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Preface

In the past decade, there have been important applications of number theory
to network communications and computation complexity through explicit construc-
tions of the so-called Ramanujan graphs. These are regular graphs whose nontrivial
eigenvalues are small. (See Chapter 9 for more details.) All the known constructions
are number-theoretic: one based on the estimates of Fourier coefficients of modular
forms, namely, the former Ramanujan-Petersson conjecture established by Deligne,
and one based on the estimates of certain character sums, which can be derived
as consequences of the Riemann hypothesis for curves over finite fields proved by
Weil. The common thread of both theoretic backgrounds is the celebrated Weil
conjectures settled by Deligne in 1973. This is our starting point. The purpose
of this book is to explain in detail the material in number theory involved in the
applications discussed above, with the ultimate goal of giving the explicit construc-
tions. In fact, this simple-minded goal serves as the guideline of the selection and
the exposition of the material in this book. The reader will be amazed to find, as
we take the journey along this line, how far and deep in mathematics we have gone
through when we arrive at the destination.

The style of this book is semi-formal. It is written for advanced undergraduate
students, graduate students and people interested in number theory and its ap-
plications. While it is desirable that the reader has some background in algebra
and basic number theory, I try to make this book as self-contained as possible.
More emphasis is given on basic concepts and results, while ¢omplicated proofs of
hard theorems are only sketched in order to give the reader some flavor and idea
of the approach. Occasionally statements without proofs are asserted for the sake
of completeness and exposition. The reader can find the missing details and many
untreated topics from the references listed at the end of each chapter. Exercises are
scattered throughout the text, and sometimes used to prove theorems.
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The material in this book is organized as follows. After reviewing the basic
facts about finite fields in Chapter 1, we discuss in Chapter 2 the celebrated Weil
conjectures on zeta functions attached to projective varieties over finite fields. We’ll
see how Weil arrived at his conjectures from computing the number of solutions of an
equation over extensions of a finite field, and the ideas involved in the proof of these
conjectures will also be sketched. Local and global fields are introduced and studied
in Chapter 3. In this book adélic language is employed for global fields. Chapters 4
and 5 concern function fields, where the Riemann-Roch theorem is proved and the
analytic behaviour of the zeta and L-functions attached to idéle class characters
is shown. By appealing to some results in class field theory (which we review
briefly) and combining the results on L-functions and the Riemann hypothesis for
curves over finite fields established in Chapters 5 and 2, we derive in Chapter 6
many character sum estimates, some of which will be used to construct Ramanujan
graphs in Chapter 9. Chapter 7 deals with classical modular forms, which are
a very rich subject, deeply intertwined with many branches of mathematics. We
give a summary of the development of the theory, including Hecke operators, L-
functions, converse theorems, and the theory of newforms. We also discuss main
conjectures and consequences in this area, some of which are still outstanding and
would have far-reaching consequences in number theory. One such example is the
Taniyama-Shimura conjecture, which is recently established for semistable elliptic
curves by Wiles and Taylor and Wiles. This result together with earlier works of
Frey and Ribet implies the truth of Fermat’s Last Theorem! Automorphic forms and
representations are discussed in Chapter 8. There we give an adélic interpretation
of the classical modular forms, which naturally leads to the adelic definition of
automorphic forms and representations for GL(2). Then we survey the Jacquet-
Langlands theory of local and global representation theory for GL(2) and quaternion
groups. In particular, we show how the local representations of these groups are
determined by the attached L- and e- factors, from which correspondences of local
representations of these two groups follow immediately. Finally in chapter 9 we see
the interplay between number theory and combinatorics. On one hand, we apply
what we have learned to give explicit constructions of Ramanujan graphs; on the
other hand, we obtain some information on the distribution of eigenvalues of a Hecke
operator from considering the limit of the measures attached to certain family of
graphs arising from quaternion groups.

