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Preface

Rust is a language for systems programming.

This bears some explanation these days, as systems programming is unfamiliar to
most working programmers. Yet it underlies everything we do.

You close your laptop. The operating system detects this, suspends all the running
programs, turns off the screen, and puts the computer to sleep. Later, you open the
laptop: the screen and other components are powered up again, and each program is
able to pick up where it left off. We take this for granted. But systems programmers
wrote a lot of code to make that happen.

Systems programming is for:

» Operating systems

« Device drivers of all kinds

« Filesystems

« Databases

« Code that runs in very cheap devices, or devices that must be extremely reliable
« Cryptography

« Media codecs (software for reading and writing audio, video, and image files)

« Media processing (for example, speech recognition or photo editing software)

« Memory management (for example, implementing a garbage collector)

« Text rendering (the conversion of text and fonts into pixels)

« Implementing higher-level programming languages (like JavaScript and Python)
 Networking

« Virtualization and software containers




o Scientific simulations

« Games

In short, systems programming is resource-constrained programming. It is program-
ming when every byte and every CPU cycle counts.

The amount of systems code involved in supporting a basic app is staggering.

This book will not teach you systems programming. In fact, this book covers many
details of memory management that might seem unnecessarily abstruse at first, if you
haven't already done some systems programming on your own. But if you are a seas-
oned systems programmer, you'll find that Rust is something exceptional: a new tool
that eliminates major, well-understood problems that have plagued a whole industry
for decades.

Who Should Read This Book

If you're already a systems programmer, and you're ready for an alternative to C++,
this book is for you. If youre an experienced developer in any programming lan-
guage, whether that's C#, Java, Python, JavaScript, or something else, this book is for
you too.

However, you don't just need to learn Rust. To get the most out of the language, you
also need to gain some experience with systems programming. We recommend read-
ing this book while also implementing some systems programming side projects in
Rust. Build something you've never built before, something that takes advantage of
Rust’s speed, concurrency, and safety. The list of topics at the beginning of this preface
should give you some ideas.

Why We Wrote This Book

We set out to write the book we wished we had when we started learning Rust. Our
goal was to tackle the big, new concepts in Rust up front and head-on, presenting
them clearly and in depth so as to minimize learning by trial and error.

Navigating This Book

The first two chapters of this book introduce Rust and provide a brief tour before we
move on to the fundamental data types in Chapter 3. Chapters 4 and 5 address the
core concepts of ownership and references. We recommend reading these first five
chapters through in order.

Chapters 6 through 10 cover the basics of the language: expressions (Chapter 6),
error handling (Chapter 7), crates and modules (Chapter 8), structs (Chapter 9), and

xvi | Preface



enums and patterns (Chapter 10). It’s all right to skim a little here, but don't skip the
chapter on error handling. Trust us.

Chapter 11 covers traits and generics, the last two big concepts you need to know.
Traits are like interfaces in Java or C#. They’re also the main way Rust supports inte-
grating your types into the language itself. Chapter 12 shows how traits support oper-
ator overloading, and Chapter 13 covers many more utility traits.

Understanding traits and generics unlocks the rest of the book. Closures and itera-
tors, two key power tools that you won't want to miss, are covered in Chapters-14 and
15, respectively. You can read the remaining chapters in any order, or just dip into
them as needed. They cover the rest of the language: collections (Chapter 16), strings
and text (Chapter 17), input and output (Chapter 18), concurrency (Chapter 19),
macros (Chapter 20), and unsafe code (Chapter 21).

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip or suggestion.

This icon signifies a general note.
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This icon indicates a warning or caution.

\

-

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/programming_rust.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming Rust by Jim Blandy
and Jason Orendorff (O'Reilly). Copyright 2018 Jim Blandy and Jason Orendorff,
978-1-491-92728-1”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Safari

. Safari (formerly Safari Books Online) is a membership-based
% training and reference platform for enterprise, government,
educators, and individuals.

Safa

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.
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How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/programming-rust.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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