OREILLY

Foundatlons
for Analytics
with Python

 PythonZi3fE 53 #r 2l ($2E0kR)

% &K% kR Clinton W. Brownley

¥

PythonZi#E 5Tt B8l wam)

Foundations for Analytics with Python

Clinton W Brownley &

Beijing + Boston « Farnham -+ Sebastopol + Tokyo O REILLY

O'Reilly Media, Inc. 3% 4X 2R B A 22 AR AL AR

MR FEXFEHRYE

BHEMSE B (CIP) 8 E

Python ¥ 43 b7 S i . 2 30/ (38) S AR - W. 75 B
#(Clinton W. Brownley)#. — A, —ME: K@K
2 H AR AL, 2017.2 (2017.7EED)

4 44 JF 3 : Foundations for Analytics with Python

ISBN 978 — 7- 5641 - 7000 -4

1.0p [.0%- I.O%RHGTE-BFE
H—¥x . OTP311.561

W A B A A CIP $OHE 2 (2017) 55 008143 5 %
B :10- 2015 - 254 &5

© 2016 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2017. Authorized reprint of the original English edition, 2015 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

3% LR & & O'Reilly Media, Inc. # #& 2016,

KEXHormbAdRkFhigib g 2017. RBARGERPELE RN L MR HERGHAH
—— O'Reilly Media, Inc.#9# 7T ,

MR AFBBHF T, ABHEFRS P2 RRHAAETHEEH.

Python (¥ 7+ #fr Al (B B RO

AR EAT . AREE K AL

fk. UMM 25 HBSE-210096
R A LESF

™ ik : http//www.seupress.com

B FHE {4 . press@seupress.com

: WL RS EN & A RAH

: 787 ZEAK X980 XK 16 A
s 22

: 431 T

+ 2017 4E 2 HES 1|

: 2017 4F 7 A5 2 EPRI

: ISBN 978 — 7 - 5641 — 7000 — 4

: 79.00 JG

A 8FNEHEI
SEFFFERNE

A EBEFRRFERRAE, HEESESRER. BiF(EI0 : 025- 83791830

For Aisha and Amaya,

“Education is the kindling of a flame,
not the filling of a vessel.” —Socrates

May you always enjoy stoking the fire.

Preface

This book is intended for readers who deal with data in spreadsheets on a regular
basis, but who have never written a line of code. The opening chapters will get you set
up with the Python environment, and teach you how to get the computer to look at
data and take simple actions with it. Soon, you'll learn to do things with data in
spreadsheets (CSV files) and databases. i

At first this will feel like a step backward, especially if youre a power user of Excel.
Painstakingly telling Python how to loop through every cell in a column when you
used to select and paste feels slow and frustrating (especially when you have to go
back three times to find a typo). But as you become more proficient, you’ll start to see
where Python really shines, especially in automating tasks that you currently do over
and over.

This book is written so that you can work through it from beginning to end and feel
confident that you can write code that works and does what you expect at the end. It’s
probably a good idea to type out the code at first, so that you get accustomed to
things like tabs and closing your parentheses and quotes, but all the code is available
online (https://github.com/cbrownley/foundations-for-analytics-with-python) and you
may wind up referring to those links to copy and paste as you do your own work in
the future. That’s fine! Knowing when to cut and paste is part of being an efficient
programmer. Reading the book as you go through the examples will teach you why
andhowsthe code samples work.

Good luck on your journey to becoming a programmer!

Why Read This Book? Why Learn These Skills?