This book grew out of the one year graduate course in number theory I gave at
the National Taiwan University during the year 1992-93. An outline of the material
was given as a special one month summer course for graduate students in Sichuan
University in the summer of 1992. I would like to thank both universities for their
hospitality and support. The positive feedback from the audience has been a great
source of encouragement to me. The main part of this book was written while I
was spending my sabbatical year, 1992-93, visiting the National Taiwan University.
Special thanks are due to the National Science Council in Taiwan and the National
Security Agency in USA for their financial support, and to Ms. Shirley Wang for
her superb typing job. The final part of the book was completed in the spring of
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1995 while I was visiting the Mathematical Sciences Research Institute at Berkeley,
California, to which I would like to express my sincere gratitude for its hospitality
and support.

Wen-Ching Winnie Li
Berkeley, California
Spring, 1995
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CHAPTER 1

Finite Fields

§1 The structure of a finite field

A finite field k is a finite commutative ring in which all nonzero elements have
multiplicative inverse. Its characteristic, i.e., the smallest positive integer n such
that 1+ 1+ --- + 1(n times) = 0, is a prime number p. Thus it contains Z/pZ
as a subfield, and it is a finite-dimensional vector space over Z/pZ. Its cardinality
|k| = g = p? is a power of p, with exponent being the dimension of k over Z /pZ.
This also indicates that the additive group of k is a direct sum of d copies of cyclic
group of order p.

Next consider the multiplicative group k*, it has order ¢ — 1. So every nonzero
element in k satisfies

91 =1,

and the order of an element in k* divides g— 1. For each positive divisor r of ¢— 1,
let

r) = {z € k* : the order of z is r}.

Then k> is a disjoint union of f(r) as r runs through all positive divisors of ¢ — 1.
We want to show that (g — 1) is nonempty, in other words,

Theorem 1. k* is cyclic of orderq— 1.
To prove this theorem, observe first the general fact :

Lemma 1. A polynomial f(z) of degree n over a field F has at most n distinct
roots in F.

Proof. Let a be a root of f(z) in F. Then f(a) =0, and
f(z) = f(z) - f(@) = (z — a)g(z)

for a polynomial g(z) of degree n — 1 over F. If B is a root of f(z) in F different
from a, then 0 = f(8) = (8 —a)f(B) and 8 — a # 0 imply g(8) = 0. By induction,
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g(z) has at most n — 1 distinct roots in F, so f(z) has at most n distinct roots in
F. o

It follows from Lemma 1 that if {(r) is nonempty, say, contains y, then y gener-
ates a cyclic subgroup of order r consisting of all solutions of z" = 1 in k and Q(r)
is the set of generators in the cyclic group < y >. That is, Q(r) = {y*: 1 <i<
r, ged(i,r) = 1}. This shows that the cardinality of Q(r) is either 0 or ¢(r), where
@(n) is the Euler function which denotes the number of integers between 1 and n
which are prime to n. We have

kX|=g-1= Y @)<Y é(r)
rlg—1 rlg-1
To continue, we note another fact.
Lemma 2. For every positive integer m, E,Im é(r) =m.
Granting Lemma 2, we conclude immediately from the above inequality that

|Q(r)] = ¢(r) for all r | g— 1, and in particular, |(r)| = ¢(r) > 1, and the theorem
follows.

To show Lemma 2, we partition the set {1,'2, .-+ ,m} as a disjoint union of
. : m
Y(r)={1 <i<m:gediim) = )
as r runs through all positive divisors of m. For i € Y(r), write i = ;2. Then

1 < j < r and ged(i,m) = ged(j },m) = T ged(j,r) = T implies ged(j,r) = 1.
Hence |Y(r)| = ¢(r). This proves

m= S I¥(r)| =3 6(r).

rim rim

Some immediate consequences of the above arguments are

Corollary 1. The field k consists of the solutions to 27 — z = 0 in an algebraic
closure of Z[pZ containing k.

Corollary 2. There is an element £ € k such that k = (Z/pZ)(€), that is, k is a
simple extension of the prime field Z /pZ.

Corollary 8. For each positive divisor r of ¢ — 1(= |k*|) there are ezactly ¢(r)
elements in k> of orderr.
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Corollary 4. Given a positive integer n, there is a unique field extension of Z/pZ
of degree n within an algebraic closure of Z/pZ.

Proof. Corollary 1 shows that a degree n extension of Z/pZ, if exists, is unique,
namely, it should consist of the roots of z*" = z in the algebraic closure. On the
other hand, one checks easily that if a, 8 are solutions to zP" = z, then so are a—f3
and af~!(for B # 0), so the solutions to z*" = z do form a field. o

Corollary 5. Given any positive integer n, there erists an irreducible polynomial
of degree n over Z/pZ.

