Engineering

Wb IZ4E THE (22EnkR)

Betsy Beyer, Chris Jones,
% 8K E kRt Jennifer Petoff, Niall Richard Murphy %

W UFiE% T2 wam)

Site Reliability Engineering

Betsy Beyer, Chris Jones,
Jennifer Petoff, Niall Richard Murphy %

Beiiing « Boston » Farnham « Sehastanal « Tokyo OREILLY"®

ICIRANIR B A 3 R AR

BUR SRS ATFDAVAL

B #E /4 B (CIP) ¥ &

W 3kiz 2 TR : 930/ (36) D457 - /R (Betsy Beyer)
Fo. —HEHA. —R R KA L, 2018.1

45 4 JF 3C : Site Reliability Engineering

ISBN 978 —7-5641 - 7296 -1

IT.OM- T.OMN- . MuaEE—3%
QM -4 —d3r N. OTP393.092.1

o [fi A B AR CIPEUHE #% 57 (2017) 2483935
E5:10 - 2017 - 353 &

© 2016 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2018. Authorized reprint of the original English edition, 2017 O'Reilly Media, Inc., the owner of all
rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
% X R #% & O'Reilly Media, Inc. 8 & 2016,

FE X RR G AR K AR IR 2018, bW P R 64 s M A 4 B 4T B R AR A 4 B AR 69 BT
A& O'Reilly Media, Inc.# # 7T ,

WA A RAF B @ T A BRI S Ao R AETH X EH

P o 3z 4 T 72 G2 B RO

AR RAT : 7R P8 K% RAE

Moo hb. BERPUMERE 25 B4 210096
O A e

™ dik: http7//www.seupress.com

B F MR {4 . press@ seupress.com

;BN T RS = BRI R A
. 787 2K X 980 &k 16 FFA
: 34.5

: 676 T

;20184 1 A% 1R

: 2018 4F 1 A58 1 WENRI

: ISBN 978 —7— 5641 — 7296 - 1

: 118.00 JT

AR EFHNIHB
SN FERHSE

Atk B 3 A EN A AR o) L B S E R . S (fEED . 025- 83791830

Praise for Site Reliability Engineering

Google’s SREs have done our industry an enormous service by writing up the principles,
practices and patterns—architectural and cultural—that enable their teams to combine
continuous delivery with world-class reliability at ludicrous scale. You owe it to yourself
and your organization to read this book and try out these ideas for yourself.

—Jez Humble, coauthor of Continuous Delivery and
Lean Enterprise

I remember when Google first started speaking at systems administration conferences.
It was like hearing a talk at a reptile show by a Gila monster expert. Sure, it was
entertaining to hear about a very different world, but in the end the audience

would go back to their geckos.

Now we live in a changed universe where the operational practices of Google are
not so removed from those who work on a smaller scale. All of a sudden, the best
practices of SRE that have been honed over the years are now of keen interest to
the rest of us. For those of us facing challenges around scale, reliability and
operations, this book comes none too soon.

—David N. Blank-Edeliman, Director, USENIX Board of
Directors, and founding co-organizer of SREcon

I have been waiting for this book ever since I left Google’s enchanted castle.
It is the gospel I am preaching to my peers at work.

—Bjorn Rabenstein, Team Lead of Production Engineering at
SoundCloud, Prometheus developer, and Google SRE until 2013

A thorough discussion of Site Reliability Engineering from the company that
invented the concept. Includes not only the technical details but also the
thought process, goals, principles, and lessons learned over time. If you want
to learn what SRE really means, start here.

—Russ Allbery, SRE and Security Engineer

With this book, Google employees have shared the processes they have taken,
including the missteps, that have allowed Google services to expand to both massive
scale and great reliability. I highly recommend that anyone who wants to create a

set of integrated services that they hope will scale to read this book. The book
provides an insider’s guide to building maintainable services.

