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Preface to the First Edition

Traditionally, field théory had its main thrust of development in high
energy physics. Consequently, the conventional field theory courses
are taught with a heavy emphasis on high energy physics. Over the
years, however, it has become quite clear that the methods and tech-
niques of field theory are widely applicable in many areas of physics.
The canonical quantization methods, which is how conventional field
theory courses are taught, do not bring out this feature of field the-
ory. A path integral description of field theory is the appropriate
setting for this. It is with this goal in mind, namely, to make gradu-
ate students aware of the applicability of the field theoretic methods
to various areas, that the Department of Physics and Astronomy at
the University of Rochester introduced a new one semester course on
field theory in Fall 1991.

This course was aimed at second year graduate students who had
already taken a one year course on nonrelativistic quantum mechan-
ics but had not necessarily specialized into any area of physics and
these lecture notes grew out of this course which I taught. In fact,
the lecture notes are identical to what was covered in the class. Even
in the published form, I have endeavored to keep as much of the de-
tailed derivations of various results as I could — the idea being that
a reader can then concentrate on the logical development of concepts
without worrying about the technical details. Most of the concepts
were developed within the context of quantum mechanics — which
the students were expected to be familiar with — and subsequently
these concepts were applied to various branches of physics. In writ-
ing these lecture notes, I have added some references at the end of
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viii Field Theory: A Path Integral Approach

every chapter. They are only intended to be suggestive. There is so
much literature that is available in this subject that it would have
been impossible to include all of them. The references are not meant
to be complete and I"apologize to many whose works I have not cited
in the references. Since this was developed as a course for general
students, the many interesting topics of gauge theories are also not
covered in these lectures. It simply would have been impossible to
do justice to these topics within a one semester course.

There are many who were responsible for these lecture notes. I
would like to thank our chairman, Paul Slattery, for asking me to
teach and design a syllabus for this course. The students deserve
the most credit for keeping all the derivations complete and raising
many issues which I, otherwise, would have taken for granted. I am
grateful to my students Paulo Bedaque and Wen-Jui Huang as well
as to Dr. Zhu Yang for straightening out many little details which
were essential in presenting the material in a coherent and consistent
way. I would also like to thank Michael Begel for helping out in
numerous ways, in particular, in computer-generating all the figures
in the book. The support of many colleagues was also vital for the
completion of these lecture notes. Judy Mack, as always, has done
a superb job as far as the appearance of the book is concerned and
I sincerely thank her. Finally, I am grateful to Ammani for being
there.

Ashok Das,
Rochester.



Preface to the Second Edition

§

This second edition of the book is an expanded version which con-
tains a chapter on path integral quantization of gauge theories as well
as a chapter on anomalies. In addition, chapter 6 (Supersymmetry)
has been expanded to include a section on supersymmetric singular
potentials. While these topics were not covered in the original course
on path integrals, they are part of my lectures in other courses that
I have taught at the University of Rochester and have been incorpo-
rated into this new edition at the request of colleagues from all over
the world. There are many people who have helped me to complete
this edition of the book and I would like to thank, in particular, Judy
Mack, Arsen Melikyan, Dave Munson and J. Boersma for all their
assistance.

Ashok Das,
Rochester.
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Chapter 1

Introduction

1.1 Particles and Fields

Classically, there are two kinds of dynamical systems that we en-
counter. First, there is the motion of a particle or a rigid body (with
a finite number of degrees of freedom) which can be described by a
finite number of coordinates. And then, there are physical systems
where the number of degrees of freedom is nondenumerably (non-
countably) infinite. Such systems are described by fields. Familiar
examples of classical fields are the electromagnetic fields described by
E(x,t) and B(x,t) or equivalently by the potentials (¢(x,1), A(x,t)).
Similarly, the motion of a one-dimensional string is also described by
a field ¢(x,t), namely, the displacement field. Thus, while the coor-
dinates of a particle depend only on time, fields depend continuously
on some space variables as well. Therefore, a theory described by
fields is usually known as a D + 1 dimensional field theory where D
represents the number of spatial dimensions on which the field vari-
ables depend. For example, a theory describing the displacements
of the one-dimensional string would constitute a 1+1 dimensional
field theory whereas the more familiar Maxwell’s equations (in four
dimensions) can be regarded as a 3+1 dimensional field theory. In
this language, then, it is clear that a theory describing the motion of
a particle can be regarded as a special case, namely, we can think of
such a theory as a 041 dimensional field theory:



2 Field Theory: A Path Integral Approach

1.2 Metric and Other Notations

In these lectures, we will discuss both non-relativistic as well as rel-
ativistic theories. For the relativistic case, we will use the Bjorken-
Drell convention. Namely, the contravariant coordinates are assumed
to be

o = (t,x), n=0,1,2,3, (1.1)

while the covariant coordinates have the form
Ty = N’ = (t,—X). (1.2)

Here we have assumed the speed of light to be unity (¢ = 1). The
covariant metric, therefore, follows to have a diagonal form with the
signatures

Nuw = (+,_,_,—)- (13)

The inverse or the contravariant metric clearly also has the same
form, namely,

77”” = (+1_7_7_)- (14)
The invariant length is given by

1’ = gtz = 'z x, = Nuzhz’ = P=x, (1.5)

The gradients are similarly obtained from Eqgs. (1.1) and (1.2) to be

0 0
=g = (&’ V) : (1.6)
0 0
= =
(25, 0

so that the D’Alembertian takes the form

v 82 2 G
0= 0"0, =" 8,0, = 55~ V°. (1.8)



Introduction 3

1.3 Functionals

It is evident that in dealing with dynamical systems, we are dealing
with functions of continuous variables. In fact, most of the times,
we are really dealing with functions of functions which are otherwise
known as functionals. If we are considering the motion of a particle
in a potential in one dimension, then the Lagrangian is given by

Lz, &) = %mi‘z ~V(z), (1.9)

where z(t) and 2(t) denote the coordinate and the velocity of the
particle and the simplest functional we can think of is the action
functional defined as

Sla] = /t .tf A6 L), (1.10)

Note that unlike a function whose value depends on a particular
point in the coordinate space, the value of the action depends on
the entire trajectory along which the integration is carried out. For
different paths connecting the initial and the final points, the value
of the action functional will be different.

Thus, a functional has the generic form

FIN = [ 4o F(f(@), (111)
where, for example, we may have

F(f(z)) = (f(2))" . (1.12)

Sometimes, one loosely also says that F(f(z)) is a functional. The
notion of a derivative can be extended to the case of functionals in a
natural way through the notion of generalized functions. Thus, one
defines the functional derivative or the Gateaux derivative from the
linear functional

F'lv] = %F[f + €v]

o OFL,
T /d:l: 57 (z) (z). (1.13)



