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Preface

These lecture notes are an expanded version of ten lectures given at the
CBMS conference on Hopf Algebras and Their Actions on Rings, which took
place at DePaul University in Chicago, August 10-14, 1992.

It was a very good time to have such a conference, for several reasons. The
most obvious of these is the current great interest in quantum groups; these
are Hopf algebras which arose in statistical mechanics and now have con-
nections to many areas of mathematics. However there have been a number
of significant recent developments within Hopf algebras themselves. Several
old conjectures of Kaplansky have recently been solved, the most striking
of which is a kind of Lagrange’s theorem for Hopf algebras. In a different
direction there has been a lot of work on actions of Hopf algebras, which
unifies earlier results known for group actions, actions of Lie algebras, and
graded algebras.

The object of the meeting, and of these notes, was to bring together many
of these recent developments; in fact there is a great deal of interconnection
. between the various directions. The point of view throughout, however, is
the algebraic structure of Hopf algebras and their actions and coactions.
Quantum groups are treated as an important example rather than as an end
in themselves; never-the-less the reader interested in quantum groups should
find much basic material here.

Most of Chapters 1 and 2 is old, and in fact appears in the books on Hopf
algebras by Sweedler [S] and Abe [A]; this is also true of parts of Chapters
5 and 9. I have included this material in order to be as self-contained as
possible; moreover some of the arguments are new. The rest of these notes
has not previously appeared in book form. Although many of the proofs are
only sketched, and even occasionally omitted (with appropriate references to
the literature), enough detail is given so that this book could be used for a
graduate level course. In fact these notes grew out of courses I gave at USC
in 1989 and in 1992. A standard first-year graduate algebra class should be
a sufficient prerequisite.

There are many people I wish to thank. First of all is Jeff Bergen, who

organized the conference and made all the arrangements, and second are

xiil



xiv PREFACE

the Supporting Lecturers: Miriam Cohen, Yukio Doi, Warren Nichols, Bodo
Pareigis, Donald Passman, David Radford, Hans-Jiirgen Schneider, Earl Taft,
and Mitsuhiro Takeuchi. Many of their lectures are being collected and will
appear in the volume [BeM 93].

In writing the notes, my deepest gratitude goes to Maria Lorenz, whose
careful reading of the entire manuscript was invaluable, and to Hans Schnei-
der, who provided many historical references as well as simplifying a number
of proofs in the literature. I also want to thank Bill Chin, Davida Fischman,
and Bodo Pareigis for their comments, Robert Blattner for making available
to me his course notes from UCLA and for many conversations about Hopf
algebras over the years, and the students in my two classes at USC whose
questions on earlier versions of these notes were particlarly helpful: Ioana
Boca, Paul Glezen, Michael Jochner, Horia Pop, and Yegan Satik. Finally,
thanks to Lesley Newton for typing the manuscript.

Susan Montgomery
Los Angeles, June 1993
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Chapter 1

Definitions and Examples

§1.1 Algebras and coalgebras

Throughout we let k be a field, although much of what we do is valid
over any commutative ring. Tensor products are assumed to be over k unless
stated otherwise.

We first express the associative and unit properties of an algebra via maps

so that we may dualize them.

1.1.1 DEFINITION. A k-algebra (with unit) is a k-vector space A together
with two k-linear maps, multiplication m : A® A — A and unit v : k — A,

such that the following diagrams are commutative:

a) associativity b) unit
m @ id A®A
ABA@A — —=A@A u®id id®u
id® m m k® A m ARk
AR A A A

The two lower maps in b) are given by scalar multiplication. 1.1.1, b)

gives the usual identity-element in A by setting 14 = u(1k).

1.1.2 DEFINITION. For any k-spaces V and W, the twist map7: VW —
W @V is given by 1(v Q@ w) = w @ v.

Note that A is commutative & mot =mon A ® A.

We now dualize the notion of algebra.