—Rik Farrow, USENIX

Writing large-scale services like Gmail is hard. Running them with high reliability is
even harder, especially when you change them every day. This comprehensive
“recipe book” shows how Google does it, and you'll find it much cheaper to learn
from our mistakes than to make them yourself.

—Urs Holzle, SVP Technical Infrastructure, Google

Foreword

Google’s story is a story of scaling up. It is one of the great success stories of the com-
puting industry, marking a shift towards IT-centric business. Google was one of the
first companies to define what business-IT alignment meant in practice, and went on
to inform the concept of DevOps for a wider IT community. This book has been writ-
ten by a broad cross-section of the very people who made that transition a reality.

Google grew at a time when the traditional role of the system administrator was being
transformed. It questioned system administration, as if to say: we can’t afford to hold
tradition as an authority, we have to think anew, and we don’t have time to wait for
everyone else to catch up. In the introduction to Principles of Network and System
Administration [Bur99], I claimed that system administration was a form of human-
computer engineering. This was strongly rejected by some reviewers, who said “we
are not yet at the stage where we can call it engineering” At the time, I felt that the
field had become lost, trapped in its own wizard culture, and could not see a way for-
ward. Then, Google drew a line in the silicon, forcing that fate into being. The revised
role was called SRE, or Site Reliability Engineer. Some of my friends were among the
first of this new generation of engineer; they formalized it using software and auto-
mation. Initially, they were fiercely secretive, and what happened inside and outside
of Google was very different: Google’s experience was unique. Over time, information
and methods have flowed in both directions. This book shows a willingness to let SRE
thinking come out of the shadows.

Here, we see not only how Google built its legendary infrastructure, but also how it
studied, learned, and changed its mind about the tools and the technologies along the
way. We, too, can face up to daunting challenges with an open spirit. The tribal nature
of IT culture often entrenches practitioners in dogmatic positions that hold the
industry back. If Google overcame this inertia, so can we.

This book is a collection of essays by one company, with a single common vision. The
fact that the contributions are aligned around a single company’s goal is what makes
it special. There are common themes, and common characters (software systems)

xiii

that reappear in several chapters. We see choices from different perspectives, and
know that they correlate to resolve competing interests. The articles are not rigorous,
academic pieces; they are personal accounts, written with pride, in a variety of per-
sonal styles, and from the perspective of individual skill sets. They are written bravely,
and with an intellectual honesty that is refreshing and uncommon in industry litera-
ture. Some claim “never do this, always do that,” others are more philosophical and
tentative, reflecting the variety of personalities within an IT culture, and how that too
plays a role in the story. We, in turn, read them with the humility of observers who
were not part of the journey, and do not have all the information about the myriad
conflicting challenges. Our many questions are the real legacy of the volume: Why
didn't they do X? What if theyd done Y? How will we look back on this in years to
come? It is by comparing our own ideas to the reasoning here that we can measure
our own thoughts and experiences.

The most impressive thing of all about this book is its very existence. Today, we hear a
brazen culture of “just show me the code.” A culture of “ask no questions” has grown
up around open source, where community rather than expertise is championed. Goo-
gle is a company that dared to think about the problems from first principles, and to
employ top talent with a high proportion of PhDs. Tools were only components in
processes, working alongside chains of software, people, and data. Nothing here tells
us how to solve problems universally, but that is the point. Stories like these are far
more valuable than the code or designs they resulted in. Implementations are ephem-
eral, but the documented reasoning is priceless. Rarely do we have access to this kind
of insight.

This, then, is the story of how one company did it. The fact that it is many overlap-
ping stories shows us that scaling is far more than just a photographic enlargement of
a textbook computer architecture. It is about scaling a business process, rather, than
just the machinery. This lesson alone is worth its weight in electronic paper.

