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How many are your works, O Lord!
In wisdom you made them all;
the earth is full of your creatures.

—Psalm 104:24



Preface

Preface to the Second Edition

In the second edition of this book, much of the material has been rewritten to clarify
the presentation. It also has provided the opportunity for correcting many minor
typographical errors or mistakes. Also, the definition of a chaotic attractor has been
changed to include the requirement that the chaotic attractor is transitive. This
is the usual definition and it eliminates some attractors that should not be called
chaotic. Several new applications are included for systems of differential equations
in Part 1. I would encourage readers to email me with suggestions and further
corrections that are needed.

R. Clark Robinson

March 2012

Preface to the First Edition

This book is intended for an advanced undergraduate course in dynamical sys-
tems or nonlinear ordinary differential equations. There are portions that could
be beneficially used for introductory master level courses. The goal is a treatment
that gives examples and methods of calculation, at the same time introducing the
mathematical concepts involved. Depending on the selection of material covered,
an instructor could teach a course from this book that is either strictly an intro-
duction into the concepts, that covers both the concepts on applications, or that
is a more theoretically mathematical introduction to dynamical systems. Further
elaboration of the variety of uses is presented in the subsequent discussion of the
organization of the book.

The assumption is that the student has taken courses on calculus covering both
single variable and multivariables, a course on linear algebra, and an introductory
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xiv Preface

course on differential equations. From the multivariable calculus, the material on
partial derivatives is used extensively, and in a few places multiple integrals and sur-
face integrals are used. (See Appendix A.l.) Eigenvalues and eigenvectors are the
main concepts used from linear algebra, but further topics are listed in Appendix
A.3. The material from the standard introductory course on differential equations
is used only in Part 1; we assume that students can solve first-order equations by
separation of variables, and that they know the form of solutions from second-order
scalar equations. Students who have taken an introductory course on differential
equations are usually familiar with linear systems with constant coefficients (at
least the real-eigenvalue case), but this material is repeated in Chapter 2, where we
also introduce the reader to the phase portrait. At Northwestern, some students
have taken the course covering part one on differential equations without this in-
troductory course on differential equations; they have been able to understand the
new material when they have been willing to do the extra work in a few areas that
is required to fill in the missing background. Finally, we have not assumed that
the student has had a course on real analysis or advanced calculus. However, it
is convenient to use some of the terminology from such a course, so we include an
appendix with terminology on continuity and topology. (See Appendix A.)

Organization

This book presents an introduction to the concepts of dynamical systems. It
is divided into two parts, which can be treated in either order: The first part
treats various aspects of systems of nonlinear ordinary differential equations, and
the second part treats those aspects dealing with iteration of a function. Each
separate part can be used for a one-quarter course, a one-semester course, a two-
quarter course, or possibly even a year course. At Northwestern University, we have
courses that spend one quarter on the first part and two quarters on the second
part. In a one-quarter course on differential equations, it is difficult to cover the
material on chaotic attractors, even skipping many of the applications and proofs
at the end of the chapters. A one-semester course on differential equations could
also cover selected topics on iteration of functions from Chapters 9-11. In the
course on discrete dynamical systems using Part 2, we cover most of the material
on iteration of one-dimensional functions (Chapters 9-11) in one quarter. The
material on iteration of functions in higher dimensions (Chapters 12-13) certainly
depends on the one-dimensional material, but a one-semester course could mix
in some of the higher dimensional examples with the treatment of Chapters 9-
11. Finally, Chapter 14 on fractals could be treated after Chapter 12. Fractal
dimensions could be integrated into the material on chaotic attractors at the end of
a course on differential equations. The material on fractal dimensions or iterative
function systems could be treated with a course on iteration of one-dimensional
functions.

