-

*
s ' -

(WIS 3 .

BGIt =om

Mastering Git

Jakub Narebski

[PACKT]

PUBLISHING

IR K A AR A
SOUTHiAST U:IERSJ[TY PRESS

7|' Glt 5 EUH&)
Mastering Git

Jakub Narebski 2

BN FHEKFEHR

B H S B (CIP) ¥ 7

K il Git: %€ 30/ D) 5 R A - $7 J B7 2L (Jakub
Narebski)# . —RZEIAS. — R/ 5% : 75 B K 5 HH Wit . 2017,
10

4 % JF 3L : Mastering Git

ISBN 978 — 756417363 -0

[.O%-- 0.0%- 0I.O%KHTE-BFE
it V. OTP311.561

rh [AR B 5 6 CTP 3046 4% - (2017 58 196706 &
E:10-2017- 113 &

© 2016 by PACKT Publishing Ltd

Reprint of the English Edition, jointly published by PACKT Publishing Ltd and Southeast University Press, 2017.
Authorized reprint of the original English edition, 2017 PACKT Publishing Ltd, the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3% L /R B PACKT Publishing Ltd i #& 2016,

FESUH PR AR A K AR AR 2017, SuFEP R OY R Ao 4 B IR B R R P A B R G T A
—— PACKT Publishing Ltd # 3 .)

WA AT s RAF B @ T A 5 69 4B FT 3 o Fo o R AR H X EH .

¥iiE Gt IR

HRREAT : AR K R

Hby HE . PR YRR 2 5 HE %5 - 210096
o A T

] ik : http//www .seupress.¢om

HL T Ml {4 : press@ seupress.com

B R N T RS = R A
A 787 ZEK X980 K 16 FF 4
K. 26

. 509 T

W 2017 4E 10 A5 1 iR

U : 2017 4E 10 A5 1 RERRI

5: ISBN 978 — 7- 5641 - 7363 — 0
#r: 84.00 7T

S F 48 H

A 4 [A3 3 A B 2 B BE () B i B S E R IR AR . G (5 D)« 025 - 83791830

Credits

Author
Jakub Narebski

Reviewer
Markus Maiwald

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Vinay Argekar

Content Development Editor
Athira Laji

Technical Editor
Shivani Kiran Mistry

Copy Editor
Akshata Lobo

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Jakub Narebski followed Git development from the very beginning of its creation.
He is one of the main contributors to the gitweb subsystem (the original web
interface for Git), and is an unofficial gitweb maintainer. He created, announced,

and analyzed annual Git User's Surveys from 2007 till 2012 —all except the first one
(you can find his analysis of those surveys on the Git Wiki). He shares his expertise
with the technology on the StackOverflow question-and-answer website.

He was one of the proofreaders of the Version Control by Example by Eric Sink,
and was the reason why it has chapter on Git.

He is an assistant professor in the faculty of mathematics and computer science
at the Nicolaus Copernicus University in Torun, Poland. He uses Git as a version
control system of choice both for personal and professional work, teaching it to
computer science students as a part of their coursework.

About the Reviewer

Markus Maiwald is an internet service provider, business webhoster, and domain
provider. As an example, he offers agencies complete white labeling solutions for
their customers (from registering a domain to deploying a webserver).

Therefore, his slogan is: I build the systems your business runs on.

Professionally, he is a consultant and systems administrator with over 15 years
of Linux experience. He likes building high performance server systems and he
develops usable and standard-compliant systems with focus on security.

As a true webworker 2.0, he runs his own international business with customers all

over the world, from an insurance company in Europe to a web developer studio in
Thailand.

This is the main reason why he was so passionate to work on this book. As a great
team player and with a lot of experience in international teamwork, he brings in a
great knowledge of tools such as Git.

I have to thank Bijal Patel, my project co-ordinator from Packt
Publishing. I received outstanding support and had a great time.

I would also like to thank Sarah for her patience and encouragement
while I finished this project.

www.PacktPub.com

SUpport files, eBooks, discount offers,
and more

For support files and downloads related to your book, please visit www . Packt Pub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www . PacktPub. com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

n]PACKT

https://www2.packtpub.com/books/subscription/packtlib

C)

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

* Ondemand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Preface

Mastering Git is meticulously designed to help you gain deeper insights into Git's
architecture and its underlying concepts, behavior, and best practices.

Mastering Git starts with a quick implementation example of using Git for the
collaborative development of a sample project to establish the foundation knowledge
of Git's operational tasks and concepts. Furthermore, as you progress through the
book, subsequent chapters provide detailed descriptions of the various areas of
usage: from the source code archaeology, through managing your own work, to
working with other developers. Version control topics are accompanied by in-detail
description of relevant parts of Git architecture and behavior.

This book also helps augment your understanding to examine and explore your
project's history, create and manage your contributions, set up repositories and
branches for collaboration in centralized and distributed workflows, integrate
work coming from other developers, customize and extend Git, and recover from
repository errors. By exploring advanced Git practices, and getting to know details
of Git workings, you will attain a deeper understanding of Git's behavior, allowing
you to customize and extend existing recipes, and write your own.

What this book covers

Chapter 1, Git Basics in Practice, serves as a reminder of version control basics with
Git. The focus will be on providing the practical aspects of the technology, showing
and explaining basic version control operations for the development of an example
project, and the collaboration between two developers.

Chapter 2, Exploring Project History, introduces the concept of the Directed Acyclic
Graph (DAG) of revisions and explains how this concept relates to the ideas of
branches, tags, and the current branch in Git. You will learn how to select, filter,
and view the range of revisions in the history of a project, and how to find revisions
using different criteria.

[xi]

Preface

Chapter 3, Developing with Git, describes how to create such history and how to add
to it. You will learn how to create new revisions and new lines of development.

This chapter introduces the concept of the staging area for commits (the index), and
explains how to view and read differences between the working directory, the index,
and the current revision.

Chapter 4, Managing Your Worktree, focuses on explaining how to manage the
working directory (the worktree) to prepare contents for a new commit. This chapter
will teach the reader how to manage their files in detail. It will also show how to
manage files that require special handling, introducing the concepts of ignored files
and file attributes.

Chapter 5, Collaborative Development with Git, presents a bird's eye view of the various
ways to collaborate, showing different centralized and distributed workflows. It will
focus on the repository-level interactions in collaborative development. You will
also learn here the concept of the chain of trust, and how to use signed tags, signed
merges, and signed commits.

Chapter 6, Advanced Branching Techniques, goes deeper into the details of collaboration
in a distributed development. It explores the relations between local branches and
branches in remote repositories, and describes how to synchronize branches and
tags. You will learn here branching techniques, getting to know various ways of
utilizing different types of branches for distinct purposes (including topic branch
workflow). '

Chapter 7, Merging Changes Together, teaches you how to merge together changes
from different parallel lines of development (that is, branches) using merge and
rebase. This chapter will also explain the different types of merge conflicts, how to
examine them, and how to resolve them. You will learn how to copy changes with
cherry-pick, and how to apply a single patch and a patch series.

Chapter 8, Keeping History Clean, explains why one might want to keep clean

history, when it can and should be done, and how it can be done. Here you will
find step-by-step instructions on how to reorder, squash, and split commits. This
chapter also demonstrates how can one recover from a history rewrite, and explains
what to do if one cannot rewrite history: how to revert the effect of commit, how to
add a note to it, and how to change the view of project's history.

[xii]

Preface

Chapter 9, Managing Subprojects — Building a Living Framework, explains and shows
different ways to connect different projects in the one single repository of the
framework project, from the strong inclusion by embedding the code of one
project in the other (subtrees), to the light connection between projects by nesting
repositories (submodules). This chapter also presents various solutions to the
problem of large repositories and of large files.

Chapter 10, Customizing and Extending Git, covers configuring and extending Git to
fit one's needs. You will find here details on how to set up command line for easier
use, and a short introduction to graphical interfaces. This chapter explains how to
automate Git with hooks (focusing on client-side hooks), for example, how to make
Git check whether the commit being created passes specified coding guidelines.

Chapter 11, Git Administration, is intended to help readers who are in a situation of
having to take up the administrative side of Git. It briefly touches the topic of serving
Git repositories. Here you will learn how to use server-side hooks for logging, access
control, enforcing development policy, and other purposes.

Chapter 12, Git Best Practices, presents a collection of version control generic and

Git-specific recommendations and best practice. Those cover issues of managing
the working directory, creating commits and a series of commits (pull requests),
submitting changes for inclusion, and the peer review of changes.

What you need for this book

To follow the examples used in this book and run the provided commands, you
will need the Git software, preferably version 2.5.0 or later. Git is available for free
on every platform (such as Linux, Windows, and Mac OS X). All examples use the
textual Git interface, using the bash shell.

To compile and run sample program, which development is tracked in Chapter 1,
Git Basics in Practice, as a demonstration of using version control, you would need
working C compiler and the make program.

Who this book is for

If you are a Git user with reasonable knowledge of Git and you are familiar with
basic concepts such as branching, merging, staging, and workflows, this is the
book for you. If you have been using Git for a long time, this book will help you
understand how Git works, make full use of its power, and learn about advanced
tools, techniques, and workflows. The basic knowledge of installing Git and its
software configuration management concepts is necessary.

[xiii]

Preface

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, commands and their options, folder names, filenames,

file extensions, pathnames, branch and tag names, dummy URLs, user input,
environment variables, configuration options and their values are shown as follows:
"For example, writing git log -- foo explicitly asks for the history of a path foo."

Additionally, the following convention is used: <file> denotes user input (here,
the name of a file), SHOME denotes the value of environment variable, and tilde in a
pathname is used to denote user's home directory (for example ~/.gitignore).

A block of code, or a fragment of a configuration file, is set as follows:

void init_rand(void)

{

}
When we wish to draw your attention to a particular part of a code block (which is
quite rare), the relevant lines or items are set in bold:

srand (time (NULL)) ;

void init_rand(void)

{
}

Any command-line input or output is written as follows:

srand (time (NULL)) ;

carol@server ~$ mkdir -p /srv/git
carole@server ~$ cd /srv/git

carol@server /srv/git$ git init --bare random.git

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
default description that Git gives to a stash (WIP on branch)."

x % Warnings or important notes appear in a box like this.

s‘l
Q Tips and tricks appear like this.

[xiv]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of. .

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewheére, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https: //www.packtpub.
com/sites/default/files/downloads/MasteringGit_ ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

[xv]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub. com, and we will do our best to address the problem.

Table of Contents

Preface Xi
Chapter 1: Git Basics in Practice 1
An introduction to version control and Git 1
Git by example 2
Repository setup 2
Creating a Git repository 3
Cloning the repository and creating the first commit 4
Publishing changes 7
Examining history and viewing changes 7
Renaming and moving files 10
Updating your repository (with merge) 1
Creating a tag 12
Resolving a merge conflict 14
Adding files in bulk and removing files 17
Undoing changes to a file 18
Creating a new branch 19
Merging a branch (no conflicts) 20
Undoing an unpublished merge 21
Summary 22
Chapter 2: Exploring Project History 23
Directed Acyclic Graphs 24
Whole-tree commits 26
Branches and tags 26
Branch points 28
Merge commits 29
Single revision selection 29
HEAD - the implicit revision 30