We do not engage much in self-critical review in the IT world; as such, there is much
reinvention and repetition. For many years, there was only the USENIX LISA confer-
ence community discussing IT infrastructure, plus a few conferences about operating
systems. It is very different today, yet this book still feels like a rare offering: a detailed
documentation of Google’s step through a watershed epoch. The tale is not for copy-
ing—though perhaps for emulating—but it can inspire the next step for all of us.
There is a unique intellectual honesty in these pages, expressing both leadership and
humility. These are stories of hopes, fears, successes, and failures. I salute the courage
of authors and editors in allowing such candor, so that we, who are not party to the
hands-on experiences, can also benefit from the lessons learned inside the cocoon.

— Mark Burgess
author of In Search of Certainty
Oslo, March 2016

xiv | Foreword

Preface

Software engineering has this in common with having children: the labor before the
birth is painful and difficult, but the labor after the birth is where you actually spend
most of your effort. Yet software engineering as a discipline spends much more time
talking about the first period as opposed to the second, despite estimates that 40-90%
of the total costs of a system are incurred after birth.'! The popular industry model
that conceives of deployed, operational software as being “stabilized” in production,
and therefore needing much less attention from software engineers, is wrong.
Through this lens, then, we see that if software engineering tends to focus on design-
ing and building software systems, there must be another discipline that focuses on
the whole lifecycle of software objects, from inception, through deployment and oper-
ation, refinement, and eventual peaceful decommissioning. This discipline uses—and
needs to use—a wide range of skills, but has separate concerns from other kinds of
engineers. Today, our answer is the discipline Google calls Site Reliability Engineer-
ing.

So what exactly is Site Reliability Engineering (SRE)? We admit that it’s not a particu-
larly clear name for what we do—pretty much every site reliability engineer at Google
gets asked what exactly that is, and what they actually do, on a regular basis.

Unpacking the term a little, first and foremost, SREs are engineers. We apply the prin-
ciples of computer science and engineering to the design and development of com-
puting systems: generally, large distributed ones. Sometimes, our task is writing the
software for those systems alongside our product development counterparts; some-
times, our task is building all the additional pieces those systems need, like backups
or load balancing, ideally so they can be reused across systems; and sometimes, our
task is figuring out how to apply existing solutions to new problems.

1 The very fact that there is such large variance in these estimates tells you something about software engineer-
ing as a discipline, but see, e.g., [Gla02] for more details.

Next, we focus on system reliability. Ben Treynor Sloss, Google’s VP for 24/7 Opera-
tions, originator of the term SRE, claims that reliability is the most fundamental fea-
ture of any product: a system isn't very useful if nobody can use it! Because reliability?
-is so critical, SREs are focused on finding ways to improve the design and operation
of systems to make them more scalable, more reliable, and more efficient. However,
we expend effort in this direction only up to a point: when systems are “reliable
enough,” we instead invest our efforts in adding features or building new products.’

Finally, SREs are focused on operating services built atop our distributed computing
systems, whether those services are planet-scale storage, email for hundreds of mil-
lions of users, or where Google began, web search. The “site” in our name originally
referred to SRE’s role in keeping the google.com website running, though we now run
many more services, many of which aren’t themselves websites—from internal infra-
structure such as Bigtable to products for external developers such as the Google
Cloud Platform.

Although we have represented SRE as a broad discipline, it is no surprise that it arose
in the fast-moving world of web services, and perhaps in origin owes something to
the peculiarities of our infrastructure. It is equally no surprise that of all the post-
deployment characteristics of software that we could choose to devote special atten-
tion to, reliability is the one we regard as primary.* The domain of web services, both
because the process of improving and changing server-side software is comparatively
contained, and because managing change itself is so tightly coupled with failures of all
kinds, is a natural platform from which our approach might emerge.

Despite arising at Google, and in the web community more generally, we think that
this discipline has lessons applicable to other communities and other organizations.
This book is an attempt to explain how we do things: both so that other organizations
might make use of what we've learned, and so that we can better define the role and
what the term means. To that end, we have organized the book so that general princi-
ples and more specific practices are separated where possible, and where it’s appropri-
ate to discuss a particular topic with Google-specific information, we trust that the
reader will indulge us in this and will not be afraid to draw useful conclusions about
their own environment.