Proof. Let k be a finite field of degree n over Z/pZ. Then k = (Z/pZ)(£) by
Corollary 2. Let f(z) be the irreducible polynomial of £ over Z/pZ. Then k =
(Z/pZ)(€) = (Z/pZ)[¢] = (Z/pZ)(=]/(f(=)) shows deg f = [k : Z/pZ] = n. o

§2 Extensions of a finite field

Let k be a finite field with g elements and let k, be a degree n field extension of
k. If k,, is an intermediate field of degree m over k, then k,, is a vector space over
km, so m divides n. Conversely, any degree m extension of k within an algebraic
closure of k,, with m | n is a subfield of k,, by Corollary 1.

For an extension E of a field F, denote by Gal( E/F) the group of automorphisms
of E leaving F elementwise fixed. Consider the map o on k,, which sends z to z9.
From

o(z+y) =(z+y)! =27 +y* =0(z) + o(y)
and
o(zy) = (zy)? = 2%? = o(z)o(y)
we see that o is an endomorphism. Further, o(z) = 2% = 1 together with z9" =z
implies z = 1. Soois 1—1. As k,, is finite, we have shown that o is an automorphism

of k,. Finally, o(z) = 27 = z for z € k, this shows that o € Gal(k,/k), called the
Frobenius automorphism. Let r be the order of 0. Then

o"(z) =27 =z for all z€k,

implies r = n since k) is cyclic of order g" — 1. Hence Gal(k,/k) contains the cyclic
group < o > of order n. To determine Gal(k,/k) we notice following facts.

Each automorphism in Gal(E/F) can be viewed as an F-linear transformation
on E.
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Lemma 3. The automorphisms in Gal(E/F) are E-linearly independent F -linear
transformations.

Proof. Suppose otherwise. Let a7y + - -+ + @,7» = 0 be a shortest nontrivial linear
relation with a,,--- ,a, € EX and 7, ,7, € Gal(E/F). Then r > 2 and 7;
are distinct. Let y € E be such that 7;(y) # 72(y). From Y ._, a;7; = 0 we get
Yoiciaimi(yz) = Y, aimi(y)mi(z) = 0 for all z € k,,, 80 Y0, ai7i(y)i = 0. This
yields another nontrivial relation

Y an)m— () Y eimi =Y 6i(n(y) — n()n =0,
=1 =1 i=2

which is shorter than the relation we started with, a contradiction. O

Lemma 4. Let E be a degree n extension of a field F. Then there are at most n
distinct automorphisms in Gal(E/F).

Proof. Suppose otherwise. Let 71,--- ,7,,, m > n, be distinct automorphisms in

Gal(E/F). Let {vy,--- ,v,} be a basis of E over F. Let (a1, - - ,a,) be a nontrivial
solution in E to the n x m system of linear equations

n(v) 7(vi) - Tm(w1) (11) (0)
Tl(:vn) ‘rm(.v,.) 3'"' 0

Consider z:’;l a;7;. By construction, we have Z:’;x a.-r.—(v,-) =0forj=1,---,n,
hence }"7~ a;7(z) = O for all z € E. In other words, 71, - , Ty, are linearly
dependent over E. This is impossible by Lemma 3. 0

Therefore |Gal(kn/k)| = | < 0 > | = n = [kn : k], which is the maximal possible.
In this case we say that the field k, is Galois over k. We record this in

Theorem 2. The field k,, is Galois over k with Gal(k,/k) cyclic of order n, gen-
erated by the Frobenius automorphism o.

Note that an element z € k,, lies in k if and only if it satisfies 27 = z, in other

words, if and only if it is fixed by the Frobenius automorphism, or equivalently, by
the group Gal(k,/k).

Using G = Gal(kn/k), we define two important maps, called trace and norm,
denoted by Try_ /e and Ni, /i, respectively, from k, to k as follows:

Trg, /ot z+— E {z).= Zcx"(z),

T€G =1

Ni, /e : 2 +— H 7(z) = Ha‘(z).

