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FOREWORD

This book aims to pﬁesent the fundamentals of number theory, one of the oldest mathema-
tical disciplines. An exhaustive treatment of this large independent field of mathematics
is obviously impossible in a book of reasonable size, We have thus confined ourselves in
this book to some selected results in number theory, and the various chapters are devoted
to the most typical problems of various aspects of the theory. We discuss in Chapter I,
after some introductory remarks, the theory of congruences. Particular attention is given
to congruences of degree two, and the quadratic reciprocity law is proved. Chapter II
discusses classical arithmetic functions (Euler’s function, sigma function) and a proof of
the theorem of Erdds on the characterization of the logarithm among additive functions
is given. Birch’s result characterizing the powers among multiplicative functions is also
presented. These two chapters are concerned with the so-called elementary number
theory, and are presented rather simply as there is a detailed treatment in Professor
Wactaw Sierpinski’s book, Theory of Numbers.

In Chapter III, we give the fundamental results of the theory of prime numbers,
namely the prime number theorem and Dirichlet’s theorem on primes in progressions.
These results are proved using the Tauberian theorem of Delange -Ikehara.

Chapter IV discusses the sieve methods developed in recent years. The Eratosthenes’
sieve, Selberg’s sieve and the large sieve are studied and some applications pointed out.
Brun’s result on twin primes and Gallagher’s theorem on primitive roots are proved.

Chapter V is concerned with geometrical problems. We first give some elementary fact
concerning convex sets and lattices, and then prove Minkowski’s theorem on convex
bodies. Vinogradov’s elementary method of finding the number of lattice points in plane
regions is also discussed.

In Chapter VI we consider additive number theory. The reader will find in it elements
of Schnirelman’s density, which we use to prove Schnirelman’s theorem on the represen-
tation of natural numbers as the sum of prime numbers. We prove also Mann'’s theorem
concerning this density and the theorem of Waring- Hilbert.



i Foreword

Chapter VII gives the elements of probabilistic number theory. We prove three funda-
mental results of this theory, namely the inequality of Turan-Kubilius, the Erdos-Kac
theorem on the normal decomposition, and the theorem of Erdds on asymptotic distribu-
tion of additive functions.

In Chapter VIII we consider Diophantine approximation, i.e. the approximation of
irrational numbers by rational numbers. We discuss continued fractions and prove the
theorem of Hurwitz on the best approximation. Here we also introduce the concept of
uniform distribution, prove Weyl’s criterion, and the classical result of Weyl concerning
the uniform distribution of the sequence of values of polynomials.

Chapter IX, the last chapter, is concerned with the generalization of the concept of
integers. We discuss algebraic integers and give an elementary theory of algebraic number
fields and of Dedekind rings. We also introduce p-adic integers, define p-adic fields and
prove their fundamental properties.

As one of the objectives of this book is to show the relationship of number theory
with other fields of mathematics, we do not restrict oursleves to the conventional elemen-
tary methods. Methods and techniques in algebra, topology, analysis and probability
theory are used quite liberally, but attempts have been made to keep the prerequisites to
that of the undergraduate level. The reader is expected to have a knowledge of the funda-
mental concepts of algebra such as groups, rings and fields. In Chapter III, familiarity
with fundamental facts of the theory of analytic function is needed, and in Chapter VII,
elements of probability theory. Some notion of topology in metric spaces and elements
of the theory of extension of fields will be necessary to read Chapter IX.

This book is based on lectures given at Wroctaw University in memory of B. Bierut,
and at Bordeaux University I. It was Assistant Professor Marceli Stark who persuaded me
to write it. Without his encouragement, the plan to write this book would never be
realized. :

I wish to thank Professor Andrzej Schinzel for many valuable remarks and for pointing
out a series of inaccuracies, and Professor Helmut Koch and Master Jan Sliwa for valuable
simplifications of proofs. I thank Mrs. Teresa Bochynek for typing the manuscripts.

Wroctaw, February 1975 Wiadystaw Narkiewicz



NOTATION

We shall give here riotation and symbols which will be used in the text without specific
explanation. We shall denote by the letter 2 the ring of rational integers, A" will
denote the set of natural numbers, where we make a convention that 0 is not an element
of A", We denote theset A4 U {0} by A47,. Theletter 2 denotes the field of
rational numbers, and the letter # the field of real numbers. We denote the field of
complex numbers by 3.