If you deal with data on a regular basis, then there are a lot of reasons for you to be
excited about learning how to program. One benefit is that you can scale your data
processing and analysis tasks beyond what would be feasible or practical to do man-
ually. Perhaps you've already come across the problem of needing to process large

files that contain so much data that it’s impossible or impractical to open them. Even
if you can open the files, processing them manually is time consuming and error
prone, because any modifications you make to the data take a long time to update—
and with so much data, it’s easy to miss a row or column that you intended to change.
Or perhaps you've come across the problem of needing to process a large number of
filess—so many files that it's impossible or impractical to process them manually. In
some cases, you need to use data from dozens, hundreds, or even thousands of files.
As the number of files increases, it becomes increasingly difficult to handle them
manually. In both of these situations, writing a Python script to process the files sol-
ves your problem because Python scripts can process large files and lots Pf files
quickly and efficiently. ' "N

Another benefit of learning to program is that you can automate repetitive data
manipulation and analysis processes. In many cases, the operations we carry out on
data are repetitive and time consuming. For example, a common data management
process involves receiving data from a customer or supplier, extracting the data you
want to retain, possibly transforming or reformatting the data, and then saving the
data in a database or other data repository (this is the process known to data scientists
as ETL—extract, transform, load). Similarly, a typical data analysis process involves
acquiring the data you want to analyze, preparing the data for analysis, analyzing the
data, and reporting the results. In both of these situations, once the process is estab-
lished, it’s possible to write Python code to carry out the operations. By creating a
Python script to carry out the operations, you reduce a time-consuming, repetitive
process down to the running of a script and free up your time to work on other
impactful tasks.

On top of that, carrying out data processing and analysis operations in a Python
script instead of manually reduces the chance of errors. When you process data man-
ually, it's always possible to make a copy/paste error or a typo. There are lots of rea-
sons why this might happen—you might be working so quickly that you miss the
mistake, or you might be distracted or tired. Furthermore, the chance of errors
increases when you're processing large files or lots of files, or when you’re carrying
out repetitive actions. Conversely, a Python script doesn’t get distracted or tired. Once
you debug your script and confirm that it processes the data the way you want it to, it
will carry out the operations consistently and tirelessly.

Finally, learning to program is fun and empowering. Once you’re familiar with the
basic syntax, it’s fun to try to figure out which pieces of syntax you need and how to
fit them together to accomplish your overall data analysis goal. When it comes to
code and syntax, there are lots of examples online that show you how to use specific
pieces of syntax to carry out particular tasks. Online examples give you something to
work with, but then you need to use your creativity and problem-solving skills to fig-
ure out how you need to modify the code you found online to suit your needs. The
whole process of searching for the right code and figuring out how to make it work

x | Preface

for you can be a lot of fun. Moreover, learning to program is incredibly empowering.
For example, consider the situations I mentioned before, involving large files or lots
of files. When you can’t program, these situations are either incredibly time consum-
ing or simply infeasible. Once you can program, you can tackle both situations rela-
tively quickly and easily with Python scripts. Being able to carry out data processing
and analysis tasks that were once laborious or impossible provides a tremendous rush
of positive energy, so much so that you’ll be looking for more opportunities to tackle
challenging data processing tasks with Python.

Who Is This Book For?

This book is written for people who deal with data on a regular basis and have little to
no programming experience. The examples in this book cover common data sources
and formats, including text files, comma-separated values (CSV) files, Excel files, and
databases. In some cases, these files contain so much data or there are so many files
that it’s impractical or impossible to open them or deal with them manually. In other
cases, the process used to extract and use the data in the files is time consuming and
error prone. In these situations, without the ability to program, you have to spend a
lot of your time searching for the data you need, opening and closing files, and copy-
ing and pasting data.

Because you may never have run a script before, we'll start from the very beginning,
exploring how to write code in a text file to create a Python script. We'll then review
how to run our Python scripts in a Command Prompt window (for Windows users)
and a Terminal window (for macOS users). (If you've done a bit of programming, you
can skim Chapter 1 and move right into the data analysis parts in Chapter 2.)