1.1.3 DEFINITION. A k-coalgebra (with counit) is a k-vector space C to-
gether with two k-linear maps, comultiplication A : €' — C ® C and counit

€ : C — k, such that the following diagrams are commutative:
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a) coassociativity b) counit
a C
C cCeC y \Y
A AQid k®C A C®k
C®C—25——~CaCaC Coc

The two upper maps in 1.1.3.b) are given by ¢ — 1®c and ¢ — ¢® 1, for
any ¢ € C. We say C is cocommutative if 70 A = A.
Note that 1.1.3 b) gives that A is injective, just as 1.1.1 b) gives that m

is surjective.

1.1.4 DEFINITION. Let C and D be coalgebras, with comultiplications A¢
and Ap, and counits e¢ and €p, respectively.
a) Amap f:C — D is a coalgebra morphism if Apo f = (f ® f)Ac
and ifec =€po f.
b) A subspace I C Cis a coideal if AICITQ®C +C ® I and if ¢(I) = 0.

It is easy to check that if / is a coideal, then the k-space C/I is a coalgebra
with comultiplication induced from A, and conversely.

Finally, we may also use the twist map to dualize the notion of opposite
algebra. For a given algebra A, recall that A°" is the algebra obtained by
using A as a vector space, but with new multiplication a® - ° = (ba)°, for
a®,b° € A°”. In terms of maps this new multiplication is given by m’ :

A® A— A, where m =mor.

1.1.5 DEFINITION. Let C be a coalgebra. Then the coopposite coalgebra C°?
is given as follows: C®? = (' as a vector space, with new comultiplication A’

given by A’ =10 A.
It is easy to see that C°” is also a coalgebra.
§1.2. Duals of algebras and coalgebras

We shall now see that there is a very close relationship between algebras
and coalgebras, by looking at their dual spaces.
For any k-space V, let V* = Homy(V,k) denote the linear dual of V.
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V and V* determine a non-degenerate bilinear form ( , ) : V@V — k
via (f,v) = f(v); we write it as a form since we frequently wish to think
of V as acting on V*. If ¢ : V — W is k-linear, then the transpose of ¢ is
¢": W= — V= given by

(1.2.1) ¢"(f)(v) = f(g(v)),
for all f € W=,ve V.

1.2.2 LEMMA. If C is a coalgebra, then C* is an algebra, with multiplication

m = A* and unit u = ¢*. If C is cocommutative, then C* is commutative.

The Lemma is proved simply by dualizing the diagrams; one needs only
the additional observation that since C* ® C* C (C ® C)*, we may restrict
A® to get amap m : C*® C* — C~. Explicitly, m is given by m(f ® g)(¢) =
A (f®g)(c)=(fRg)Ac, forall f,g e C*,ceCC.

If we begin with an algebra A, however, difficulties arise. For, if A is not
finite-dimensional, A* ® A~ is a proper subspace of (A ® A)* and thus the
image of m* : A” — (A® A)" may not lie in A* ® A*. Of course if A is
finite-dimensional, all is well, and A* is a coalgebra. For the general case, we

require a definition.

1.2.3 DEFINITION. Let A be a k-algebra. The finite dual of Ais A° = {f €
A" | f(I) = 0, for some ideal I of A such that dimA/[ < oo}.

1.2.4 PROPOSITION. If A is an algebra, then A° is a coalgebra, with co-
multiplication A = m* and counit ¢ = u*. If A is commutative, then A°® is

cocommutative.

Explicity, Af(a ® b) = m~ f(a ® b) = f(ab), for all f € A°,a,b€ A.

We will prove 1.2.4 in Proposition 9.1.2. Some additional characteriza-
tions of A° will also be discussed in Chapter 9. In particular A° is the largest
subspace V of A* such that m*(V)CV@YV.

§1.3 Bialgebras
Now we combine the notions of algebra and coalgebra.