Branch and tag references 30

Table of Contents

SHA-1 and the shortened SHA-1 identifier 31
Ancestry references 33
Reverse ancestry references: the git describe output 34
Reflog shorthames 34
Upstream of remote-tracking branches 35
Selecting revision by the commit message 36
Selecting the revision range 36
Single revision as a revision range 36
Double dot notation 37
_Multiple points — including and excluding revisions 38
The revision range for a single revision 39
Triple-dot notation 39
Searching history 41
Limiting the number of revisions 41
Matching revision metadata 42
Time-limiting options 42
Matching commit contents 43
Commit parents 43
Searching changes in revisions 44
Selecting types of change 46
History of a file 46
Path limiting 46
History simplification 48
Blame — the line-wise history of a file 48
Finding bugs with git bisect 50
Selecting and formatting the git log output 53
Predefined and user defined output formats 53
Including, formatting, and summing up changes 55
Summarizing contributions 56
Viewing a revision and a file at revision 58
Summary 59
Chapter 3: Developing with Git 61
Creating a new commit 62
The DAG view of creating a new commit 62
The index — a staging area for commits 63
Examining the changes to be committed 65
The status of the working directory 65
Examining differences from the last revision 68
Unified Git diff format 69
Selective commit 74
Selecting files to commit 74
Interactively selecting changes 74

[ii]

Table of Contents

Creating a commit step by step 76
Amending a commit 77
Working with branches 79
Creating a new branch 80
Creating orphan branches 80
Selecting and switching to a branch 81
Obstacles to switching to a branch 81
Anonymous branches 82

Git checkout DWIM-mery 83
Listing branches 83
Rewinding or resetting a branch 84
Deleting a branch 86
Changing the branch name 87
Summary 87
Chapter 4: Managing Your Worktree 89
Ignoring files 90
Marking files as intentionally untracked 91
Which types of file should be ignored? 93
Listing ignored files 94
Ignoring changes in tracked files 95
File attributes . 96
Identifying binary files and end-of-line conversions 97
Diff and merge configuration 99
Generating diffs and binary files 99
Configuring diff output 101
Performing a 3-way merge 102
Transforming files (content filtering) 102
Obligatory file transformations 104
Keyword expansion and substitution 105
Other built-in attributes 106
Defining attribute macros 107
Fixing mistakes with the reset command 107
Rewinding the branch head, softly 108
Removing or amending a commit 108
Squashing commits with reset 109
Resetting the branch head and the index 109
Splitting a commit with reset 110
Saving and restoring state with the WIP commit 110
Discarding changes and rewinding branch 11
Moving commits to a feature branch 111
Undoing a merge or a pull 112
Safer reset — keeping your changes 112
Rebase changes to an earlier revision 113

[ii]

Table of Contents

Stashing away your changes 113
Using git stash 114
Stash and the staging area 115
Stash internals 116

Un-applying a stash 117
Recovering stashes that were dropped erroneously 117

Managing worktrees and the staging area 118
Examining files and directories 118
Searching file contents 119

_Un-tracking, un-staging, and un-modifying files 120
Resetting a file to the old version 122
Cleaning the working area 122

Multiple working directories 123

Summary 124

Chapter 5: Collaborative Development with Git 125

Collaborative workflows 126
Bare repositories 126
Interacting with other repositories 127
The centralized workflow 128
The peer-to-peer or forking workflow 129
The maintainer or integration manager workflow 130
The hierarchical or dictator and lieutenants workflows 131

Managing remote repositories 132
The origin remote 133
Listing and examining remotes 133
Adding a new remote 134
Updating information about remotes 135

Renaming remotes 135
Changing the remote URLs 135
Changing the list of branches tracked by remote 136
Setting the default branch of remote 136
Deleting remote-tracking branches 136
Support for triangular workflows 137

Transport protocols 138
Local transport 138
Smart transports 140

Native Git protocol 140
SSH protocol 140
Smart HTTP(S) protocol 141
Offline transport with bundles 142
Cloning and updating with bundle 143
Using bundle to update an existing repository 145
Utilizing bundle to help with the initial clone 147

[iv]