T€CG =1
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One checks easily that the images of trace and norm maps are in k. It is clear that
Trg, /& is a homomorphism from the additive group k, to the additive group k, and
Nk, /& is a homomorphism from kY to k*. Next we study their images.

Theorem 3. (Hilbert Theorem 90) The norm map Ny_/x from kX to k* is surjec-
tive with the kernel consisting of z/o(z), = € k).

Proof. Since Ny_jx(0(z)) = Y0, 01 (z) = 21, o(x) = Ny, /x(2), 80 z/0(z) lies
in the kernel of the norm map for all z € kYX. Further, z/o(z) = y/o(y) if and
only if zy~! € kX, hence the elements z/o(z) with z € kX form a subgroup of
kX of order (g™ — 1)/(g — 1). Thus it is equal to the whole kernel if and only
if the norm map is surjective. To see the surjectiveness of N /i, observe that
N ju(z) = [Ih,0'(z) = z- 29 29 ... 20" = pltetd’ T o p(@™-1)/(g-1)
for all z € k). Thus any generator z of k) has Ni_/i(2) of order ¢ — 1. a

Theorem 4. (Hilbert Theorem 90) The trace map Try, ) from k,, to k is surjective
with the kernel consisting of z — o(z), z € k.

Proof. As elements in Gal(k, /k) are k-linear maps, the image of Tr,_ . is a vector
space over k, hence Try_/i(kn) = 0 or k. If Try /u(kn) = 0, then Y1 0* = 0,
which is a nontrivial linear relation among elements of Gal(k,/k), hence impossible
by Lemma 3. Therefore Try, /i is surjective. Then its kernel has order ¢"~*. Clearly,
Tre, /k(9(z)) = Trg, /x(z) so that kernel contains z — o(z) for all x € k,. Further,
z —o(z) = y — o(y) if and only if z — y € k, so the group {z — o(z) : = € k,} has
order g™ /q, thus is equal to the kernel. ]

Remark. The Hilbert theorem 90 for norm and trace maps is usually proved using
first cohomology group of the Galois group (a la Noether). When the base field is
finite, we may use counting argument, as shown above.

Exercise 1. Let k be a finite field with finite extensions ky,, and kmn of degree
m, mn, respectively. Show that

Trep/k = Trr, /e0Tre sk, and Np /e =Ng xoNe k., -

Given z € k,, it defines a k-linear transformation L, on k, by = — zz, that is,
multiplication by z. The trace and determinant of L, are defined as the trace and
determinant of any n X n matrix representing L,. They are in fact given by Tr;__ /i
and Ni_ /i of z. More precisely, we have
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Theorem 5. Let z € k,, and define L, as above. Then
(1) L, = '1\',,"/,,(2.) anddet L, = N,.n/,,(z)

(2) Suppose k(z) = kn. Let f(z) = z" + a1z + --- + a, be the irreducible
polynomial of z over k. Then

ay = —Tre /u(2) and an = (—1)"Ng_/e(2).

Proof. We shall prove (1) and (2) under the assumption (2) and leave (1) for the
case k(z) being a proper subfield of k, as an exercise. For each 7 in Gal(k,/k), 0 =
7(f(2)) = f(7(2)), hence 7(2) is also a root of f(z). Further, if 7 and 7’ are two
different elements in Gal(k,/k), then 7(z) # 7'(z) (otherwise they would agree on
k(z) = kn). This shows that z has n distinct images under Gal(k,/k) and they are
the roots of f(z). Therefore,

—a; = the sum of roots of f(z) = Try, /k(2)
and
(=1)"an = the product of roots of f(z) = Ny, /i(2).
This proves (2). For (1), we know that L, satisfies f(z) =0. As f(z) is irreducible

over k and [k, : k] = n, f(z)is the characteristic polynomial of L,. The companion
matrix attached to L, is

0 —'an
10 ~Gn-1
1 .
0
1 -—Qa1
which has trace = —a; and determinant = (—1)"a,. This proves (1). a

Exercise 2. Let z € k,,. Suppose k(z) = k., is a proper subfield of k,. Prove that
TrL, = Try u(2) = 2 Try, u(2) and det L, = Ny u(2)™/™.