Another way I've set out to make this book very user-friendly for new programmers
is that instead of presenting code snippets that youd need to figure out how to com-
bine to carry out useful work, the examples in this book contain all of the Python
code you need to accomplish a specific task. You might find that youre coming back
to this book as a reference later on, and having all the code at hand will be really help-
ful then. Finally, following the adage “a picture is worth a thousand words,” this book
uses screenshots of the input files, Python scripts, Command Prompt and Terminal
windows, and output files so you can literally see how to create the inputs, code, com-
mands, and outputs.

I'm going to go into detail to show how things work, as well as giving you some tools
that you can put to use. This approach will help you build a solid basis for under-
standing “what’s going on under the hood”—there will be times when you Google a
solution to your problem and find useful code, and having done the exercises in this
book, you’ll have a good understanding of how code you find online works. This
means you'll know both how to apply it in your situation and how to fix it if it breaks.
As you'll build working code through these chapters, you may find that you’ll use this

Preface | xi

book as a reference, or a “cookbook,” with recipes to accomplish specific tasks. But
remember, this is a “learn to cook” book; you'll be developing skills that you can gen-
eralize and combine to do all sorts of tasks.

Why Windows?

The majority of examples in this book show how to create and run Python scripts on
Microsoft Windows. The focus on Windows is fairly straightforward: I want this
book to help as many people as possible, and according to available estimates, the vast
majority of desktop and laptop computers—especially in business analytics—run a
Windows operating system. For instance, according to Net Applications; as*of
December 2014, Microsoft Windows occupies approximately 90% of the desktop and
laptop operating system market. Because I want this book to appeal to desktop and
laptop users, and the vast majority of these computers have a Windows operating sys-
tem, I concentrate on showing how to create and run Python scripts on Windows.

Despite the book’s emphasis on Windows, I also provide examples of how to create
and run Python scripts on macOS, where appropriate. Almost everything that hap-
pens within Python itself will happen the same way no matter what kind of machine
you’re running it on. But where there are differences between operating systems, I'll
give specific instructions for each. For instance, the first example in Chapter 1 illus-
trates how to create and run a Python script on both Microsoft Windows and macOS.
Similarly, the first examples in Chapters 2 and 3 also illustrate how to create and run
the scripts on both Windows and macOS. In addition, Chapter 8 covers both operat-
ing systems by showing how to create scheduled tasks on Windows and cron jobs on
macOS. If you are a Mac user, use the first example in each chapter as a template for
how to create a Python script, make it executable, and run the script. Then repeat the
steps to creaté and run all of the remaining examples in each chapter.

Why Python?

There are many reasons to choose Python if your aim is to learn how to program in a
language that will enable you to scale and automate data processing and analysis
tasks. One notable feature of Python is its use of whitespace and indentation to
denote line endings and blocks of code, in contrast to many other languages, which
use extra characters like semicolons and curly braces for these purposes. This makes
it relatively easy to see at first glance how a Python program is put together.

The extra characters found in other languages are troublesome for people who are
new to programming, for at least two reasons. First, they make the learning curve
longer and steeper. When you're learning to program, you're essentially learning a
new language, and these extra characters are one more aspect of the language you
need to learn before you can use the language effectively. Second, they can make the

xii | Preface

code difficult to read. Because in these other languages semicolons and curly braces
denote blocks of code, people don’t always use indentation to guide your eye around
the blocks of code. Without indentation, these blocks of code can look like a jumbled
mess.

Python sidesteps these difficulties by using whitespace and indentation, not semico-
lons and curly braces, to denote blocks of code. As you look through Python code,
your eyes focus on the actual lines of code rather than the delimiters between blocks
of code, because everything around the code is whitespace. Python code requires
blocks of code to be indented, and indentation makes it easy to see where one block
of code ends and another begins. Moreover, the Python community emphasizes code
readability, so there is a culture of writing code that is comparatively easy to read and
understand. All of these features make the learning curve shorter and shallower,
which means you can get up and running and processing data with Python relatively
quickly compared to many alternatives,

Another notable feature of Python that makes it ideal for data processing and analysis
is the number of standard and add-in modules and functions that facilitate common
data processing and analysis operations. Built-ins and standard library modules and
functions come standard with Python, so when you download and install Python you
immediately have access to these built-in modules and functions. You can read about
all of the built-ins and standard modules in the Python Standard Library (PSL)
(https://docs.python.org/3/library). Add-ins are other Python modules that you down-
load and install separately so you can use the additional functions they provide. You
can peruse many of the add-ins in the Python Package Index (PyPI) (https://

pypi.python.org/pypi).

