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Preface

The goal of these lectures is to describe the essence of the orbit method
for non-experts and to attract the younger generation of mathematicians
to some old and still unsolved problems in representation theory where [
believe the orbit method could help.

It is said that to become a scientist is the same as to catch a train at full
speed. Indeed, while you are learning well-known facts and theories, many
new important achievements happen. So, you are always behind the present
state of the science. The only way to overcome this obstacle is to “jump”,
that is, to learn very quickly and thoroughly some relatively small domain,
and have only a general idea about all the rest.

So, in my exposition I deliberately skip many details that are not ab-
solutely necessary for understanding the main facts and ideas. The most
persistent readers can try to reconstruct these details using other sources.
I hope, however, that for the majority of users the book will be sufficiently
self-contained.

The level of exposition is different in different chapters so that both
experts and beginners can find something interesting and useful for them.
Some of this material is contained in my book [Ki2] and in the surveys
[Ki5|, [Ki6], and [Ki9]. But a systematic and reasonably self-contained
exposition of the orbit method is given here for the first time.

I wrote this book simultaneously in English and in Russian. For several
reasons the English edition appears later than the Russian one and differs
from it in the organization of material.

Sergei Gelfand was the initiator of the publication of this book and
pushed me hard to finish it in time.
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xvi Preface

Craig Jackson read the English version of the book and made many
useful corrections and remarks.

The final part of the work on the book was done during my visits to the
Institut des Hautes Etudes Scientifiques (Bures-sur-Yvette, France) and the
Max Planck Institute of Mathematics (Bonn, Germany). I am very grateful
to both institutions for their hospitality.

In conclusion I want to thank my teachers, friends, colleagues, and es-
pecially my students, from whom I learned so much.



Introduction

The idea behind the orbit method is to unite harmonic analysis with sym-
plectic geometry. This can be considered as a part of the more general idea
of the unification of mathematics and physics.

In fact, this is a post factum formulation. Historically, the orbit method
was proposed in [Kil] for the description of the unitary dual (i.e. the set
of equivalence classes of unitary irreducible representations) of nilpotent
Lie groups. It turned out that the method not only solves this problem
but also gives simple and visual solutions to all other principal questions
in representation theory: topological structure of the unitary dual, the ex-
plicit description of the restriction and induction functors, the formulae for
generalized and infinitesimal characters, the computation of the Plancherel
measure, etc.

Moreover, the answers make sense for general Lie groups and even be-
yond, although sometimes with more or less evident corrections. I already
mentioned in [Kil] the possible applications of the orbit method to other
types of Lie groups, but the realization of this program has taken a long
time and is still not accomplished despite the efforts of many authors.

I cannot mention here all those who contributed to the development
of the orbit method, nor give a complete bibliography: Mathematical Re-
views now contains hundreds of papers where coadjoint orbits are mentioned
and thousands of papers on geometric quantization (which is the physical
counterpart of the orbit method). But I certainly ought to mention the
outstanding role of Bertram Kostant and Michel Duflo.

As usual, the faults of the method are the continuations of its advantages.
I quote briefly the most important ones.

xvii



xviii

Introduction

MERITS VERSUS DEMERITS

1. Universality: the method works
for Lie groups of any type

over any field.

2. The rules are visual,
and are easy to memorize

and illustrate by a picture.

3. The method explains
some facts which otherwise

look mysterious.

4. It provides a great amount of
symplectic manifolds and
Poisson commuting families

of functions.

5. The method introduces new
fundamental notions: coadjoint

orbit and moment map.

. The recipes are not accurately

and precisely developed.

. Sometimes they are wrong

and need corrections

or modifications.

. It could be difficult

to transform this explanation

into a rigorous proof.

. Most of the completely integrable

dynamical systems were
discovered earlier

by other methods.

. The description of coadjoint

orbits and their structures

is sometimes not an easy problem.

For the reader’s convenience we formulate the ideology of the orbit
method here in the form of a “User’s Guide” where practical instructions
are given as to how to get answers to ten basic questions in representation

theory.

These simple rules are applicable literally for all connected and simply
connected nilpotent groups. For groups of general type we formulate the
“ten amendments” to these rules in the main text of the book.

Throughout the User’s Guide we use the following notation:

G — a connected simply connected Lie group;

H C G - a closed connected subgroup;

g, b — Lie algebras of G, H, respectively;

g*, b* — the dual spaces to g, b, respectively;

p: g* — b* — the canonical projection;

o — the canonical 2-form (symplectic structure) on a coadjoint orbit;

7o — the unirrep of G' corresponding to the orbit Q C g*;
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pr,H — the 1-dimensional unirrep of H given by pp pr(exp X) = e2miF X)),

P4 — the G-invariant polynomial on g* related to A € Z(g), the center
of U(g).

For other notation, when it is not self-explanatory, the reader must con-
sult the Index and look for definitions given in the main text or in the
Appendices.

USER’S GUIDE

What you want

1. Describe the unitary dual G

as a topological space.

2. Construct the unirrep mq

*

associated to the orbit Q € g*.

3. Describe the spectrum

of Res § mq.

4. Describe the spectrum

of Ind § 7.

5. Describe the spectrum of

the tensor product mg, ® mq,-

6. Compute the generalized
character of 7q.

7. Compute the infinitesimal
character of wq.

8. What is the relation between

mo and 7_q?

9. Find the functional

dimension of mq.

What you have to do
Take the space O(G) of coadjoint
orbits with the quotient topology.

Choose a point F' € (), take
a subalgebra § of maximal

dimension subordinate to F,

and put mq = Ind ngH.

Take the projection p(£2) and
split it into H-orbits.

Take the G-saturation of p~!(w)
and split it into G-orbits.

Take the arithmetic sum €27 + 29
and split it into orbits.
tr mo(exp X) =

/ 2mi(F, X)+o or
(xa, ») /
Q

For A € Z(g) take the value of
P4 € Pol(g*)€ on the orbit Q.

They are contragredient (dual)

representations.

1
It is equal to 3 dim 2.



Introduction

10. Compute the Plancherel measure The measure on O(G) arising when

4 on . the Lebesgue measure on g*

is decomposed into canonical

measures on coadjoint orbits.

These short instructions are developed in Chapter 3 and illustrated in
the worked-out examples in the main text.

Finally, a technical remark. I am using the standard sign [0 to signal
the end of a proof (or the absence of proof). I also use less standard notation:

& -
Y -
& -
o

ing.

the end of an example;
the end of a remark;
the end of an exercise;

the end of a warning about a possible mistake or misunderstand-

The most difficult exercises and parts of the text are marked by an
asterisk (*).
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