2 For our purposes, reliability is “The probability that [a system] will perform a required function without fail-
ure under stated conditions for a stated period of time,” following the definition in [Oco12].

3 The software systems we're concerned with are largely websites and similar services; we do not discuss the
reliability concerns that face software intended for nuclear power plants, aircraft, medical equipment, or other

safety-critical systems. We do, however, compare our approaches with those used in other industries in Chap-
ter 33.

'y

In this, we are distinct from the industry term DevOps, because although we definitely regard infrastructure
as code, we have reliability as our main focus. Additionally, we are strongly oriented toward removing the
necessity for operations—see Chapter 7 for more details.

xvi | Preface

We have also provided some orienting material—a description of Google’s production
environment and a mapping between some of our internal software and publicly
available software—which should help to contextualize what we are saying and make
it more directly usable.

Ultimately, of course, more reliability-oriented software and systems engineering is
inherently good. However, we acknowledge that smaller organizations may be won-
dering how they can best use the experience represented here: much like security, the
earlier you care about reliability, the better. This implies that even though a small
organization has many pressing concerns and the software choices you make may dif-
fer from those Google made, it’s still worth putting lightweight reliability support in
place early on, because it’s less costly to expand a structure later on than it is to intro-
duce one that is not present. Part IV contains a number of best practices for training,
communication, and meetings that we've found to work well for us, many of which
should be immediately usable by your organization.

But for sizes between a startup and a multinational, there probably already is some-
one in your organization who is doing SRE work, without it necessarily being called
that name, or recognized as such. Another way to get started on the path to improv-
ing reliability for your organization is to formally recognize that work, or to find
these people and foster what they do—reward it. They are people who stand on the
cusp between one way of looking at the world and another one: like Newton, who is
sometimes called not the world’s first physicist, but the world’s last alchemist.

And taking the historical view, who, then, looking back, might be the first SRE?

We like to think that Margaret Hamilton, working on the Apollo program on loan
from MIT, had all of the significant traits of the first SRE. In her own words, “part of
the culture was to learn from everyone and everything, including from that which
one would least expect.”

A case in point was when her young daughter Lauren came to work with her one day,
while some of the team were running mission scenarios on the hybrid simulation
computer. As young children do, Lauren went exploring, and she caused a “mission”
to crash by selecting the DSKY keys in an unexpected way, alerting the team as to
what would happen if the prelaunch program, P01, were inadvertently selected by a
real astronaut during a real mission, during real midcourse. (Launching P01 inadver-
tently on a real mission would be a major problem, because it wipes out navigation
data, and the computer was not equipped to pilot the craft with no navigation data.)

5 In addition to this great story, she also has a substantial claim to popularizing the term “software engineering.”

Preface | i

With an SRE’s instincts, Margaret submitted a program change request to add special
error checking code in the onboard flight software in case an astronaut should, by
accident, happen to select P01 during flight. But this move was considered unneces-
sary by the “higher-ups” at NASA: of course, that could never happen! So instead of
adding error checking code, Margaret updated the mission specifications documenta-
tion to say the equivalent of “Do not select PO1 during flight” (Apparently the update
was amusing to many on the project, who had been told many times that astronauts
would not make any mistakes—after all, they were trained to be perfect.)

Well, Margaret’s suggested safeguard was only considered unnecessary until the very
next mission, on Apollo 8, just days after the specifications update. During midcourse
on the fourth day of flight with the astronauts Jim Lovell, William Anders, and Frank
Borman on board, Jim Lovell selected PO1 by mistake—as it happens, on Christmas
Day—creating much havoc for all involved. This was a critical problem, because in
the absence of a workaround, no navigation data meant the astronauts were never
coming home. Thankfully, the documentation update had explicitly called this possi-
bility out, and was invaluable in figuring out how to upload usable data and recover
the mission, with not much time to spare.