Some of the modules in the standard library provide functions for reading different
file types (e.g., text, comma-separated values, JSON, HTML, XML, etc.); manipulat-
ing numbers, strings, and dates; using regular expression pattern matching; parsing
comma-separated values files; calculating basic statistics; and writing data to different
output file types and to disk. There are too many useful add-in modules to cover
them all, but a few that we'll use or discuss in this book include the following:

xlrd and xlwt
Provide functions for parsing and writing Microsoft Excel workbooks.

mysqlclient/MySQL-python/MySQLdb
Provide functions for connecting to MySQL databases and executing queries on
tables in databases.

pandas
Provides functions for reading different file types; managing, filtering, and trans-
forming data; aggregating data and calculating basic statistics; and creating differ-
ent types of plots.

Preface | xiii

statsmodels
Provides functions for estimating statistical models, including linear regression
models, generalized linear models, and classification models.

scikit-learn
Provides functions for estimating statistical machine learning models, including
regression, classification, and clustering, as well as carrying out data pre-
processing, dimensionality reduction, and cross-validation.

If you're new to programming and you're looking for a programming language that
will enable you to automate and scale your data processing and analysis tasks, then
Python is an ideal choice. Python’s emphasis on whitespace and indentation means
the code is easier to read and understand, which makes the learning curve less steep
than for other languages. And Python’s built-in and add-in packages facilitate many
common data manipulation and analysis operations, which makes it easy to complete
all of your data processing and analysis tasks in one place.

Base Python and pandas

Pandas is an add-in module for Python that provides numerous functions for read-
ing/writing, combining, transforming, and managing data. It also has functions for
calculating statistics and creating graphs and plots. All of these functions simplify and
reduce the amount of code you need to write to accomplish your data processing
tasks. The module has become very popular among data analysts and others who use
Python because it offers a lot of helpful functions, it’s fast and powerful, and it simpli-
fies and reduces the code you have to write to get your job done. Given its power and
popularity, I want to introduce you to pandas in this book. To do so, I present pandas
versions of the scripts in Chapters 2 and 3, I illustrate how to create graphs and plots
with pandas in Chapter 6, and I demonstrate how to calculate various statistics with
pandas in Chapter 7. I also encourage you to pick up a copy of Wes McKinney’s book,
Python for ~ Data Analysis (O’Reilly) (http://shop.oreilly.com/product/
0636920023784.do).!

At the same time, if you're new to programming, I also want you to learn basic pro-
gramming skills. Once you learn these skills, you'll develop generally applicable
problem-solving skills that will enable you to break down complex problems into
smaller components, solve the smaller components, and then combine the compo-
nents together to solve the larger problem. You'll also develop intuition for which
data structures and algorithms you can use to solve different problems efficiently and

1 Wes McKinney is the original developer of the pandas module and his book is an excellent introduction to
pandas, NumPy, and IPython (additional add-in modules you’ll want to learn about as you broaden your
knowledge of Python for data analysis).

xiv | Preface

effectively. In addition, there will be times when an add-in module like pandas doesn't
have the functionality you need or isn’t working the way you need it to. In these situa-
tions, if you don’t have basic programming skills, you're stuck. Conversely, if you do
have these skills you can create the functionality you need and solve the problem on
your own. Being able to solve a programming problem on your own is exhilarating
and incredibly empowering.