1.3.1 DEFINITION. A k-space B is a bialgebra if (B, m,u) is an algebra,

(B,A,¢) is a coalgebra, and either of the following (equivalent) conditions
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holds:
1) A and ¢ are algebra morphisms

2) m and u are coalgebra morphisms.

As expected, a map f : B — B’ of bialgebras is called a bialgebra mor-
phism if it is both an algebra and a coalgebra morphism, and a subspace
I C B is a buideal if it is both an ideal and a coideal. The quotient B/I is a
bialgebra precisely when [ is a biideal of B.

1.3.2 EXAMPLE. Let G be any group and let B = kG be its group algebra.
Then B is a bialgebra via Ag =g ® g and ¢(g) = 1, for all g € G.

1.3.3 EXAMPLE. Let g be any k-Lie algebra and let B = U(g) be its
universal enveloping algebra. Then B becomes a bialgebra by defining Az =
z®1+1®z and g(z) =0, for all z € g.

Note that examples 1.3.2 and 1.3.3 are cocommutative.
In any coalgebra, elements whose A is as in 1.3.2 or 1.3.3 are very impor-

tant; thus we give them a name.

1.3.4 DEFINITION. Let C be any coalgebra, and let c € C.

a) c is called group-like if Ac = ¢ ® c and if e(c) = 1. The set of group-like
elements in C is denoted by G(C).

b) For g,h € G(C), cis called g, h-primitive if Ac = c®@ g+ h @ c. The set of
all g, h-primitives is denoted by P, 4(C). If C = B is a bialgebra and
g = h =1, then the elements of P(B) = P, (B) are simply called the

primitive elements of B.

It is not difficult to prove that in any coalgebra, distinct group-like ele-
ments are k-independent [S, 3.2.1], [A, 2.1.2]. As a consequence, if B = kG,
then G(B) = G, the original group.

If B = U(g) and char k = 0, then P(B) = g, the original Lie algebra.
However if char k = p # 0, then P(B) is the span of all z**,k > 0,z € g; it
is a restricted p-Lie algebra. See §5.5.

As another example ol group-like elements, let A be any algebra and

define

(1.3.5) Alg(A,k) = {f € A*| f is an algebra map }.
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In 9.1.4 we will see that Alg(A, k) = G(A°), the set of group-like elements in
the coalgebra A°.

We continue with our examples of bialgebras.

1.3.6 EXAMPLE. If B is any bialgebra, then B° is a bialgebra; this is proved
in §9.1. In particular, we consider the special case when B = kG. In this
case B° is called the set of representative functions Ry(G) on G. It can also

be described as follows:
B° = Ry(G) = { € (KG)"|dimy, span {G - [} < oo},

where G acts on (kG)* via (z - f)(y) = f(yz), for all z,y € G, f € (kG)*.

The algebra structure on B° (or on B") is given by

(f9)(z) = A (f @ g)(z) = (f ®9)(z ®z) = f(z)g(x),

all z € G, f,g € B*; that is, it is the usual pointwise multiplication. The

coalgebra structure is given, as for any bialgebra B, by

Af(z®y) =m " f(z@y) = f(zy),

all z,y € B, f € B°. However, this does not give an explicit formula for A f
as an element of B° ® B°. When B is finite-dimensional, that is |G| < oo,
we can give such a description, as follows:

Let {p; | = € G} be a basis of (kG)* dual to the basis of group elements
in kG; that is p.(y) = 6,4, all z,y € G. Then

(1.3.7) Ap, = Z Pu ® po.

uv=r

1.3.8 EXAMPLE. Let B = O(M,(k)) = k[Xj;|1 <1i,; < n], the polynomial
functions on n x n matrices. As an algebra, B is simply the commutative
polynomial ring in the n? indeterminates { X;;}. For the coalgebra structure,
think of X;; as the coordinate function on the i;** entry of the ring M, (k)
“of n x n matrices. Then A is the dual of matrix multiplication; that is
AXi; = Y0, Xik ® Xi;. By setting ¢(X;;) = §,,, B becomes a bialgebra.
If we let X = [Xj;], the n x n matrix with 15'* entry X;, then one may
check that det X € G(B).
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1.3.9 EXAMPLE. The “quantum plane”. Choose 0 # ¢ € k and let B =
O(k?) = k(z,y | zy = qyz). B has a bialgebra structure given by setting
Az =z®z, Ay=y®1+z®uy, e(z) =1, e(y) = 0. Note that z € G(B)
and that y € P ;(B), the set of 1,z -primitive elements.