Exercise 3. (1) (Normal Basis Theorem) There exists an element z € ky such
that {r(z) : 7 € Gal(kn/k)} is basis of k, over k. (Hint : Consider the minimal
polynomial of the Frobenius automorphism o.)

(2) For z in (1) we have Try, /x(z) # 0. (Hint : Express an element
in k, as a k-linear combination of {r(z)}. Then show Try_/k(kn) = k Tri_/i(2).)
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§3 Characters

A character of a topological group G is a continuous homomorphism from G to
the unit circle S* in the complex plane. If G is a finite group, then it is endowed
with the discrete topology so that a character is simply a homomorphism from G
to S'. As S! is commutative, any character of G factors through the quotient of
G by its commutator subgroup. The character sending G to 1 is called the trivial
character of G.

All characters of G form an abelian group under pointwise multiplication, called
the dual group of G and denoted by &

Example 1. Compute G for a finite cyclic group G.

Suppose G has order n. Let g be a generator of G and { be a primitive nth root
of 1. The homomorphism 7 from G to S* sending g to ( is a charactor of G of order
n. Hence G contains the cyclic group < 7 >. On the other hand, any character x
of G is determined by its value x(g) at g, which is an nth root of 1. Thus x(g) = ¢*
for some integer k, and this shows that x = n*. So G =< 5 > is also a cyclic group
of order n. We see that G is isomorphic to G.

Propogition 1. If G is a finite abelian group, then G is isomorphic to its dual
group G.

Proof. By the fundamental theorem of finite abelian groups, we may decompose G
as a product of cyclic groups

G=Gy x--- X Gy.

For a character x of 9 denote 13! X; its restriction to G;. T!llls x is the product of
X1,"* ,Xr and G = G) X --- X G,. We have seen that each G; is isomorphic to G;,
hence G is isomorphic to G. O

Remark. The above isomorphism G = G is not canonical since it depends on the
decomposition of G into a product of cyclic groups and for each cyclic group, the
isomorphism depends on the choice of generators. However, the dual of G, namely,

G, is naturally isomorphic to G. This follows from the non-degeneracy of the pairing
&: G xGi—=»8

given by
€(9,x) = x(9)-
(When we fix one variable, £ is a homomorphism with respect to the other variable.)
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Exercise 4. (1) Show that ¢ defined above is nondegenerate, that is,

(i) If g is not the identity element of G, then there is a character x
of G such that x(g) # 1.

(i) If x is a nontrivial character of G, then there exists an element
g of G such that x(g) # 1.

(2) Show that the nondegeneracy of ¢ implies that G and é are natu-
rally isomorphic.

For a closed subgroup H of G, denote by H* = {x €G: x(H) = 1}. When G is
an abelian group, H* is canonically identified with G'/ H.

Theorem 6. (Pontrjagin duality) Let G be an abelian topological group. The map

H +— H% establishes a bijection from the closed subgroups of G to those of &
Further, H1 is naturally isomorphic to H.

We examine this theorem for the case where G is a finite abelian group, thus
topology plays no role. Again, by the fundamental theorem of finite abelian groups,
we may assume that G is cyclic of order n. The subgroups H of G are indexed by
the positive divisors d of n such that d = the order of H. Then G is cyclic of order
n and H+ has order ti7- The bijection H — H 1 is obvious. Under the canonical

isomorphism G G, we may identity H+ with the group H = {g €G:x(9)=1
for all x € H'}. Since every x € H 4 is trivial on H, the group H contains H.
On the other hand, |H| = |G|/|H*| and |HL| = |G|/|H| imply |H| = |H|. Hence
H=H,ie, H** = H naturally. mi

Define an inner product <,> on the space C[G] of complex-valued functions on
a finite abelian group G by

1 e
< f,g>= 'I-a—l Z f(z)g(z).

z€G

Proposition 2. Let G be a finite abelian group. Then the characters of G form an
orthonormal basis of C[G].

To prove this, we shall need

Lemma 5. Let G be a finite abelian group, g € G and x € hatG. Then
0 if x is nontrivial,
1 =
(1) Laeax() { G| if x is trivial.

0  if g is not the identity of G,
(2) Lneanle) = { |G| if g is the identity of G.



