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Experimental College Physics has 21 experiments including mechanics, electricity
and optics. It aims to provide “hand-on” experiences of various physical principles and
to augment and supplement the learning and understanding of basic physical principles,
while introducing laboratory procedures, techniques, and apparatus. In so doing,
students become familiar with laboratory equipment, procedures and related scientific
methods. In this book, the theory of physical principles is presented in experiments,
and the predicted result will be tested by experimental measurements. Even those well-
known principles, which may have been tested many times before, are included within
some accepted theoretical or measured values. But to be best, you should imagine that
you are the first person to perform an experiment to test a scientific theory.

Basically, the textbook is designed for students who are taking their first course in
physics, and the order of the subject matter of the experiments is approximately that
found in most standard textbooks for first-year college physics. Moreover, the
apparatus in all the experiments is of simple design and could be found in most physics
laboratories practically. Authors believe that the fundamental principles of physics can
best be learned through the use of simple apparatus. If high precision is required in a
first course, much of the understanding of fundamental principles is sacrificed to
acquiring skill in operating complex equipment.

In addition to the list of apparatus, the instructions for each experiment include a
statement of the purpose of the experiment, an introduction summarizing the physical

principles involved, and directions for the experimental procedures. A description of the



operation and use of the apparatus is included in some of the experiments where such an
explanation seems necessary. Questions which follow some experiments are designed to
aid students in making more careful observations and to train them to analyze these
observations and interpret the results. The authors believe that the answers to these
questions give a very clear indication of the student’s grasp of the experiment, and are a

very important part of the report handed in to the instructor.
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Part [ Introduction to Experimental Uncertainties and Error Analysis

1. No Information without Uncertainty Estimation

X1Y is about 59 minutes from the south campus of Xidian University by car. You can
learn this from the driving directions on Google Maps, and it is a useful piece of
information if you are checking out possible travel bargains. But what if you already have
reservations out of XIY and need to know when to leave campus for the airport? Then
you'd better know that the drive can easily take as little as 45 minutes or as much as an
hour and a half, depending on factors you cannot possibly determine in advance.

Similar comments apply to a vast array of numbers we measure, record, and trade
back and forth with each other in our everyday life. 1 will be off the phone in five
minutes—or maybe two to eight minutes. We set the oven to 350°, knowing that the actual
temperature might be only 330° when the preheat light goes off.

Just about every number in our lives is actually a stand-in for a range of likely values.
Another way of putting this is to say that every value comes with an uncertainty. or an
error bar. 1 will be off the phone in 5% 3 minutes; the oven temperature is 350 =4 25
degrees, and so on. Sometimes a quantity does have zero error bars: I have exactly one
brother. More often, though, numbers have error bars and we ignore them only through
the ease of familiarity.

When a situation is unfamiliar, though, suddenly it can be very important to ask about
the error bars. Without error bars on the travel time to XIY, you may very well miss your
flight. Your dorm room may be about three meters wide, but lugging home that used
couch will seem pretty dumb if the room is actually 3 meters =5 ecm! And it is not just
numerical values that can have uncertainties attached to them.

Uncertainties—how to think about them, estimate them, minimize them, and talk
about them—are a central focus of Physics experiment. We will learn a handful of
statistical definitions and methods, but we will concentrate on whether they make sense
rather than whether we can justify them rigorously. Our goal is that we ourselves should
be able to talk and think reasonably about the experimental situations we encounter in the

lab each time.
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2. What is an Error Bar?

In a laboratory setting, or in any original, quantitative research, we make our
research results meaningful to others by carefully keeping track of all the uncertainties that
might have an appreciable effect on the final result which is the object of our work, Of
course, when we are doing something for the very first time, we do not know beforehand
what the result is going to be or what factors are going to affect it most strongly. Keeping
track of uncertainties is something that has to be done before, during, and after the actual
‘data-taking’ phase of a good experiment. In fact, the best experimental science is often
accomplished in a surprisingly circular process of designing an experiment, performing it,
taking a peek at the data analysis, seeing where the uncertainties are creeping in,
redesigning the experiment, trying again. and so forth. But a good rule is to estimate and
record the uncertainty, or error bar, for every measurement you write down.

What is an error bar and how can you estimate one? An error bar tells you how closely
your measured result should be matched by someone else who sets out to measure the same
quantity you did. If you record the length of a rod as 95.0+0. 05 cm, you are stating that
another careful measurement of that rod is likely to give a length between 94. 95 cm and
95. 05 ecm. The word “likely” is pretty vague, though. A reasonable standard might be to
require an error bar large enough to cover a majority—over 50% —of other measurement
results,

However, it is convenient to have some sort of standard definition of an error bar so
that we can all look at each other’s lab notebooks and quickly understand what is written
there. One common convention is to use “one sigma” error bars; these are error bars which
tell us that 68% of repeated attempts will fall within the stated range. The 68% figure is
not chosen to be weird, but because it is easy to calculate and convenient to work with in
the very common situation of something called ‘Gaussian statistics. > We will not go into
this in detail, but here is one example of how useful this error bar convention can be: for
many, many situations, if 68% of repeated attempts are within one error bar of the initial
result, 95% will be within two error bars. The essential point here is that your error bars
should be large enough to cover a majority, but not necessarily a vast majority, of possible
outcomes.