1.3.10 SOME QUANTUM GROUPS. The Appendix gives generators and

relations for U,(g),g a finite-dimensional semi-simple Lie algebra, and for
0,(M,(k)), and describes their coalgebra structures.

1.3.11 EXAMPLE. If B is any bialgebra, we can form a new bialgebra by
taking the opposite of either the algebra or coalgebra structure. Thus B
means B has the opposite multiplication but the same comultiplication, B?
has the same multiplication but the opposite comultiplication, and B°?

has both opposite structures.
§1.4 Convolution and summation notation

Before proceeding to the definition of Hopf algebra, we introduce another

definition and a very useful notation.

1.4.1 DEFINITION. Let C be a coalgebra and A an algebra. Then

Homy(C, A) becomes an algebra under the convolution product

(fxg)(c) =mo (f ®g)(Ac)
for all f,¢g € Homy(C, A),c € C. The unit element in Homy(C, A) is ue.

A useful formula for f * g is given in 1.4.4, below.

Note that we have already seen an example of convolution; namely, for
any coalgebra C, the multiplication m = A* in C* = Hom(C, k) (see 1.2.2).

One can also define the twist convolution ( or anti-convolution) product
on Homy(C, A) via

(f x g)(c) =mo (f ®g)(r 0 Ac))-
The following notation was introduced by Heyneman and Sweedler.

1.4.2 NOTATION. Let C be any coalgebra with comultiplication A : C —
C @ C. The sigma notation for A is given as follows: for any ¢ € C, we write

Ac = Z c(1) @ ¢(2)-
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The subscripts (1) and (2) are symbolic, and do not indicate particular
elements of C; this notation is analogous to notation used in physics (where
even the ) may be omitted). In these notes we usually simplify the notation
by omitting parentheses.

The power of the notation becomes apparent when A must be applied
more than once. In particular, the coassociativity diagram 1.1.3 a) gives that
Yy ® @)y © ) = ZC(I)(., ® ¢(1),, @ ¢2); this element is written as
2 ¢y ® ¢z) ® ¢(3) = As(c). Iterating this procedure gives

An_l(C) = Z c1) ®...Q C(n)

where A, _;(c) is the (necessarily unique) element obtained by applying coas-
sociativity (n — 1) times.

In this notation, the reader should check that the counit diagram 1.1.3
b) says that, for all c € C,

(1.4.3) c= 26(6(1))0(2) = ZE(C(“A)C(I)

and that the convolution product in 1.4.1 is given by

(1.4.4) (f*g)e) =D fleuy)alew)-

§1.5 Antipodes and Hopf algebras

1.5.1 DEFINITION. Let (H,m,u,A,¢) be a bialgebra. Then H is a Hopf
algebra if there exists an element S € Homy(H, H) which is an inverse to

idy under convolution *. S is called an antipode for H.

Note that in sigma notation, S satisfies

(1.5.2) > (Shi)hy = e(h)1g =) hi(Shy)

for all h € H.

We also have the obvious definitions of morphisms and ideals: a map
‘ f: H— K of Hopf algebras is a Hopf morphism if it is a bialgebra morphism
and f(Sgh) = Sk f(h), for all h € H. A subspace I of H is a Hopf ideal if
it is a biideal and if ST C I; in this situation H/I is a Hopf algebra with

structure induced from H.



