O'REILLY

Programming

| l“;‘!
i
| },“\!\

Jim Blandy, Jason Orendorff &
% bR 'F HiRit

~

Rust {IE wam

Programming Rust

Jim Blandy, Jason Orendorff %

Beijing + Boston + Farnham + Sebastopol « Tokyo OREILLY®

O'Reilly Media, Inc 3%t R B K 3t ARAL th R

MR REAFHRE

BB ERS% B (CIP) #iE

Rust % 2 : %€ 3C/ () 3% 4 - 4 22 3 (Jim Blandy),
() FERR - B 22 Z K (Jason Orendorff), — L EIA. —5g
B RBE RS A, 2018.7

15 % JF 3 : Programming Rust

ISBN 978 —7-5641 - 7733 -1

[.OR [.0O%F: Q@F: I.OBFES
—BFRH-¥E V. OTP312

AR B B4 CIP 3088 4% 7 (2018) %5 100035 2
B :10-2018 - 111 &

© 2017 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2018. Authorized reprint of the original English edition, 2018 O'Reilly Media, Inc., the owner of all
rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3 L7 sl O'Reilly Media, Inc. # ¥ 2017,

ﬁi%@m@ﬁ@ki&mgammmn&%%m%amﬁ%%ﬁﬂﬂﬁﬁﬁﬁéﬁﬁ%
HE O'Reilly Media, Inc.## =T ,

HRAFT A o R A4 @5 5T A 45 6942 AT 30 5 Ao o 3 RAFETH X B 4.

Rust 4i £ L EIRRD

R AT« R B K2 R

o b BRI 25 HR4i:210096
HOM AN YL

™ Hk: http//www .seupress.com

HL T MR {4 : press@ seupress.com

Rl = N T SR B = B R A BR 2
s IBTRERXOBOZEK 16 FF A
: 39

: 764 T

: 20184F 7 HE5 1 |

: 2018 4F 7 A &5 1 WERRI

: ISBN 978 = 7- 5641 - 7733 - 1

: 118.00 7o

MEFILFMNIHE
S odn S¢S E

AAEBEFORFRE. FERSERWHE, RiF (LD . 025- 83791830

Preface

Rust is a language for systems programming.

This bears some explanation these days, as systems programming is unfamiliar to
most working programmers. Yet it underlies everything we do.

You close your laptop. The operating system detects this, suspends all the running
programs, turns off the screen, and puts the computer to sleep. Later, you open the
laptop: the screen and other components are powered up again, and each program is
able to pick up where it left off. We take this for granted. But systems programmers
wrote a lot of code to make that happen.

Systems programming is for:

» Operating systems

« Device drivers of all kinds

« Filesystems

« Databases

« Code that runs in very cheap devices, or devices that must be extremely reliable
« Cryptography

« Media codecs (software for reading and writing audio, video, and image files)

« Media processing (for example, speech recognition or photo editing software)

« Memory management (for example, implementing a garbage collector)

« Text rendering (the conversion of text and fonts into pixels)

« Implementing higher-level programming languages (like JavaScript and Python)
 Networking

« Virtualization and software containers

o Scientific simulations

« Games

In short, systems programming is resource-constrained programming. It is program-
ming when every byte and every CPU cycle counts.

The amount of systems code involved in supporting a basic app is staggering.

This book will not teach you systems programming. In fact, this book covers many
details of memory management that might seem unnecessarily abstruse at first, if you
haven't already done some systems programming on your own. But if you are a seas-
oned systems programmer, you'll find that Rust is something exceptional: a new tool
that eliminates major, well-understood problems that have plagued a whole industry
for decades.

Who Should Read This Book

If you're already a systems programmer, and you're ready for an alternative to C++,
this book is for you. If youre an experienced developer in any programming lan-
guage, whether that's C#, Java, Python, JavaScript, or something else, this book is for
you too.

However, you don't just need to learn Rust. To get the most out of the language, you
also need to gain some experience with systems programming. We recommend read-
ing this book while also implementing some systems programming side projects in
Rust. Build something you've never built before, something that takes advantage of
Rust’s speed, concurrency, and safety. The list of topics at the beginning of this preface
should give you some ideas.

Why We Wrote This Book

We set out to write the book we wished we had when we started learning Rust. Our
goal was to tackle the big, new concepts in Rust up front and head-on, presenting
them clearly and in depth so as to minimize learning by trial and error.

Navigating This Book

The first two chapters of this book introduce Rust and provide a brief tour before we
move on to the fundamental data types in Chapter 3. Chapters 4 and 5 address the
core concepts of ownership and references. We recommend reading these first five
chapters through in order.

Chapters 6 through 10 cover the basics of the language: expressions (Chapter 6),
error handling (Chapter 7), crates and modules (Chapter 8), structs (Chapter 9), and

xvi | Preface

enums and patterns (Chapter 10). It’s all right to skim a little here, but don't skip the
chapter on error handling. Trust us.

Chapter 11 covers traits and generics, the last two big concepts you need to know.
Traits are like interfaces in Java or C#. They’re also the main way Rust supports inte-
grating your types into the language itself. Chapter 12 shows how traits support oper-
ator overloading, and Chapter 13 covers many more utility traits.

Understanding traits and generics unlocks the rest of the book. Closures and itera-
tors, two key power tools that you won't want to miss, are covered in Chapters-14 and
15, respectively. You can read the remaining chapters in any order, or just dip into
them as needed. They cover the rest of the language: collections (Chapter 16), strings
and text (Chapter 17), input and output (Chapter 18), concurrency (Chapter 19),
macros (Chapter 20), and unsafe code (Chapter 21).

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip or suggestion.

This icon signifies a general note.

Preface | xvii

This icon indicates a warning or caution.

\

-

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/programming_rust.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming Rust by Jim Blandy
and Jason Orendorff (O'Reilly). Copyright 2018 Jim Blandy and Jason Orendorff,
978-1-491-92728-1”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Safari

. Safari (formerly Safari Books Online) is a membership-based
% training and reference platform for enterprise, government,
educators, and individuals.

Safa

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

wiii | Preface

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/programming-rust.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

The book you are holding has benefited greatly from the attention of our official tech-
nical reviewers: Brian Anderson, Matt Brubeck, J. David Eisenberg, and Jack Moffitt.

Many other unofficial reviewers read early drafts and provided invaluable feedback.
We would like to thank Eddy Bruel, Nick Fitzgerald, Michael Kelly, Jeffrey Lim, Jakob
Olesen, Gian-Carlo Pascutto, Larry Rabinowitz, Jaroslav Snajdr, and Joe Walker for
their thoughtful comments. Jeff Walden and Nicolas Pierron were especially generous
with their time, reviewing almost the entire book. Like any programming venture, a
programming book thrives on quality bug reports. Thank you.

Morzilla was extremely accommodating of our work on this project, even though it fell
outside our official responsibilities and competed with them for our attention. We are
grateful to our managers, Dave Camp, Naveed Thsanullah, Tom Tromey, and Joe
Walker, for their support. They take a long view of what Mozilla is about; we hope
these results justify the faith they placed in us.

We would also like to express our appreciation for everyone at O'Reilly who helped
bring this project to fruition, especially our editors Brian MacDonald and Jeff Bleiel.

Preface | xix

Most of all, our heartfelt thanks to our wives and children for their unwavering love,
enthusiasm, and patience.

xx | Preface

Table of Contents

o] 0 7T - PP

e WY RS x o i o s e s e s o0 sows stoe score i a aie wanm wime won o .0 o o P 8 oo e
Type Safety

2, AToUrof RUSt....ccovenunnrnnnnnseinsisiosennennunnteesssonssnsvennsrneoness

Downloading and Installing Rust

A Simple Function

Writing and Running Unit Tests

Handling Command-Line Arguments

A Simple Web Server

Concurrency
What the Mandelbrot Set Actually Is
Parsing Pair Command-Line Arguments
Mapping from Pixels to Complex Numbers
Plotting the Set
Writing Image Files
A Concurrent Mandelbrot Program
Running the Mandelbrot Plotter
Safety Is Invisible

3. BASIC TYPEE. vix ecacx 5 mim womim mus mges o » 1 wimsm wi@sd wis's wrm s ik a'in wbemims Biay ovn o miim doos Sima 6
Machine Types
Integer Types
Floating-Point Types
The bool Type
Characters
Tuples

1

10
11
12
17
23
24
28
31
32
33
35
40
41

43
46
47
50
51
52
54

Pointer Types 55

References 56
Boxes 56
Raw Pointers 57
Arrays, Vectors, and Slices 57
Arrays 58
Vectors 59
Building Vectors Element by Element 62
Slices 62
String Types 64
String Literals 64
Byte Strings 65
Strings in Memory 65
String 67
Using Strings 68
Other String-Like Types 68
Beyond the Basics 69
4, Ownership......cooviiieiiniiiiiiiiiieiiiiiiieen, R BTG V-8 W 9 8 R n
Ownership 73
Moves 77
More Operations That Move 82
Moves and Control Flow 84
Moves and Indexed Content 84
Copy Types: The Exception to Moves 86
Rc and Arc: Shared Ownership 90
B TRBIGEOINCRS .« . s o0 v wiv 00 si00 wms in o SiFmmsas sty swimilo wess g 6 536 B0 10 538 klm 93
References as Values 97
Rust References Versus C++ References 97
Assigning References 98
References to References 99
Comparing References _ 99
References Are Never Null 100
Borrowing References to Arbitrary Expressions 100
References to Slices and Trait Objects 101
Reference Safety 101
Borrowing a Local Variable 101
Receiving References as Parameters 105
Passing Referencesas Arguments 107
Returning References 107
Structs Containing References 109

iv | Tableof Contents

Distinct Lifetime Parameters
Omitting Lifetime Parameters
Sharing Versus Mutation
Taking Arms Against a Sea of Objects

6. Expressions........

-------------------------------- sessass N s Es IR OIRRREROSTS

An Expression Language
Blocks and Semicolons

Declarations
if and match
if let
Loops
return Expressions

Why Rust Has loop

Function and Method Calls

Fields and Elements

Reference Operators

Arithmetic, Bitwise, Comparison, and Logical Operators

Assignment
Type Casts
Closures

Precedence and Associativity

Onward

7. ErrorHandling............... osie iy S ey g6 s i g o Sk WA B 8 8 R $ e aare S

Panic
Unwinding
Aborting

Result

Catching Errors

Result Type Aliases

Printing Errors

Propagating Errors
Working with Multiple Error Types
Dealing with Errors That “Can’t Happen”

Ignoring Errors

Handling Errors in main()
Declaring a Custom Error Type

Why Results?

8. Crates and Modules.
Crates

111
112
114
121

123
123
124
126
127
129
130
132
133
134
135
137
137
138
139
140
140
142

145
145
146
147
148
148
150
150
152
153
155
156
156
157
158

161
161

Table of Contents

| v

10.

Build Profiles
Modules
Modules in Separate Files
Paths and Imports
The Standard Prelude
Items, the Building Blocks of Rust
Turning a Program into a Library
The src/bin Directory
Attributes
Tests and Documentation
Integration Tests
Documentation
Doc-Tests
Specifying Dependencies
Versions
Cargo.lock
Publishing Crates to crates.io
Workspaces
More Nice Things

N (1T« (S

Named-Field Structs

Tuple-Like Structs

Unit-Like Structs

Struct Layout

Defining Methods with impl

Generic Structs

Structs with Lifetime Parameters
Deriving Common Traits for Struct Types
Interior Mutability

Enums and Patterns........ 1551050 § 18 8 518 5065 o mom imre ers v a8

Enums
Enums with Data
Enums in Memory
Rich Data Structures Using Enums
Generic Enums
Patterns

Literals, Variables, and Wildcards in Patterns

Tuple and Struct Patterns
Reference Patterns
Matching Multiple Possibilities

164
165
166
167
169
170
172
174
175
178
180
181
183
185
186
187
188
190
191

193
193
196
197
197
198
202
203
204
205

21
212
214
215
216
218
221
223
225
226
229

vi

| Table of Contents

1.

12.

13.

Pattern Guards

@ patterns

Where Patterns Are Allowed

Populating a Binary Tree
The Big Picture

Traits ANd GENEKICS. . vvvererrrnnnnessssrrnnnussessasasenenseses

Using Traits
Trait Objects
Trait Object Layout
Generic Functions
Which to Use
Defining and Implementing Traits
Default Methods
Traits and Other People’s Types
Self in Traits
Subtraits
Static Methods
Fully Qualified Method Calls
Traits That Define Relationships Between Types
Associated Types (or How Iterators Work)
Generic Traits (or How Operator Overloading Works)
Buddy Traits (or How rand::random() Works)
Reverse-Engineering Bounds
Conclusion

Operator OVerloading.cuuvuruenerscnsrsunnnrensnnnnreeees

Arithmetic and Bitwise Operators
Unary Operators
Binary Operators
Compound Assignment Operators
Equality Tests
Ordered Comparisons
Index and IndexMut
Other Operators

Uty TRAIES. . o v vvevveneeencnssnsnensn s snns s

Drop

Sized

Clone

Copy

Deref and DerefMut

229
230
230
232
233

235
237
238
239
240
243
245
246
247
249
250
251
252
253
254
257
258
260
263

265
266
268
269
270
272
275
277
280

281
282
285
287
289
289

-

able of Contents

vii

14,

15.

Default

AsRef and AsMut
Borrow and BorrowMut
From and Into
ToOwned

Borrow and ToOwned at Work: The Humble Cow

Closures..........cuv.... Cereeeriaeeaas B 5 W B0 siay o mire wi o mi s SRl s

Capturing Variables
Closures That Borrow
Closures That Steal

Function and Closure Types

Closure Performance

Closures and Safety
Closures That Kill
FnOnce
FnMut

Callbacks

Using Closures Effectively

(£ 111 £ S

The Iterator and Intolterator Traits
Creating Iterators

iter and iter_mut Methods

Intolterator Implementations

drain Methods

Other Iterator Sources
Iterator Adapters

map and filter

filter_map and flat_map

scan

take and take_while

skip and skip_while

peekable

fuse

Reversible Iterators and rev

inspect

chain

enumerate

zip

by_ref

cloned

292
294
296
297
300
300

303
305
306
306
308
310
311
312
312
314
316
319

321
322
324
324
325
327
328
330
330
332
335
335
336
337
338
339
340
341
341
342
342
344

viii

| Table of Contents

16.

cycle
Consuming Iterators
Simple Accumulation: count, sum, product
max, min
max_by, min_by
max_by_key, min_by_key
Comparing Item Sequences
any and all
position, rposition, and ExactSizelterator
fold
nth
last
find
Building Collections: collect and FromIterator
The Extend Trait
partition
Implementing Your Own Iterators

COllECHIOMS. « v v e eeeenenenesenessssanansssssnsssnssssssssssssssasnsnans

Overview
Vec<T>
Accessing Elements
Iteration
Growing and Shrinking Vectors
Joining
Splitting
Swapping
Sorting and Searching
Comparing Slices
Random Elements
Rust Rules Out Invalidation Errors
VecDeque<T>
LinkedList<T>
BinaryHeap<T>
HashMap<K, V> and BTreeMap<K, V>
Entries
Map Iteration
HashSet<T> and BTreeSet<T>
Set Iteration
When Equal Values Are Different
Whole-Set Operations
Hashing

344
345
345
346
346
347
347
348
348
349
350
350
351
351
353
353
354

359
360
361
362
364
364
367
368
370
370
372
373
373
374
376
377
378
381
383
384
384
385
385
387

Table of Contents

| ix

Using a Custom Hashing Algorithm 388

Beyond the Standard Collections 389
TE SRS AG TOUE. .« + wix oo i 510 & 50w w5 s w30 5 1628 B S 50 B O 6 . s 39
Some Unicode Background 392
ASCII, Latin-1, and Unicode 392
UTE-8 392
Text Directionality 394
Characters (char) 394
Classifying Characters 395
Handling Digits 395
Case Conversion for Characters 396
Conversions to and from Integers 396
String and str 397
Creating String Values 398
Simple Inspection 398
Appending and Inserting Text 399
Removing Text 401
Conventions for Searching and Iterating 401
Patterns for Searching Text 402
Searching and Replacing 403
Iterating over Text 403
Trimming 406
Case Conversion for Strings 406
Parsing Other Types from Strings 406
Converting Other Types to Strings 407
Borrowing as Other Text-Like Types 408
Accessing Text as UTF-8 409
Producing Text from UTEF-8 Data 409
Putting Off Allocation 410
Strings as Generic Collections 412
Formatting Values 413
Formatting Text Values 414
Formatting Numbers ' 415
Formatting Other Types 417
Formatting Values for Debugging 418
Formatting Pointers for Debugging 419
Referring to Arguments by Index or Name 419
Dynamic Widths and Precisions 420
Formatting Your Own Types 421
Using the Formatting Language in Your Own Code 423
Regular Expressions 424

x | Tableof Contents