Because this book is for people who are new to programming, the focus is on basic,
generally applicable programming skills. For instance, Chapter 1 introduces funda-
mental concepts such as data types, data containers, control flow, functions, if-else
logic, and reading and writing files. In addition, Chapters 2 and 3 present two ver-
sions of each script: a base Python version and a pandas version. In each case, I
present and discuss the base Python version first so you learn how to implement a
solution on your own with general code, and then I present the pandas version. My
hope is that you will develop fundamental programming skills from the base Python
versions so you can use the pandas versions with a firm understanding of the con-
cepts and operations pandas simplifies for you.

Anaconda Python

When it comes to Python, there are a variety of applications in which you can write
your code. For example, if you download Python from Python.org, then your installa-
tion of Python comes with a graphical user interface (GUI) text editor called Idle.
Alternatively, you can download IPython Notebook and write your code in an inter-
active, web-based environment. If youre working on macOS or you've installed Cyg-
win on Windows, then you can write your code in a Terminal window using one of
the built-in text editors like Nano, Vim, or Emacs. If you're already familiar with one
of these applications, then feel free to use it to follow along with the examples in this
book.

However, in this section, I'm going to provide instructions for downloading and
installing the free Anaconda Python distribution from Continuum Analytics because
it has some advantages over the alternatives for a beginning programmer—and for
the advanced programmer, too! The major advantage is that it comes with hundreds
of the n¥ost popular add-in Python packages preinstalled so you don’t have to experi-
ence the inevitable headaches of trying to install them and their dependencies on
your own. For example, all of the add-in packages we use in this book come preinstal-
led in Anaconda Python.

Another advantage is that it comes with an integrated development environment, or
IDE, called Spyder. Spyder provides a convenient interface for writing, executing, and
debugging your code, as well as installing packages and launching IPython Note-
books. It includes nice features such as links to online documentation, syntax color-
ing, keyboard shortcuts, and error warnings.

Preface | xv

Another nice aspect of Anaconda Python is that it’s cross-platform—there are ver-
sions for Linux, Mac, and Windows. So if you learn to use it on Windows but need to
transition to a Mac at a later point, you’ll still be able to use the same familiar inter-
face.

One aspect of Anaconda Python to keep in mind while you’re becoming familiar with
Python and all of the available add-in packages is the syntax you use to install add-in
packages. In Anaconda Python, you use the conda install command. For example,
to install the add-in package argparse, you would type conda install argparse.
This syntax is different from the usual pip install command youd use if youd
installed Python from Python.org (if youd installed Python from Python.otg, then
youd install the argparse package with python -m pip install argparse). Ana-
conda Python also allows you to use the pip install syntax, so you can actually use
either method, but it’s helpful to be aware of this slight difference while you're learn-
ing to install add-in packages.

Installing Anaconda Python (Windows or Mac)
To install Anaconda Python, follow these steps:

1. Go to http://continuum.io/downloads (the website automatically detects your
operating system—i.e., Windows or Mac).

2. Select “Windows 64-bit Python 3.5 Graphical Installer” (if youre using Win-
dows) or “Mac OS X 64-bit Python 3.5 Graphical Installer” (if you're on a Mac).

3. Double-click the downloaded .exe (for Windows) or .pkg (for Mac) file.
4. Follow the installer’s instructions.

Text Editors

Although we’ll be using Anaconda Python and Spyder in this book, it's helpful to be
familiar with some text editors that provide features for writing Python code. For
instance, if you didn’t want to use Anaconda Python, you could simply install Python
from Python.org and then use a text editor like Notepad (for Windows) or TextEdit
(for macOS). To use TextEdit to write Python scripts, you need to open TextEdit and
change the radio button under TextEdit—>Preferences from “Rich text” to “Plain text”
so new files open as plain text. Then you’ll be able to save the files with a .py exten-
sion.

An advantage of writing your code in a text editor is that there should already be one
on your computer, so you don’t have to worry about downloading and installing
additional software. And as most desktops and laptops ship with a text editor, if you
ever have to work on a different computer (e.g., one that doesn’t have Spyder or a Ter-

xi | Preface

minal window), you’ll be able to get up and running quickly with whatever text editor
is available on the computer.

