V) atoms, so called
“donors,” to give N-material. Since the
donor level is close, in energy, to the
conduction band, a very small amount of
energy is sufficient to raise an electron of
the donor substance into the conduction
band. Therefore, the pentavalent donors,
with one electron which is only loosely
bound to the atom, increase the basic
conductivity. The acceptors in turn attract
either loosely bound or free electrons, in
order to fill the gaps (holes) caused by their
addition. The acceptor level is close, in
energy, to the valency band.

The conductivity of the doped semiconduc-
tor can be altered by the presence of an
external energy source.

The excitation energy can be supplied in the
form of heat, by photons (light energy) or
by the application of an external voltage
(electrical energy). If the excitation takes
place through photons (irradiation), the
term “‘internal photoeffect” is used. If an
excited electron is in the conduction band,
this state of excitation is not stable. Aftera
certain time, the electron falls back again
and recombines with a hole. Electromagnetic
radiation, corresponding to the energy
difference liberated, can then be emitied.

Under certain conditions, electrons can be
released completely, by energetic excitation,
from their parent substance, for example,
from alxali metals or certain oxides, and

can move freely in space. This process is
called emission. If this emission is caused by
light quanta, then the term “external
photo-effect” is also used.

On the basis of our knowledge of the atomic
model, we know that excited electrons are
located in orbits with higher energy

levels and that on their return to the basic
state, electromagnetic radiation can be
emitted. A distinction can be made between
three kinds of radistion:

o

Radiation, which occurs through the return
of the electron to the basic state by direct
recombination.

b
Fluorescence radiation.



c
Phosphorescence radiation.

From the band model, a distinction is
made between four kinds of recombination:

1 .
Recombination between free electrons of
the conduction band and free holes of the
valency band. o

2

Recombination between free electrons of the
conduction band and bonded holes of the
acceptor level.

3

Recombination between electrons of the
donor level and free holes of the valency
band.

4

Recombination between electrons of the
donor level and bonded holes of the acceptor
level.

The kind of recombination is determined by
the characteristics of the semiconductor
and its doping.

1.2.2
Luminescence, Fluorescence,
Phosphoresence

For all cases of light emission, which do not
have their cause solely in the temperature
of the material, E. Wiedemann introduced
the term *‘Luminescence” as long ago

as 1889. This is understood to mean
radiation phenomena in the visible range. In
a broader sense, it is also understood, in the
literature, to mean the optical radiation
range. Depending on the kind of excitation
energy, which causes the luminescence
phenomenon, distinctions are made, among
others, between: '

a .
Thermoluminescence:
Excitation by raising the temperature of

crystals, in which electrons have been raised
in energy by absorbed light do not return at
once to the basic state, with emission of

the luminescent light, but are stored in
enérgy levels, which aré somewhat below the
starting energy needed for luminescence.

b

Bioluminescence:

Is part of chemiluminescence. It occurs in
nature, e.g., in glow-worms and fireflies.

c
Chemiluminescence:

Occurs through certain chemical reactions,
in which energy is liberated and emitted as
radiation, e.g., phosphorus glows through
oxidation in the air.

d

Cathodoluminescence: .

Occurs through accelerated fast electrons,
which, on collision with atoms, excite the
corresponding valency electrons and cause
the emission of radiation or light. Typical
examples are television and. oscilloscope
tubes. ’

e
A.C. Electroluminescence: )

Obtains the excitation energy through an
electric field, e.g., in the dielectric of a
capacitor (Destriau effect). The luminescent.
capacitor contains the thin luminescent
dielectric and also a transparent electrode.

f

Photoluminescence:

Is caused by fluorescerice. The exciting
radiation, for example, UV, is more
energetic than the radiation emitted in the
visible range.

g

Radioluminescence:

Obtains the excitation energy through
X-rays or gamma rays.

h
Betaluminescence:
The excitation energy is beta radiation.



-

Gystal luminescence:
Is produced by the deformation of certain
crystals.

k

Triboluminescence;

Occurs through the supply of mechanical
energy with certain crystals. For example,
quartz or zinc sheets glow with a faint .
light through rubbing, drilling, scratching
etc. )

As well as classification by the excitation
energy, luminescence phenomena are aiso
classified according to the way in which
they occur:

a
Fluorescence:
With this type of radiation, the excited
electrons fall back, in one or more steps,
within about 10~® seconds, to the basic
state and light is emitted. In this process,
the excitation energy generally has a higher

quantum energy than the radiation emitted.

Fluorescent substances act, to a certain
extent, as frequency converters. In contrast
to phosphorescence, fluorescence only
gives an emission, as long as an external
supply (e.g., radiation) is maintained.

b

Phosphorescence:

A radiation, with which the excited
electrons at first remain in a metastable
state. This metastable state occurs under
the influence of activators (foreign
metallic atoms in small concentrations in
the basic material), while the electrons fall
back into the basic state after a dwell time
of varying duration. Phosphorescent
materials radiate both-during the presence
of the excitation energy and also after this
excitation energy is $witched off,
according to the after-glow time.

1.2.3
Luminescence phenomena in
semiconductors, Injection luminescence®

In a semiconductor diode operated in the
forward direction, the junction region

is enrichied with electrons and holes. These
two kinds of charge carrier recombine with
one another, and at every recombination an
electron is transferred from the conduction
band into the valency band. At the same
time it gives up the amount of energy, which
corresponds to the difference in energy
between the conduction band and the
valency band.

Depending on the given conditions, the
energy thus liberated can be converted into
radiant energy (photons) or into heat
(lattice vibrations of the crystal, also called
phonons). If a photon conversion takes
place in the semiconductor materials
known up to the present day, radiation in
the range from infrared to the visible range
appears. Since they are caused injection

of charge carriers into a junction region,
radiation phenomena of this kind are
called injection luminescence. The
probability of photon radiation taking
place depends to a great extend on whether
the material used is a ““direct” oran
“indirect” semiconductor.

Both on the basis of the wave-particle
dualism and also according to the theory
of wave mechanics, a wave function can be
ascribed to a particle of matter. In this
process, a moving particle, e.g., either an

" electron or a hole, can be treated mathe-

matically like a wave. From this wave
function, a term which is important for
semiconductor considerations can be
derived by quantum mechanics which is

the wave-number vector K. This value, which
is also known as the propagation vector, is
proporticnal to the momentum (p = m.v) of
the moving charge-carrier, as long as the.
particle can be considered to be “free”. In
this case it can also be proved that the
energy W of the particle is 2 quadratic
function of K. In a crystal with its periodic
three-dimensional lattice the conditions

are more complicated, through the.
interactions of the lattice components

with the moving charge carriers. Here, the



function W = r(R‘) is no longer a quadratic
functioh, as before, but the curve which is
now produced can contain several maxima
and minima. Also, the shape of the curve
depends on the geometrical crystal direction,
in relation to the major crystal axes, in
which the “‘particle wave” is moving. A
few examples are shown in Figure 1.4. In
these, the holes always have an energy
maximum at K = 0, while the curve shapes
differ for electrons.

The probability that an electron will remain
is always highest, where its energy becomes
a minimum, while the holes endeavour to
reach a level with the maximum possible
energy in the valency band. At the points,
where a minimum of electron energy is
directly opposite a maximum of hole
energy, the electron can fill the hole, ina
recombination, without a change of the
wave-number vector K or of its momentum
Semiconductors, where this recombination
is possible, are caLled “direct semiconduc-
tors”. If the electron energy minimum and
the hole energy maximum are not directly
opposite, then :: recombination can only
take place with a simultaneous change of

" In this case, we speak of an “‘indirect’
semiconductor”. ,

The physical law of the conservation of
momentum in a self-contained system
requires, that when a light quantum is
either absorbed or emitted from a semi-
conductor, the momentum of the light
quantum causes a corresponding change

in momentum in the crystal system. If the
momentum values are calculated, both of
a moving charge carrier and of a light ’
quantum in the wavelength range which is
of interest, it is found, that the momentum -
of the light quantum is negligibly small in
comparison with that of the charge carrier,
so that in practice, only the changes of
momentum of the charge carriers need to
be taken into account, even thoﬁgh light

_ quanta are involved in the process.

Electron transitions in direct semiconductors
take place without significant change of
momentum, so with recombinations in

these materials the probability of the
emission of radiation is high. Things are
different with indirect semiconductors.

In the case of a recombination, here, as well
as the energy given up, a change in
momentum must also be taken into account.
Under these conditions, the production of
phonons is again probable, since as well as
the energy, these also take up a momentum

‘o
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Figure 1.4

Band diagrams in the energy-momentum graph. The abbreviations denote LE = Conduction

electron, DE = hole, V/ = Energy,

= wave num

ber vector, L1 = Conduction band, V1, V2,

V3 = Valency bands, <100}, U 11)= Miller’s indices!

| Miller’s indices are the reciprocal values of the points of intersection of the crystal axes

with cut surface.
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