As Margaret says, “a thorough understanding of how to operate the systems was not
enough to prevent human errors,” and the change request to add error detection and
recovery software to the prelaunch program P01 was approved shortly afterwards.

Although the Apollo 8 incident occurred decades ago, there is much in the preceding
paragraphs directly relevant to engineers’ lives today, and much that will continue to
be directly relevant in the future. Accordingly, for the systems you look after, for:the
groups you work in, or for the organizations you're building, please bear the SRE Way
in mind: thoroughness and dedication, belief in the value of preparation and docu-
mentation, and an awareness of what could go wrong, coupled with a strong desire to
prevent it. Welcome to our emerging profession!

xviii | Preface

How to Read This Book

This book is a series of essays written by members and alumni of Google’s Site Relia-
bility Engineering organization. It's much more like conference proceedings than it is
like a standard book by an author or a small number of authors. Each chapter is
intended to be read as a part of a coherent whole, but a good deal can be gained by
reading on whatever subject particularly interests you. (If there are other articles that
support or inform the text, we reference them so you can follow up accordingly.)

You don't need to read in any particular order, though wed suggest at least starting
with Chapters 2 and 3, which describe Google’s production environment and outline
how SRE approaches risk, respectively. (Risk is, in many ways, the key quality of our
profession.) Reading cover-to-cover is, of course, also useful and possible; our chap-
ters are grouped thematically, into Principles (Part II), Practices (Part III), and Man-
agement (Part IV). Each has a small introduction that highlights what the individual
pieces are about, and references other articles published by Google SREs, covering
specific topics in more detail. Additionally, the companion website to this book,
https://g.co/SREBook, has a number of helpful resources.

We hope this will be at least as useful and interesting to you as putting it together was
for us.

— The Editors

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Preface | xix

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

-

Using Code Examples
Supplemental material is available at https://g.co/SREBook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O'Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Site Reliability Engineering, edited by
Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy (O’Reilly). Copy-
right 2016 Google, Inc., 978-1-491-92912-47

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

c __.“ Safari Books Online is an on-demand digital library that deliv-
‘ bafa (! ers expert content in both book and video form from the

world’s leading authors in technology and business.

xx | Preface

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/site-reliability-engineering.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book would not have been possible without the tireless efforts of our authors
and technical writers. Wed also like thank the following internal reviewers for provid-
ing especially valuable feedback: Alex Matey, Dermot Duffy, JC van Winkel, John T.

Preface | xxi

Reese, Michael O'Reilly, Steve Carstensen, and Todd Underwood. Ben Lutch and Ben
Treynor Sloss were this book’s sponsors within Google; their belief in this project and
sharing what we've learned about running large-scale services was essential to making
this book happen.

Wed like to send special thanks to Rik Farrow, the editor of ;login:, for partnering
with us on a number of contributions for pre-publication via USENIX.

While the authors are specifically acknowledged in each chapter, wed like to take time

to recognize those that contributed to each chapter by providing thoughtful input,
discussion, and review.

Chapter 3: Abe Rahey, Ben Treynor Sloss, Brian Stoler, Dave O’Connor, David Besb-
ris, Jill Alvidrez, Mike Curtis, Nancy Chang, Tammy Capistrant, Tom Limoncelli

Chapter 5: Cody Smith, George Sadlier, Laurence Berland, Marc Alvidrez, Patrick
Stahlberg, Peter Duff, Pim van Pelt, Ryan Anderson, Sabrina Farmer, Seth Hettich

Chapter 6: Mike Curtis, Jamie Wilkinson, Seth Hettich

Chapter 8: David Schnur, JT Goldstone, Marc Alvidrez, Marcus Lara-Reinhold, Noah
Maxwell, Peter Dinges, Sumitran Raghunathan, Yutong Cho