Finally, an error bar estimates how confident you are in your own measurement or

result. It represents how well you did in your experimental design and execution, not how
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well the group at the next bench did, or how well your lab manual was written. Error bars
are part of your data and must follow logically from what you did and the observations you

made; anything else is fraudulent data-taking.
3. Random Errors, Systematic Errors, and Mistakes

There are three basic categories of experimental issues that students often think of
under the heading of experimental error, or uncertainty. These are random errors,
systematic errors, and mistakes. In fact, as we will discuss in a minute, mistakes do not
count as experimental error, so there are in fact only two basic error categories: random
and systematic. We can understand them by reconsidering our definition of an error bar
from the previous section.

An error bar tells you how closely your measured result should be matched by someone
else who sets out to measure the same quantity you did. How is this mysterious second
experimenter going to measure the same quantity you did? One way would be to carefully
read your notes, obtain your equipment, and repeat your very own procedure as closely as
possible. On the other hand, the second experimenter could be independent minded and
could devise an entirely new but sensible procedure for measuring the quantity you

measured. Either way, the two results are not likely to be exactly the same!
3.1 Random Errors

Random errors usually result from human and from accidental errors. Accidental
errors are brought about by changing experimental conditions that are beyond the control
of the experimenter, such as vibrations in the equipment, changes in the humidity, and
fluctuating temperatures. Human errors involve such things as miscalculations in analyzing
data, the incorrect reading of an instrument, or a personal bias in assuming that particular
readings are more reliable than others. By their very nature, random errors cannot be
quantified exactly since the magnitude of the random errors and their effect on the
experimental values is different for every repetition of the experiment. So statistical

methods are usually used to obtain an estimate of the random errors in the experiment.
3.2 Systematic Errors

A systematic error is an error that will occur consistently in only one direction each
time the experiment is performed, i. e., the value of the measurement will always be

greater (or lesser) than the real value. Systematic errors most commonly arise from defects
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in the instrumentation or from using improper measuring techniques. For example,
measuring a distance using the worn end of a meter stick, using an instrument that is not
calibrated, or incorrectly neglecting the effects of viscosity, air resistance and friction, are
all factors that can result in a systematic shift of the experimental outcome. Although the
nature and the magnitude of systematic errors are difficult to predict in practice, attempt
should be made to quantify their effect whenever possible. In any experiment, care should
be taken to eliminate as many of the systematic and random errors as possible. Proper
calibration and adjustment of the equipment will help reduce the systematic errors leaving
only the accidental and human errors to cause any spread in the data. Although there are
statistical methods that will permit the reduction of random errors, there is little use in

reducing the random errors below the limit of the precision of the measuring instrument,
4. How to Estimate Error Bars in Data

Since we are not going into Gaussian (let alone other) statistics, our definition of an
error bar remains loose enough so that we should not be too concerned over the exact
numerical value we assign to error bars in our experiments. However, we do want to base
our error bars on experimental reality, so they can be useful in clarifying our data analysis
and results in the end. The overall uncertainty of a result tells us how much trust to place
in the specifics of the result. Beyond that, however, identifying the major source(s) of the
final uncertainty can guide us in spending our time and effort productively, should we wish
to redesign the experiment for better results in the future.

So. how do we assign an error bar to a measurement taken in the lab? Several specific
but common situations are covered below. The zeroth rule of error estimation, though, is
that we should always think about the meaning of an error bar and assign an error bar that
makes sense based on that meaning.

One of the simplest sources of uncertainty is the resolution or quoted accuracy of a
measuring device. Many lab devices, such as electrical meters and mass balances, have
resolutions specified by their manufacturers. These device uncertainties can be read off the
device (sometimes on the bottom surface) or in its manual. However, something as simple
as a meter stick also has an effective device resolution. If the stick is marked every
millimeter, for example, then if an object ends between the 101 and 102 mm marks it is
probably unreasonable to expect observers to do any better than choosing which mark is

closer. In this way, an object that is truly 101. 4 mm long would be measured at 101 mm,
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while a 101. 8 mm object would be recorded as 102 mm long. A reasonable error bar for the
device resolution of the meter stick, then, would be £0.5 mm. A device resolution uncertainty
can be estimated for just about any measurement device by considering its construction and
the refiability of a reasonable observer.

Another source of uncertainty, sample variation, becomes important when we measure
a phenomenon that just does not quite come out the same every time. In a hypothetical
bean sprout study, we conduct the experiment on more than one plant because we suspect
there is random variation from one bean sprout to another. Measuring several plants and
taking the mean of their heights seems like a natural way to find out something about
average bean sprout growth. Just as importantly, though, measuring several plants gives
us an idea of how strong the random variation might be and thus how far off the average
might still be from the “true” mean. If we measure twenty plants and all twenty are the
same height to within a millimeter, we can be fairly certain that we know the average bean
sprout height to better than a millimeter (barring systematic errors). On the other hand, if
we measure two plants and their heights are 21. 00 cm and 22. 00 cm, we should be pretty
wary of reporting the overall average to be 21. 50 em. In the next section we will develop
formulas for quantities called the standard deviation and standard error that can be used to
find random uncertainty in a quantity based on repeated sampling like this.

