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Imperial, and US customary), please refer to the reference book by
the same author:

Cardarelli, F. (2005) Encyclopaedia of Scientific Units, Weights, and
Measures. Their SI Equivalences and Origins. Springer, London New
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Despite the wide availability of several comprehensive series in
materials sciences and metallurgy, it is difficult to find grouped
properties either on metals and alloys, traditional and advanced
ceramics, refractories, polymers and elastomers, composites, min-
erals and rocks, soils, woods, cement, and building materials in
a single-volume source book.

Actually, the purpose of this practical and concise reference book
is to provide key scientific and technical materials properties and
data to materials scientists, metallurgists, engineers, chemists, and
physicists as well as to professors, technicians, and students work-
ing in a broad range of scientific and technical fields.

The classes of materials described in this handbook are as follows:

(i)  metals and their alloys;

(ii)  semiconductors;

(iii)  superconductors;

(iv)  magnetic materials; =
(v) dielectrics and insulators;

(vi) miscellaneous electrical materials (e.g., resistors, thermo-
couples, and industrial electrode materials);

(vii) ceramics, refractories, and glasses;
(viii) polymers and elastomers;

(ix)  minerals, ores, and gemstones;

(x) rocks and meteorites;

(xi) soils and fertilizers;

(xii) timbers and woods;

(xiii) cement and concrete;

(xiv) building materials;

(xv) fuels, propellants, and explosives;
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(xvi) composites;
(xvii) gases;
(xviii) liquids.
Particular emphasis is placed on the properties of the most common industrial materials

in each class. The physical and chemical properties usually listed for each material are as
follows:

(i) physical (e.g., density, viscosity, surface tension);

(ii)  mechanical (e.g., elastic moduli, Poisson’s ratio, yield and tensile strength, hardness,
fracture toughness);

(iii)  thermal (e.g., melting and boiling point, thermal conductivity, specific heat capacity,
coefficients of thermal expansion, spectral emissivities);

(iv)  electrical (e.g., resistivity, relative permittivity, loss tangent factor);

(v)  magnetic (e.g., magnetization, permeability, retentivity, coercivity, Hall constant);

(vi)  optical (e.g., refractive indices, reflective index, dispersion, transmittance);

(vii) electrochemical (e.g., Nernst standard electrode potential, Tafel slopes, specific cap-
acity, overpotential);

(viii) miscellaneous (e.g., relative abundances, electron work function, thermal neutron
cross section, Richardson constant, activity, corrosion rate, flammability limits).

Finally, detailed appendices provide additional information (e.g., properties of the pure
chemical elements, thermochemical data, crystallographic calculations, radioactivity calcula-
tions, prices of metals, industrial minerals and commodities), and an extensive bibliography
completes this comprehensive guide. The comprehensive index and handy format of the
book enable the reader to locate and extract the relevant information quickly and easily.
Charts and tables are all referenced, and tabs are used to denote the different sections of the
book. It must be emphasized that the information presented here is taken from several sci-
entific and technical sources and has been meticulously checked and every care has been
taken to select the most reliable data.
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Semiconductors

5.1 Band Theory of Bonding in Crystalline Solids

The theory of chemical bonding in crystalline solids such as pure
metals and alloys, insulators, and semiconductor materials may be
well understood by an expansion of the linear combination of
atomic orbitals. Actually, the atomic orbitals (AO) of two atoms
could be combined together to form bonding and antibonding mo-
lecular orbitals (MO) symbolized by o and o%, respectively. In the
case of three neighboring atoms, this creates a string of atoms with
bonding that connects all three. Hence, there appear a bonding
orbital, an antibonding orbital, and a new orbital called a nonbond-
ing orbital. Essentially a nonbonding orbital is an orbital that neither
increases nor decreases the net bonding energy in the molecule. The
important feature here is that three atomic orbitals must produce
three molecular orbitals. Hence, the total number of orbitals must
remain constant. If we apply this concept by considering combina-
tions of four atoms, it will give four molecular orbitals, two bonding
and two antibonding. Notice that the two bonding and two anti-
bonding orbitals do not have exactly the same energy. The lower
bonding orbital is slightly more bonding than the other, and, simi-
larly, one antibonding orbital is slightly more antibonding than the
other. As a general rule, if we consider a large number of atoms, N,
where N could have an order of magnitude similar to that of Avo-
gadro’s number, it will lead to the combination of a large number of
bonding and antibonding orbitals. These orbitals will be so close
together in energy that they will begin to overlap, creating a definite
band of bonding (i.e., highest occupied (HO) energy band or valence
band) and a band of antibonding orbitals (i.e., lowest unoccupied
(LU) or conduction band). The empty energy region between the
valence and conduction bands is called the energy-band gap. These
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definitions arise because electrons that enter the antibonding band are free to move about the
crystal under an electric field (i.e., electrical conduction). It is the existence of valence and
conduction bands that explains the electrical and optical properties of crystalline solids. The
Fermi level, with an energy E,, is a level whose probability of being occupied by an electron is
1/2. The Fermi level is the highest occupied state at absolute zero (i.e., —-273.15°C).

5.2 Electrical Classification of Solids

Atoms of a metal have many unoccupied levels with similar energies. A large number of
mobile electric charge carriers are able to move across the material when an electrical poten-
tial difference (i.e., voltage) is applied. In a semiconductor or insulator, the valence band is
completely filled with electrons in bonding states, so that conduction cannot occur. There
are no vacant levels of similar energy on neighboring atoms. At absolute zero, its antibond-
ing states (i.e., the conduction band) are completely empty, with no electrons there able to
conduct electricity. For this reason, insulators cannot conduct. In the case of semiconduc-
tors, as the temperature increases, electrons in the valence band acquire, due to the
Brownian thermal motion, sufficient kinetic energy to be promoted across the energy-band
gap into the conduction band. When this occurs, these promoted electrons can move and
conduct electricity. Therefore, the narrower the energy-band gap, the easier it is for electrons
to jump to the conduction band. Hence, according to the theory of bands, in crystalline sol-
ids, it is possible to classify solids into three distinct categories of materials (Figure 5.1):

(i)  Solids that exhibit a large energy-band gap above 3.0 eV (i.e., 290 kJ/mol) are called
electric insulators.

(ii) Solids with an energy-band gap between 0.01 and 3.0 eV (i.e., 0.965 to 290 kJ/mol) are
said to be semiconductors.

(iii) Solids with effectively no gap (i.e., zero gap) or a gap below 0.001 eV are called conduc-
tors (i.e., pure metals and most alloys).

Electronic energy

A

I Conduction band
B valence band
[] Energyband gap

E
B Ll i
- E( E(
Metal Semiconductors Insulators
(MEg<0eV) (0<AEg < 3eV) (3eV<Ag)

Figure 5.1. Electrical classification of solids
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For instance, the most common orders of magnitude for energy-band gaps are 5.3 eV
(511 kJ/mol) for diamond-type Ia, showing its excellent electric insulating properties, and
1.04 eV (i.e., 100 kJ/mol) for pure silicon (Si) monocrystal used as semiconductors and
0.69 eV (i.e., 67 kJ/mol) for pure germanium (Ge) crystals. The first two examples are both
intrinsic semiconductors. Moreover, electrical conductivity of materials is strongly tempera-
ture dependent. In fact, as the temperature increases, the conductivity of metals decreases,
while the electrical conductivity of pure semiconductors and insulators increases.

A general trend of the properties of chemical elements in the periodic table is that the
metallic character of the chemical elements increases when moving from the upper right to the
left and bottom of the periodic chart. Therefore, it would be expected that the most metallic
elements would be found in the lower left corner of the table and the least metallic in the upper
right. However, there is a gradual transition of properties from metallic to nonmetallic ele-
ments when moving to the top right of the periodic table. This rule of the thumb can be useful to
compare quickly the electrical properties of two elements. The two intermediate chemical
elements of group IVA(14) of the periodic chart exhibit properties that are intermediate be-
tween metallic (e.g., Sn and Pb) and nonmetallic (e.g., C and diamond) and hence can be char-
acterized as semiconductors (e.g., Si and Ge). Actually these elements exhibit the diamond
crystal structure, and both pure silicon and germanium behave as perfect insulators at absolute
zero temperature (-273.15°C), but at moderate temperatures their resistance to the flow of
electricity decreases measurably. Since they never become good conductors, they are classified
as electrical semiconductors (sometimes called semimetals or metalloids in old textbooks).

5.3 Semiconductor Classes

Semiconductors are defined as crystalline or amorphous solid materials that carry an electric
current by electromigration of both electrons and holes and have an energy-band gap of
between 0.0 and 3.0 eV. The main characteristic of semiconductors, by contrast with metals,
is the exponential rise of the electric conductivity with the increase of temperature. More-
over, another important property of semiconductors is their ability to decrease their electri-
cal resistivity at a given temperature by doping, i.e., introducing a definite amount of traces
of electrically active impurities. As a general rule, semiconductors have electrical resistivities
with values between 10 pQ.cm and 10 MQ.cm. However, the semiconductors group can also
be split into three main groups:

(i) intrinsic or elemental semiconductors;
(ii) extrinsic doped or type-p semiconductors and extrinsic doped of type-n semiconductors;
(iii) extrinsic or compound semiconductors.

5.3.1 Intrinsic or Elemental Semiconductors

Intrinsic semiconductive materials and intrinsic semiconductors are solids having an en-
ergy-band gap of between 0 and 3eV and hence are electrical insulator under normal condi-
tions, but they can become good electrical conductors under certain circumstances such as
temperature increase or under electromagnetic irradiation. Intrinsic semiconductors are
especially the pure elements of group IVA(14) of Mendeleev’s periodic chart., i.e., silicon
(Si), germanium (Ge), and alpha-tin (0.-Sn), with intentional doping and having a diamond
crystal space lattice structure. Owing to their electronic configuration, the atoms in this class
have exactly enough outer-shell electrons ns’np’ to fill the valence or bonding band while the