By the symbol [x] we denote the integral part of the number x and by the symbol
{ x| its fractional part, i.e.if x =n+r, where n€ 2 and r € [0, 1), then
[x]1=n, {x}=r.

If F(x), G(x) are real-valued functions defined on some set X, and moreover there
exists a positive constant B such that for all x € X the inequality

|F(x)| < BG(x)
holds and G(x) > 0, then we write
F(x)=0(G(x)) .

If the set X is a subset of the real line or the complex plane and for some x, € X we
have

F(x)
m =0,
x—xq G(x)
then we write
F(x) =0(G(x)) (as x tendsto x) .

We use the same symbol in the case when

lim @) =0
x—+oo G(x)




vi Notation

If from the context it is clear what x, is, then we simply write
F(x)=0(G(x)) .

These notations were introduced by E. Landau. Instead of F(x) =o0(G(x)), we
often write F(x) < G(x);I. M. Vinogradov introduced this symbolism.

We note that in using the symbols 0 and O it is necessary to take care because e.g.
on the set of natural numbers greater than 1 we have
x=0(x?)
and

¥ = 0p?) ,

but the equality x = xt is false. One should, however, not think that these notations
are not precise and could lead to a contradiction. One should simply understand the
designation F' = O(G) as one which means that the function F belongs to the family of
those functions which are bounded when divided by G.

In using Landau’s symbol it is worth remembering the following properties whose
proof the reader should do it himself if he wishes:

@) If f, =0(f)) and f, = O(f,), then f, = O(f,).

@) If f,.f, =O(f), then f, £f, =O(f).

(iii) If f=0(g), then fh=0(glhl).

(iv) If f, =o(f,) and f2 =0(f3), then fl =o(f3).

() If f,,f, =o(f), then f, * f, =o(f).

(vi) If f, =o(f,) and g does not vanish, then f,g=o(f,8).
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CHAPTER I

DIVISIBILITY, CONGRUENCES

§1. Divisibility. Prime numbers
1. We say that an integer m # 0 divides an integer a if there exists an integer n
such that mn = a, that is when the number a/m is an integer. We express this fact by
mla. If an integer m does not divide an integer a, then we write mfa. Replacing the
word “an integer” by ‘“‘an element of a ring R” in this definition, we obtain the' notion
of divisibility in the ring R. In Chapter IX we shall have an occasion to apply this general
notion.
From the definition follow the following properties of the notion of divisi-
bility:

Theorem 1.1

(i) If mla and mlb, then mla+b and mla-b.
(ii) If mla and aln, then mln.

(iii) If mla and b€ Z', then mlab.

(iv) If alb and b#0, then lal < Ibl.

(v) If alb and bla, then b=a or b=—a.

Proof. If mla and mlb, then we can write a =a,m, b =b m,wherea ,b € Z,
and this givesa £ b =(a‘ + b, )m, thereby proving (i). To prove (ii), let us write a = a,m,
n=an (a,n € Z') and note that we then have n = m(a n ). Now (iii) follows in view
of alab and (ii). Next for a proof of (iv), we note that from alb follows the integrality of
the number b/a, and so by b # 0, we must have |b/a | > 1. Finally, (v) follows from (iv)

on noting that if ¢ and b are real numbers having the same absolute value, then b = a or
=—q. ® ]
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Remark. From (i) and (iii), it follows that the set of all integers divisible by a given
integer m forms an ideal in the ring 2.

Theorem 1.2 (division algorithm). If g, b € Z, and b40, then there exists exactly
one pair of integers q, r satisfying the conditions:

a=bg+r, 0 <r<|bl.

Furthermore, bla holds iff r=0.

Proof. In the case b > 0, let us take g = [a/b] and r = a—bq. Then, in view of
g <a/b < q+1 we have bg <a<bg + b, so that 0 <r < b = |bl. In the case of a
negative b, we take ¢ = — [a/1b1].

If we have a = bg, + ry = bgy, + r;, 0<ry, rp <|bl,thenr, —r;, =
b(gy — q3), hence b|(r, — ry). If we have r; #r,, then by Theorem 1.1 (iv) the inequal-
ity |b| < |r; — r;| < b would hold, which is impossible. Therefore ry = r,, and so
g1 = q,. The last part of the theorem now follows from Theorem 1.1 (i). L]

We call the integer r the residue of g divided by b and call g the (incomplete)
quotient of this division.

2.  Every natural number n > 1 has at least two natural divisiors 1 and n.
If there are no other divisiors, then we say that n is a prime number. We denote the set of
all prime numbers by Z. Integers n > 1 which are not prime numbers are called compo-
site numbers. Hence the integers 2, 3, 5, 7, 11, 257, 65537 are prime numbers, and the
integers 4, 6, 8, 21, 35, 99999 are composite numbers.

The greatest known prime number is 2'?°%7—1 with 6002 digits. It was
found by B. Tuckerman [1] in 1971*, We shall soon note that the set 2 is an infinite
set, so the discovery of larger and larger prime numbers may verify the development of
computational technique but does not contribute significantly to the theory itself.

Theorem 1.3. Every natural number n > 1 can be expressed in the form
=270, .0 Pi€P.

Proof. We use induction. Forn = 2 we take k = 1, p, = 2. Now suppose the
validity of the assertion for all n < N. If N is a prime number, then we take k = 1,
p,=N;and if N =ab, 1 <a, b <N, then by the induction hypothesis we have
a=p, .. .p’,,b=p,_+l -.-D, with p, ¢ 22, and we obtain N=pl Y A []

Corollary 1. Every natural number n > 1 has at least one prime factor. ®

Corollary 2. Every natural number n > 1 can be expressed in the form
n= pi'..p;, whereo eV ,and p,....,p, areprime numbers. =

Translator’s note: This is actually the 24th Mersenne prime M, ;,,, (¢f. Exercise 6 at the end of
this section). Recently, three further Mersenne primes have been found: M,,,,,. M
M 3499+ 5ee e.g. D. Slovinski [1) and L.-K. Hua [3], p. 21.

Added in proof: Meanwhile D. Slovinski has found a much larger prime 2%°%4% 1 with

25,962 digits. But it is not known whether it is the 28th Mersenne prime (see Math. Intelligencer 5,
No. 1 (1983), p. 60).

13209



Divisibility, Congruences 3

We denote the number of distinct prime divisors of an integer n by w(n).
Additionally we define the value of the function w(n) for n = 1 by putting w(1) = 0. We
shall be concerned with the investigation of various properties of this function in later
chapters.

Denote the number of primes not exceeding x by 7(x). We have then,

m(2) =1,7(3)=2,...,m(10) = 4, and it can be checked that 7(100) = 25,
m(1000) = 168. As early as in Euclid’s Elements, we can find a proof of the fact that
there are infinitely many primes, that is m(x) =,

Let us give three proofs of this result:

Theorem 1.4. The set % of all primes is infinite.

Proof I (Euclid). Assume that the set 2 is finite, # = (p,, ..., p,}. Then
the integer N = 1+p, ... p, is greater than 1 and moreover it gives the residue 1 when
divided by P,s.-.,P,,which contradicts Corollary 1 to Theorem 1.3. =

Proof II (Euler). As in the preceding proof, let us assume that {p,, ..., p,}is the
set of all prime numbers. Forx > 1 we have

(11) ]—[(1—%)-x =n,,20‘ pl,{s

k=1 k=1

@ hed 0
EPH- i P
1 @ P ° Ly mE !

i~ (D% oeel?) ~ m

j1=0

because by Corollary 2 to Theorem 1.3 each natural number can be expressed in the form
m = pit ... pi.

n -3
Let o= [] (I_L and let T be a natural number chosen in such a
k=1 P

way that the inequality

T
s
m—
m

holds. Then, using (1.1), we have

mt

-3 —-1
a = lim (l— ) ) > limsup

x
T Px x—+1

- 1 d 1
= limsup — = 2-——>a.
x—+] m m
m=1 m=1
The obtained contradiction proves our contention. =
Proof III (G. Pélya and G. Szegt). The numbers 22" 41 are greater than 1 for
n=1,2,...,hence they have prime divisors. Denote by g , any one of prime divisors of
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numbers 22”41, e.g. the least one. Let us show that the prime numbers g,
are all distinct. In fact, if for some m <n we have ¢, = ¢,, then for some a € 4~

22"' = aqm -— 1 >
therefore

22"4+1 = (22")?"""+1 = (ag,—1)*"""+1.