The error estimation techniques we have just discussed apply primarily to random
errors. How can we estimate systematic errors? First we must consider possible causes of
systematic error, then estimate reasonably from theoretical knowledge, additional
experiments, or prior experience how much effect these causes might have. If we are
measuring the length of a metal rod, the length might reasonably depend on temperature.
Perhaps the temperature in the room could be as much as three degrees different from
standard ‘room temperature’ definitions. How much shift could that cause in the rod’s
length? If we have no experience or reference materials to guide us, we could deliberately
cool the rod in a refrigerator, measure the new length, and estimate roughly how much
length change occurs per degree. This technique of deliberately exaggerating an effect to
estimate its significance is often useful in dealing with systematic errors.

There is one more cardinal rule of error sources: “human error” is never a legitimate
source of error. That phrase is completely uninformative, and should never be used as an
insurance or catch-all in discussing an experiment. Humans cause error, of course, but in

specific ways that can be described and quantified.
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5. Sample Mean. Standard Deviation, and Standard Error

In this section we develop formulas to quantify a measurement and its random error,
based on taking the measurement repeatedly in what is supposed to be the same way (this
is sometimes called sampling). This is probably the most mathematical section of our error
analysis discussion, but even here we will give reasons why our formulas are reasonable
without actually rigorously deriving them,

Imagine we sample a quantity repeatedly, yielding measurements (a,. xs,s **+, 2y).
While we try to make all the measurements identical, random variation shows up in our
list, so to estimate an overall result we quite naturally take the mean.

N
2.5
e =1
z=5" (1.

Perhaps we have done N= 10 repetitions. If we kept going to N=20 how would the
value of x change? What if we kept going even longer? In other words, how much
uncertainty is left in our measurement because of our limited sampling of the random
variation? To answer this question, it is useful to step back a bit first.

When we want to combine all N measurements into a single representative result .., it is

easy and natural to take the mean: z,.,=z. But why is z, as defined in Equation (1.1), really
the best candidate for x,,? It would be nice to come up with some measure of deviation
which is minimized, sample-wide, by this choice. Perhaps we should be trying to minimize
the distance between the individual data points and z,.,.

N

That is, maybe we should minimize E | z, — 24y | . This is a nice thought, but it
1=1

turns out that :rm,=; does not minimize this particular deviation measure++-so this must not
be the right deviation measure to think about if we are taking sample means. On the other

N
hand, it turns out that Z (x, — xny)" 1s minimized by taking z.,=z. To see this, we can

i=1

differentiate the expression with respect to z,,, and set the derivative equal to zero:
e
5
dl.n:p

N
pages —x,w)?): 0 Tp="73—=1x (1.2)
Indeed, the sample mean is the representative value that minimizes the sum of the

N
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squares of the individual deviations. So if the sample mean is a good measure of the
overall result, something related to this summed-squared deviation should be a good
measure of the overall result’s uncertainty!

Let us begin by imagining that we take an (N+1)" measurement. How far from the
previous mean is this single, new measurement likely to be? Well, we can use the summed-
squared deviation to help us guess, but probably we should divide the sum by N first to

1

N
N E (x, — x)* . This still is not a good measure of

=1

turn it into a mean-squared deviation:

deviation. since it is still squared—if the measurement is a length in centimeters, for

example. this thing is in cm® so it can not be a deviation. Therefore we will take the square

N

short, and it is a useful measure of how far from the mean a single measurement is likely to

N
root: \/——Z (x;, — x)?% is called the root mean square deviation, or r. m.s. deviation for

=1

fall. It turns out that, by doing proper Gaussian statistics, one comes up with a slightly
more generous (i. e. , larger) estimate of individual deviation from the mean. Thus we

define a quantity called the standard deviation :

-
std . deviation=a=\/ﬁ2 (z, — 1)? (1.3)

i=1

The standard deviation is used to estimate how far from the mean a single measurement is
likely to fall.

Originally, though, we were trying to answer a different question. We wanted to
know how far our calculated mean was likely to be from the true, or ideally and infinitely
well sampled, mean. This is the uncertainty of our final (mean) result, and we call it the
standard error or standard deviation of the mean. 1{ we increase the number of samples
N. the standard deviation defined in Equation (1. 3) will not in general get smaller. But
certainly taking more measurements in our sample ought improve the standard error. Each
new measurement we add won't necessarily make x closer to the ideal, but in general we

will creep and wander towards the ideal value. Therefore, the standard error is given by:

1 N
_E T — 2
td, Err = 2 = N—15 iy (1. 4)
std . T .
W \/N

To sum up this rather lengthy discussion of repeated trials or samples:




