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Preface

Mastering Git is meticulously designed to help you gain deeper insights into Git's
architecture and its underlying concepts, behavior, and best practices.

Mastering Git starts with a quick implementation example of using Git for the
collaborative development of a sample project to establish the foundation knowledge
of Git's operational tasks and concepts. Furthermore, as you progress through the
book, subsequent chapters provide detailed descriptions of the various areas of
usage: from the source code archaeology, through managing your own work, to
working with other developers. Version control topics are accompanied by in-detail
description of relevant parts of Git architecture and behavior.

This book also helps augment your understanding to examine and explore your
project's history, create and manage your contributions, set up repositories and
branches for collaboration in centralized and distributed workflows, integrate
work coming from other developers, customize and extend Git, and recover from
repository errors. By exploring advanced Git practices, and getting to know details
of Git workings, you will attain a deeper understanding of Git's behavior, allowing
you to customize and extend existing recipes, and write your own.

What this book covers

Chapter 1, Git Basics in Practice, serves as a reminder of version control basics with
Git. The focus will be on providing the practical aspects of the technology, showing
and explaining basic version control operations for the development of an example
project, and the collaboration between two developers.

Chapter 2, Exploring Project History, introduces the concept of the Directed Acyclic
Graph (DAG) of revisions and explains how this concept relates to the ideas of
branches, tags, and the current branch in Git. You will learn how to select, filter,
and view the range of revisions in the history of a project, and how to find revisions
using different criteria.

[xi]
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Chapter 3, Developing with Git, describes how to create such history and how to add
to it. You will learn how to create new revisions and new lines of development.

This chapter introduces the concept of the staging area for commits (the index), and
explains how to view and read differences between the working directory, the index,
and the current revision.

Chapter 4, Managing Your Worktree, focuses on explaining how to manage the
working directory (the worktree) to prepare contents for a new commit. This chapter
will teach the reader how to manage their files in detail. It will also show how to
manage files that require special handling, introducing the concepts of ignored files
and file attributes.

Chapter 5, Collaborative Development with Git, presents a bird's eye view of the various
ways to collaborate, showing different centralized and distributed workflows. It will
focus on the repository-level interactions in collaborative development. You will
also learn here the concept of the chain of trust, and how to use signed tags, signed
merges, and signed commits.

Chapter 6, Advanced Branching Techniques, goes deeper into the details of collaboration
in a distributed development. It explores the relations between local branches and
branches in remote repositories, and describes how to synchronize branches and
tags. You will learn here branching techniques, getting to know various ways of
utilizing different types of branches for distinct purposes (including topic branch
workflow). '

Chapter 7, Merging Changes Together, teaches you how to merge together changes
from different parallel lines of development (that is, branches) using merge and
rebase. This chapter will also explain the different types of merge conflicts, how to
examine them, and how to resolve them. You will learn how to copy changes with
cherry-pick, and how to apply a single patch and a patch series.

Chapter 8, Keeping History Clean, explains why one might want to keep clean

history, when it can and should be done, and how it can be done. Here you will
find step-by-step instructions on how to reorder, squash, and split commits. This
chapter also demonstrates how can one recover from a history rewrite, and explains
what to do if one cannot rewrite history: how to revert the effect of commit, how to
add a note to it, and how to change the view of project's history.

[ xii ]
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Chapter 9, Managing Subprojects — Building a Living Framework, explains and shows
different ways to connect different projects in the one single repository of the
framework project, from the strong inclusion by embedding the code of one
project in the other (subtrees), to the light connection between projects by nesting
repositories (submodules). This chapter also presents various solutions to the
problem of large repositories and of large files.

Chapter 10, Customizing and Extending Git, covers configuring and extending Git to
fit one's needs. You will find here details on how to set up command line for easier
use, and a short introduction to graphical interfaces. This chapter explains how to
automate Git with hooks (focusing on client-side hooks), for example, how to make
Git check whether the commit being created passes specified coding guidelines.

Chapter 11, Git Administration, is intended to help readers who are in a situation of
having to take up the administrative side of Git. It briefly touches the topic of serving
Git repositories. Here you will learn how to use server-side hooks for logging, access
control, enforcing development policy, and other purposes.

Chapter 12, Git Best Practices, presents a collection of version control generic and

Git-specific recommendations and best practice. Those cover issues of managing
the working directory, creating commits and a series of commits (pull requests),
submitting changes for inclusion, and the peer review of changes.

What you need for this book

To follow the examples used in this book and run the provided commands, you
will need the Git software, preferably version 2.5.0 or later. Git is available for free
on every platform (such as Linux, Windows, and Mac OS X). All examples use the
textual Git interface, using the bash shell.

To compile and run sample program, which development is tracked in Chapter 1,
Git Basics in Practice, as a demonstration of using version control, you would need
working C compiler and the make program.

Who this book is for

If you are a Git user with reasonable knowledge of Git and you are familiar with
basic concepts such as branching, merging, staging, and workflows, this is the
book for you. If you have been using Git for a long time, this book will help you
understand how Git works, make full use of its power, and learn about advanced
tools, techniques, and workflows. The basic knowledge of installing Git and its
software configuration management concepts is necessary.

[ xiii ]
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Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, commands and their options, folder names, filenames,

file extensions, pathnames, branch and tag names, dummy URLs, user input,
environment variables, configuration options and their values are shown as follows:
"For example, writing git log -- foo explicitly asks for the history of a path foo."

Additionally, the following convention is used: <file> denotes user input (here,
the name of a file), SHOME denotes the value of environment variable, and tilde in a
pathname is used to denote user's home directory (for example ~/.gitignore).

A block of code, or a fragment of a configuration file, is set as follows:

void init_rand(void)

{

}
When we wish to draw your attention to a particular part of a code block (which is
quite rare), the relevant lines or items are set in bold:

srand (time (NULL) ) ;

void init_rand(void)

{
}

Any command-line input or output is written as follows:

srand (time (NULL) ) ;

carol@server ~$ mkdir -p /srv/git
carole@server ~$ cd /srv/git

carol@server /srv/git$ git init --bare random.git

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
default description that Git gives to a stash (WIP on branch)."

x % Warnings or important notes appear in a box like this.

s‘l
Q Tips and tricks appear like this.

[ xiv]
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Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of. .

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewheére, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https: //www.packtpub.
com/sites/default/files/downloads/MasteringGit_ ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

[xv]




To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub. com, and we will do our best to address the problem.
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