The main concepts are presented in the first sections of each chapter. These
sections are followed by a section that presents some applications and then by
a section that contains proofs of the more difficult results and more theoretical
material. The division of material between these types of sections is somewhat
arbitrary. The theorems proved at the end of the chapter are restated with their
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original theorem number. The material on competitive populations and predator—
prey systems is contained in one of the beginning sections of the chapters in which
these topics are covered, rather than in the applications at the end of the chapters,
because these topics serve to develop the main techniques presented. Also, some
proofs are contained in the main sections when they are more computational and
serve to make the concepts clearer. Longer and more technical proofs and further
theoretical discussion are presented separately at the end of the chapter.

A course that covers the material from the primary sections, without covering
the sections at the end of the chapter on applications and more theoretical material,
results in a course on the concepts of dynamical systems with some motivation from
applications.

The applications provide motivation and illustrate the usefulness of the con-
cepts. None of the material from the sections on applications is necessary for
treating the main sections of later chapters. Treating more of this material would
result in a more applied emphasis.

Separating the harder proofs allows the instructor to determine the level of
theory of the course taught using this book as the text. A more theoretic course
could consider most of the proofs at the end of the chapters.

Computer Programs

This book does not explicitly cover aspects of computer programming. How-
ever, a few selected problems require computer simulations to produce phase por-
traits of differential equations or to iterate functions. Sample Maple worksheets,
which the students can modify to help with some of the more computational prob-
lems, will be available on the webpage:

http://www.math.northwestern.edu/~clark/dyn-sys.

(Other material on corrections and updates of the book will also be available at
this website.) There are several books available that treat dynamical systems in
the context of Maple or Mathematica: two such books are [Kul02] by M. Kulen-
ovi¢ and [Lyn01] by S. Lynch. The book [Pol04] by J. Polking and D. Arnold
discusses using Matlab to solve differential equations using packages available at
http://math.rice.edu/~dfield. The book [Nus98| by H. Nusse and J. Yorke
comes with its own specialized dynamical systems package.
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Historical Prologue

The theory of differential equations has a long history, beginning with Isaac Newton.
From the early Greeks through Copernicus, Kepler, and Galileo, the motions of
planets had been described directly in terms of their properties or characteristics,
for example, that they moved on approximately elliptical paths (or in combinations
of circular motions of different periods and amplitudes). Instead of this approach,
Newton described the laws that determine the motion in terms of the forces acting
on the planets. The effect of these forces can be expressed by differential equations.
The basic law he discovered was that the motion is determined by the gravitational
attraction between the bodies, which is proportional to the product of the two
masses of the bodies and one over the square of the distance between the bodies.
The motion of one planet around a sun obeying these laws can then be shown to lie
on an ellipse. The attraction of the other planets could then explain the deviation
of the motion of the planet from the elliptic orbit. This program was continued
by Euler, Lagrange, Laplace, Legendre, Poisson, Hamilton, Jacobi, Liouville, and
others.

By the end of the nineteenth century, researchers realized that many nonlinear
equations did not have explicit solutions. Even the case of three masses moving
under the laws of Newtonian attraction could exhibit very complicated behavior
and an explicit solution was not possible (e.g., the motion of the sun, earth, and
moon cannot be given explicitly in terms of known functions). Short term solutions
could be given by power series, but these were not useful in determining long-term
behavior. Poincaré, working from 1880 to 1910, shifted the focus from finding
explicit solutions to discovering geometric properties of solutions. He introduced
many of the ideas in specific examples, which we now group together under the
heading of chaotic dynamical systems. In particular, he realized that a deterministic
system (in which the outside forces are not varying and are not random) can exhibit
behavior that is apparently random (i.e., it is chaotic).

In 1898, Hadamard produced a specific example of geodesics on a surface of
constant negative curvature which had this property of chaos. G. D. Birkhoff

Xvii



xviii Historical Prologue

continued the work of Poincaré and found many different types of long-term limiting
behavior, including the a- and w-limit sets introduced in Sections 4.1 and 11.1. His
work resulted in the book [Bir27| from which the term “dynamical systems” comes.

During the first half of the twentieth century, much work was carried out on
nonlinear oscillators, that is, equations modeling a collection of springs (or other
physical forces such as electrical forces) for which the restoring force depends non-
linearly on the displacement from equilibrium. The stability of fixed points was
studied by several people including Lyapunov. (See Sections 4.5 and 5.3.) The ex-
istence of a periodic orbit for certain self-excited systems was discovered by Van der
Pol. (See Section 6.3.) Andronov and Pontryagin showed that a system of differen-
tial equations was structurally stable near an attracting fixed point, [And37] (i.e.,
the solutions for a small perturbation of the differential equation could be matched
with the solutions for the original equations). Other people carried out research
on nonlinear differential equations, including Bendixson, Cartwright, Bogoliubov,
Krylov, Littlewood, Levinson, and Lefschetz. The types of solutions that could be
analyzed were the ones which settled down to either (1) an equilibrium state (no
motion), (2) periodic motion (such as the first approximations of the motion of the
planets), or (3) quasiperiodic solutions which are combinations of several periodic
terms with incommensurate frequencies. See Section 2.2.4. By 1950, Cartwright,
Littlewood, and Levinson showed that a certain forced nonlinear oscillator had in-
finitely many different periods; that is, there were infinitely many different initial
conditions for the same system of equations, each of which resulted in periodic mo-
tion in which the period was a multiple of the forcing frequency, but different initial
conditions had different periods. This example contained a type of complexity not
previously seen.

In the 1960s, Stephen Smale returned to using the topological and geometric
perspective initiated by Poincaré to understand the properties of differential equa-
tions. He wrote a very influential survey article [Sma67] in 1967. In particular,
Smale’s “horseshoe” put the results of Cartwright, Littlewood, and Levinson in a
general framework and extended their results to show that they were what was later
called chaotic. A group of mathematicians worked in the United States and Europe
to flesh out his ideas. At the same time, there was a group of mathematicians in
Moscow lead by Anosov and Sinai investigating similar ideas. (Anosov generalized
the work of Hadamard to geodesics on negatively curved manifolds with variable
curvature.) The word “chaos” itself was introduced by T.Y. Li and J. Yorke in
1975 to designate systems that have aperiodic behavior more complicated than
equilibrium, periodic, or quasiperiodic motion. (See [Li,75].) A related concept
introduced by Ruelle and Takens was a strange attractor. It emphasized more the
complicated geometry or topology of the attractor in phase space, than the com-
plicated nature of the motion itself. See [Rue71]. The theoretical work by these
mathematicians supplied many of the ideas and approaches that were later used
in more applied situations in physics, celestial mechanics, chemistry, biology, and
other fields.
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The application of these ideas to physical systems really never stopped. One
of these applications, which has been studied since earliest times, is the descrip-
tion and determination of the motion of the planets and stars. The study of the
mathematical model for such motion is called celestial mechanics, and involves a
finite number of bodies moving under the effects of gravitational attraction given
by the Newtonian laws. Birkhoff, Siegel, Kolmogorov, Arnold, Moser, Herman,
and many others investigated the ideas of stability and found complicated behavior
for systems arising in celestial mechanics and other such physical systems, which
could be described by what are called Hamiltonian differential equations. (These
equations preserve energy and can be expressed in terms of partial derivatives of
the energy function.) K. Sitnikov in [Sit60] introduced a situation in which three
masses interacting by Newtonian attraction can exhibit chaotic oscillations. Later,
Alekseev showed that this could be understood in terms of a “Smale horseshoe”,
[Ale68a], [Ale68b], and [Ale69]. The book by Moser, [Mos73|, made this result
available to many researchers and did much to further the applications of horse-
shoes to other physical situations. In the 1971 paper [Rue71] introducing strange
attractors, Ruelle and Takens indicated how the ideas in nonlinear dynamics could
be used to explain how turbulence developed in fluid flow. Further connections
were made to physics, including the periodic doubling route to chaos discovered by
Feigenbaum, [Fei78|, and independently by P. Coullet and C. Tresser, [Cou78].

Relating to a completely different physical situation, starting with the work of
Belousov and Zhabotinsky in the 1950s, certain mathematical models of chemical
reactions that exhibit chaotic behavior were discovered. They discovered some
systems of differential equations that not only did not tend to an equilibrium, but
also did not even exhibit predictable oscillations. Eventually, this bizarre situation
was understood in terms of chaos and strange attractors.

In the early 1920s, A.J. Lotka and V. Volterra independently showed how dif-
ferential equations could be used to model the interaction of two populations of
species, [Lot25] and [Vol31]. In the early 1970s, May showed how chaotic out-
comes could arise in population dynamics. In the monograph [May75|, he showed
how simple nonlinear models could provide “mathematical metaphors for broad
classes of phenomena.” Starting in the 1970s, applications of nonlinear dynamics
to mathematical models in biology have become widespread. The undergraduate
books by Murray [Mur89] and Taubes [Tau01] afford good introductions to bio-
logical situations in which both oscillatory and chaotic differential equations arise.
The books by Kaplan and Glass [Kap95] and Strogatz [Str94] include a large
number of other applications.

Another phenomenon that has had a great impact on the study of nonlinear
differential equations is the use of computers to find numerical solutions. There
has certainly been much work done on deriving the most efficient algorithms for
carrying out this study. Although we do discuss some of the simplest of these,
our focus is more on the use of computer simulations to find the properties of
solutions. E. Lorenz made an important contribution in 1963 when he used a
computer to study nonlinear equations motivated by the turbulence of motion of
the atmosphere. He discovered that a small change in initial conditions leads to
very different outcomes in a relatively short time; this property is called sensitive
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dependence on initial conditions or, in more common language, the butterfly effect.
Lorenz used the latter term because he interpreted the phenomenon to mean that
a butterfly flapping its wings in Australia today could affect the weather in the
United States a month later. We describe more of his work in Chapter 7. It
was not until the 1970s that Lorenz’s work became known to the more theoretical
mathematical community. Since that time, much effort has gone into showing
that Lorenz’s basic ideas about these equations were correct. Recently, Warwick
Tucker has shown, using a computer-assisted proof, that this system not only has
sensitive dependence on initial conditions, but also has what is called a “chaotic
attractor”. (See Chapter 7.) About the same time as Lorenz, Ueda discovered that
a periodically forced Van der Pol system (or other nonlinear oscillator) has what is
now called a chaotic attractor. Systems of this type are also discussed in Chapter
7. (For a later publication by Ueda, see also [Ued92].)

Starting about 1970 and still continuing, there have been many other numer-
ical studies of nonlinear equations using computers. Some of these studies were
introduced as simple examples of certain phenomena. (See the discussion of the
Rossler Attractor given in Section 7.4.) Others were models for specific situations
in science, engineering, or other fields in which nonlinear differential equations are
used for modeling. The book [Enn97] by Enns and McGuire presents many com-
puter programs for investigation of nonlinear functions and differential equations
that arise in physics and other scientific disciplines.

In sum, the last 40 years of the twentieth century saw the growing importance
of nonlinearity in describing physical situations. Many of the ideas initiated by
Poincaré a century ago are now much better understood in terms of the mathematics
involved and the way in which they can be applied. One of the main contributions
of the modern theory of dynamical systems to these applied fields has been the
idea that erratic and complicated behavior can result from simple situations. Just
because the outcome is chaotic, the basic environment does not need to contain
stochastic or random perturbations. The simple forces themselves can cause chaotic
outcomes.

There are three books of a nontechnical nature that discuss the history of
the development of “chaos theory”: the best seller Chaos: Making a New Science
by James Gleick [Gle87], Does God Play Dice?, The Mathematics of Chaos by
Ian Stewart [Ste89], and Celestial Encounters by Florin Diacu and Philip Holmes
[Dia96]. Stewart’s book puts a greater emphasis on the role of mathematicians in
the development of the subject, while Gleick’s book stresses the work of researchers
making the connections with applications. Thus, the perspective of Stewart’s book
is closer to the one of this book, but Gleick’s book is accessible to a broader audience
and is more popular. The book by Diacu and Holmes has a good treatment of
Poincaré’s contribution and the developments in celestial mechanics up to today.
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