Applying Newton’s binomial expansion, we see that all the terms except the
last one are divisible by q,,»and the last term is equal to (— 1)3"~™ = 1, This gives in
turn (for a suitable natural number b) the equality 22"+1 = bg,, +2. Since from the
supposition q,, must divide 22"+1, hence q,, divides 2, thatis q m = 2, which is
impossible because the number 22" .1 is not divisible by 2. =

The numbers appearing in the third proof of Theorem 1.4 are called the
Fermat numbers and denoted by 17"l . It is not difficult to check that F =0,

Fz =17, F; = 267, ¥, = 65,537 are prime numbers, and Fermat in 1640 raised a
conjecture that for each n the number F_ is a prime number. However, it is not true,

as Euler noted, Fs =641 - 6700417 and next it was shown that all Fermat numbers

F:‘ forn=25,6,..., 16 are composite. (See for example W. Sierpinski [4], pp. 344-345.)
We do not know any Fermat prime greater than F, .

The method used in the second proof of the preceding theorem can also be
adopted to prove the following more powerful result:

Theorem 1.5. If p, < p, < ... isa sequence consisting of all the primes, then

the series
1

Pn
n=1

is divergent.
Proof. For a natural number N we have

N N
1\ 1 1 1
FFi—d) = [ ek i 2s 2.} 3L,
D» Pn P m
n=1 n=1 ms<py
because each integer m < py is the product of powers of primes not exceeding p,. But
the right-hand side of this inequality for a suitable choice of N can be made arbitrarily
large, which, however, proves the divergence of the product
= -1
b=
n=1 p"
o 1
It remains to note that the convergence of Z -— would imply the conver-
gence of this product. = oy M
Other simple proofs of this theorem can be found in the following papers:
R. Bellman [1], P. Erd6s [2], L. Moser [1].
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To determine whether a given integer N is prime or not is not in general a
simple problem. In an obtrusive method relying upon the test whether N is divisible by
prime numbers < N, one can restrict oneself to primes < N’ because each composite
number N has a prime divisor <N%, but the number of these primes exceed

1
N2
E—gw for large N, (which follows from the so-called prime number theorem to be proved
N
logN

in Chapter III), therefore one should execute at least operations. The fastest

known method is due to J. M. Pollard [1] which requires at most BN operations,
where B is some constant. Of course, for integers having a special form the number of
operations can be made smaller.
3.  One of the fundamental results in elementary number theory is the theorem
on unique factorization of natural numbers into prime factors, which we shall now prove.
Theorem 1.6. Eyery natural number n greater than 1 can be uniquely expressed in
the form

(1.2) =D, ... P>
wherep,e? (i=1,...,k) and p; < p, < ... < p;. Each prime divisor of the
integer n must appear among the primes p,, ..., p; .

Proof. Let us first show that the second part of the assertion of the theorem is a
consequence of the first part. In fact, if » has a unique decomposition into prime factors,
n=2p, ... pxand pln, then decomposing n/p =g, ... ¢, into prime factors, we obtain
n = pq, ... ¢ = P, ... P, hence the prime p must appear among the primes p; .

We prove the first part of the theorem by two different methods.

Proof I. By Theorem 1.2 the ring 2° of rational integers is a Euclidean domain,

hence it must be a unique factorization domain, and this coincides with our assertion. =

Proof II (without the use of algebraic concepts). It is obvious that each prime
number has only one representation of the form (1.2), therefore our theorem is true for
n = 2. Suppose that our theorem is false and denote by N the smallest number having at
least two different decompositions (1.2), say

N=p;.Dp=28a1 - s

where p, < p, < ..<p, ¢, < ¢, < ... < g, are prime numbers. Without loss of
generality we can suppose that p, < ¢,. If p, = ¢,, then the number

Npy=p::.0,=05... ¢,

is an integer less than N having two different decompositions which is against the choice
of N. Hence p, < q,. Therefore we can write

¢, =ap,+b (a>0,0<b<p,, abe?),
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whence

= (ap, +b)q; ... ¢ = AP, 45 ... s+ bg; ... G5

The integer b is either equal to 1 or has a unique factorization into prime factors. Let
b =@, ... Q,be this factorization (if b = 1, then we take ¢ = 0). As the integer
m = bg, ... g, is less than N, it has also a unique factorization and we see that the prime
numbers Q,, ..., Q,, ¢, ..., ¢s arnnged in increasing order appear as factors in this
factorization. But m = N—ap,q, ... g, is an integer divisible by p , so from the
remark made in the beginning of the proof it follows that p, is one of Qi i P
a,..., s, hence p, = @, forsome i, Therefore p, (b, which is conttadictory to
0 < b < p,. The obtained contradiction proves that no integer exists with two different
decompositions. L