Chapter 9: Ryan Anderson
Chapter 10: Jules Anderson, Max Luebbe, Mikel Mcdaniel, Raul Vera, Seth Hettich
Chapter 11: Andrew Stribblehill, Richard Woodbury

Chapter 12: Charles Stephen Gunn, John Hedditch, Peter Nuttall, Rob Ewaschiuk,
Sam Greenfield

Chapter 13: Jelena Oertel, Kripa Krishnan, Sergio Salvi, Tim Craig

Chapter 14: Amy Zhou, Carla Geisser, Grainne Sheerin, Hildo Biersma, Jelena Oertel,
Perry Lorier, Rune Kristian Viken

Chapter 15: Dan Wu, Heather Sherman, Jared Brick, Mike Louer, Stépén Davidovié,
Tim Craig

Chapter 16: Andrew Stribblehill, Richard Woodbury
Chapter 17: Isaac Clerencia, Marc Alvidrez

Chapter 18: Ulric Longyear

Chapter 19: Debashish Chatterjee, Perry Lorier

Chapters 20 and 21: Adam Fletcher, Christoph Pfisterer, Luka$ Jezek, Manjot Pahwa,
Micha Riser, Noah Fiedel, Pavel Herrmann, Pawel Zuzelski, Perry Lorier, Ralf Wild-
enhues, Tudor-Ioan Salomie, Witold Baryluk

xxii | Preface

Chapter 22: Mike Curtis, Ryan Anderson
Chapter 23: Ananth Shrinivas, Mike Burrows
Chapter 24: Ben Fried, Derek Jackson, Gabe Krabbe, Laura Nolan, Seth Hettich

Chapter 25: Abdulrahman Salem, Alex Perry, Arnar Mar Hrafnkelsson, Dieter Pear-
cey, Dylan Curley, Eivind Eklund, Eric Veach, Graham Poulter, Ingvar Mattsson, John
Looney, Ken Grant, Michelle Duffy, Mike Hochberg, Will Robinson

Chapter 26: Corey Vickrey, Dan Ardelean, Disney Luangsisongkham, Gordon Priore-
schi, Kristina Bennett, Liang Lin, Michael Kelly, Sergey Ivanyuk

Chapter 27: Vivek Rau

Chapter 28: Melissa Binde, Perry Lorier, Preston Yoshioka

Chapter 29: Ben Lutch, Carla Geisser, Dzevad Trumic, John Turek, Matt Brown
Chapter 30: Charles Stephen Gunn, Chris Heiser, Max Luebbe, Sam Greenfield

Chapter 31: Alex Kehlenbeck, Jeromy Carriere, Joel Becker, Sowmya Vijayaraghavan,
Trevor Mattson-Hamilton

Chapter 32: Seth Hettich

Chapter 33: Adrian Hilton, Brad Kratochvil, Charles Ballowe, Dan Sheridan, Eddie
Kennedy, Erik Gross, Gus Hartmann, Jackson Stone, Jeff Stevenson, John Li, Kevin
Greer, Matt Toia, Michael Haynie, Mike Doherty, Peter Dahl, Ron Heiby

We are also grateful to the following contributors, who either provided significant
material, did an excellent job of reviewing, agreed to be interviewed, supplied signifi-
cant expertise or resources, or had some otherwise excellent effect on this work:

Abe Hassan, Adam Rogoyski, Alex Hidalgo, Amaya Booker, Andrew Fikes, Andrew
Hurst, Ariel Goh, Ashleigh Rentz, Ayman Hourieh, Barclay Osborn, Ben Appleton,
Ben Love, Ben Winslow, Bernhard Beck, Bill Duane, Bill Patry, Blair Zajac, Bob
Gruber, Brian Gustafson, Bruce Murphy, Buck Clay, Cedric Cellier, Chiho Saito, Chris
Carlon, Christopher Hahn, Chris Kennelly, Chris Taylor, Ciara Kamahele-Sanfratello,
Colin Phipps, Colm Buckley, Craig Paterson, Daniel Eisenbud, Daniel V. Klein, Dan-
iel Spoonhower, Dan Watson, Dave Phillips, David Hixson, Dina Betser, Doron
Meyer, Dmitry Fedoruk, Eric Grosse, Eric Schrock, Filip Zyzniewski, Francis Tang,
Gary Arneson, Georgina Wilcox, Gretta Bartels, Gustavo Franco, Harald Wagener,
Healfdene Goguen, Hugo Santos, Hyrum Wright, Ian Gulliver, Jakub Turski, James
Chivers, James O’Kane, James Youngman, Jan Monsch, Jason Parker-Burlingham,
Jason Petsod, Jeffry McNeil, Jeff Dean, Jeff Peck, Jennifer Mace, Jerry Cen, Jess Frame,
John Brady, John Gunderman, John Kochmar, John Tobin, Jordyn Buchanan, Joseph
Bironas, Julio Merino, Julius Plenz, Kate Ward, Kathy Polizzi, Katrina Sostek, Kenn
Hamm, Kirk Russell, Kripa Krishnan, Larry Greenfield, Lea Oliveira, Luca Cittadini,

Preface | xxiii

Lucas Pereira, Magnus Ringman, Mahesh Palekar, Marco Paganini, Mario Bonilla,
Mathew Mills, Mathew Monroe, Matt D. Brown, Matt Proud, Max Saltonstall, Michal
Jaszczyk, Mihai Bivol, Misha Brukman, Olivier Oansaldi, Patrick Bernier, Pierre Pala-
tin, Rob Shanley, Robert van Gent, Rory Ward, Rui Zhang-Shen, Salim Virji, Sanjay
Ghemawat, Sarah Coty, Sean Dorward, Sean Quinlan, Sean Sechrest, Shari Trumbo-
McHenry, Shawn Morrissey, Shun-Tak Leung, Stan Jedrus, Stefano Lattarini, Steven
Schirripa, Tanya Reilly, Terry Bolt, Tim Chaplin, Toby Weingartner, Tom Black, Udi
Meiri, Victor Terron, Vlad Grama, Wes Hertlein, and Zoltan Egyed.

We very much appreciate the thoughtful and in-depth feedback that we received from
external reviewers: Andrew Fong, Bjorn Rabenstein, Charles Border, David Blank-
Edelman, Frossie Economou, James Meickle, Josh Ryder, Mark Burgess, and Russ
Allbery.

We would like to extend special thanks to Cian Synnott, original book team member
and co-conspirator, who left Google before this project was completed but was deeply
influential to it, and Margaret Hamilton, who so graciously allowed us to reference
her story in our preface. Additionally, we would like to extend special thanks to Shy-
laja Nukala, who generously gave of the time of her technical writers and supported
their necessary and valued efforts wholeheartedly.

The editors would also like to personally thank the following people:

Betsy Beyer: To Grandmother (my personal hero), for supplying endless amounts of
phone pep talks and popcorn, and to Riba, for supplying me with the sweatpants nec-
essary to fuel several late nights. These, of course, in addition to the cast of SRE all-
stars who were indeed delightful collaborators.

Chris Jones: To Michelle, for saving me from a life of crime on the high seas and for
her uncanny ability to find manzanas in unexpected places, and to those who've
taught me about engineering over the years.

Jennifer Petoff: To my husband Scott for being incredibly supportive during the two
year process of writing this book and for keeping the editors supplied with plenty of
sugar on our “Dessert Island.”

Niall Murphy: To Léan, Oisin, and Fiachra, who were considerably more patient than
I had any right to expect with a substantially rantier father and husband than usual,
for years. To Dermot, for the transfer offer.

xxiv | Preface