Corollary.1. Every natural number n > 1 can be uniquely expressed in the form

n=np7',

=1
where P, <P, < ...<p, are prime numbers, r = w(n) and o € N .
Proof. This follows from the theorem by grouping together the identical prime
factors. =
Corollary 2. Every n € Z different from 0 and *1 can be uniquely expressed in

the form
r
n=sgnn [ | pji,
[l
where p, < ... < p, areprime numbers,

1, if n>0,

sgnn =
s {—l, if n <0

and e AN,
Proof. Let us write n = [n|sgn n and apply the preceding corollary to |n|. &
Corollary 3. Every non-zero integer n can be uniquely written in the form

n = sgnn ” %M,
pe?
where a, (neAN o - The product appearing here contains finitely many factorsdifferent
from 1, i.e. for a given n, the exponent ap(n) is different from zero for finitely many
primes p.
Proof. For n =11 we take @, (n) =0 forall p. If on the contrary, n is of the
form as in the preceding corollary, then for p = p, (i= .., r) we take ap(n) -
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and for the remaining primes we put «, (n) = 0. Uniqueness of the representation follows
immediately from the preceding corollary. o

Corollary 4. Every rational number w different from zero can be uniquely
expressed in the form

w = sgnw l I pm™,
pe?

where ap(w) € 2. The product appearing here contains only finitely many factors
different from 1.

Proof. We can write w = sgnw( B ) where a, b € 4. Applying the preceding
corollary to a and b, we obtain

w = sgnw | | p*D=%®,
I
Note that the difference o, (a) — «, (b) depends exclusively on w, but not on

the choice of a and b. In fact, if w = sgnw— (@a;,b, e/N), then ab, =a,b.
Hence we have

”pc‘,(a) ”p 201 — ”pa,(a,)npa,(b)

pe? pe?

ie.

’ 'pa,(a)+a,(b,) P ' ’pi,(n)«i»a,(b).
pe?

pe?
By Corollary 3 we have the equality o (a) +a (b )= o, (@) ta (b), for
every p, that is « (a) a (b)—a (@a)-a (b ), asasserted
Hence if we define l:he funcnon ap(w) for w % 0 (w e 2) by the formula

a
a, (W) = o, (a) e (b) (vl =4, a,bes),
then we get the repnesentaﬁon required.
Suppose that

w = sgnw ” %™ = sgnw n p°r.
peEP

Let us show that <, =ap(w) must hold forevery pe 2 .
IfA={pe?:q,w) >c) amd B= {pe?: a,(w) < c,},then the

m = ”p‘v(")"r = ”p"r‘“r(i")
peB

ped

number
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is a natural number. If the sum of the sets A and B were non-empty, then m would have
two representations in the form of the product of prime powers, which contradicts
Corollary 2. Therefore A — B — (¥, that is for every p we have the equality
o, (w) = ¢, =

Remark. The decomposition appearing in the above corollaries is called the
canonical decomposition of the corresponding numbers.

We shall now give fundamental properties of the function ozp(w) appearing

in Corollary 4:

Theorem 1.7.

(i) « (ab) a (a) +a (b), a (a/b) a (a) o (b), a (—a) o (a)

(ii) Let wF0 be a rauonal number Then we _2' iff we have o (w) >0
for every p.

(iii) If m,neZ, then min iff we have ap(m) < ap(n) forevery p.

(iv) For ne % the largest power of p dividing n is p*™ .

) ap(a £ b) > min (ap(a), ap(b)), and if , (a) # ap(b), then
ap(a % b) = min (ap(a), ap(b)).

Proof.

(i) The equalities (i) follow at once from the definition of ay(n).

(ii) If we have ap(w) > 0, for every p, then w € 2, as it is the product of
integers. Conversely, if w € 2, then from Corollaries 3 and 4 follows
ap(w) >0

(iii) m divides n iff nlm € 2. Hence it is enough to apply (i) and (ii).

(iv) 1Itis apparent that »*(|y, and if we have

2,(n)+ 1 —
po @+ = poo [ | e, )
a#p
qe?

then

7| ” g™,

tl#P

and so p would divide some product of primes different from p, which is
impossible because of Corollary 1.
(v) First consider the case g, be & . Then fora=a (a), B=a (b) we have
p%la, pP|b, hence p™™®P|4 + b which gives, by (iv), the inequality
min (@, f) < ap(a £ b).
In the general case we write a = x/y, b=x"/y' (x,y,x',y'€ Z and #0).
Thena + b = (xy’ £ x'y)/yy’, hence, using (i) and that part of (v) already proved, we
obtain