While writing your Python code in a text editor such as Notepad or TextEdit is com-
pletely acceptable and effective, there are other free text editors you can download
that offer additional features, including code highlighting, adjustable tab sizes, and
multi-line indenting and dedenting. These features (particularly code highlighting
and multi-line indenting and dedenting) are incredibly helpful, especially while
you're learning to write and debug your code.

Here is a noncomprehensive list of some free text editors that offer these features:

« Notepad++ (http://notepad-plus-plus.org) (Windows)

« Sublime Text (http://www.sublimetext.com) (Windows and Mac)

« jEdit (http://www.jedit.org) (Windows and Mac)

« TextWrangler (http://www.barebones.com/products/textwrangler) (Mac)

Again, I'll be using Anaconda Python and Spyder in this book, but feel free to use a
text editor to follow along with the examples. If you download one of these editors, be
sure to search online for the keystroke combination to use to indent and dedent mul-
tiple lines at a time. It'll make your life a lot easier when you start experimenting with
and debugging blocks of code.

Download Book Materials

All of the Python scripts, input files, and output files presented in this book are avail-
able online at https://github.com/cbrownley/foundations-for-analytics-with-python.

It’s possible to download the whole folder of materials to your computer, but it’s prob-
ably simpler to just click on the filename and copy/paste the script into your text edi-
tor. (GitHub is a website for sharing and collaborating on code—it’s very good at
keeping track of different versions of a project and managing the collaboration pro-
cess, but it has a pretty steep learning curve. When you're ready to start sharing your
code and suggesting changes to other people’s code, you might take a look at Chad
Thompson's Learning Git (http://shop.oreilly.com/product/110000769.do) (Infinite
Skills).)

Overview of Chapters

Chapter 1, Python Basics
WEe'll begin by exploring how to create and run a Python script. This chapter
focuses on basic Python syntax and the elements of Python that you need to
know for later chapters in the book. For example, we'll discuss basic data types

Preface | xvii

such as numbers and strings and how you can manipulate them. Well also cover
the main data containers (i.e., lists, tuples, and dictionaries) and how you use
them to store and manipulate your data, as well as how to deal with dates, as
dates often appear in business analysis. This chapter also discusses programming
concepts such as control flow, functions, and exceptions, as these are important
elements for including business logic in your code and gracefully handling
errors. Finally, the chapter explains how to get your computer to read a text file,
read multiple text files, and write to a CSV-formatted output file. These are
important techniques for accessing input data and retaining specific output data

that I expand on in later chapters in the book.
L,

Chapter 2, Comma-Separated Values (CSV) Files

This chapter covers how to read and write CSV files. The chapter starts with an
example of parsing a CSV input file “by hand,” without Python’s built-in csv
module. It transitions to an illustration of potential problems with this method of
parsing and then presents an example of how to avoid these potential problems
by parsing a CSV file with Python’s csv module. Next, the chapter discusses how
to use three different types of conditional logic to filter for specific rows from the
input file and write them to a CSV output file. Then the chapter presents two dif-
ferent ways to filter for specific columns and write them to the output file. After
covering how to read and parse a single CSV input file, we’ll move on to discus-
sing how to read and process multiple CSV files. The examples in this section
include presenting summary information about each of the input files, concate-
nating data from the input files, and calculating basic statistics for each of the
input files. The chapter ends with a couple of examples of less common proce-
dures, including selecting a set of contiguous rows and adding a header row to
the dataset.

Chapter 3, Excel Files

Next, we'll cover how to read Excel workbooks with a downloadable, add-in
module called x1rd. This chapter starts with an example of introspecting an Excel
workbook (i.e., presenting how many worksheets the workbook contains, the
names of the worksheets, and the number of rows and columns in each of the
worksheets). Because Excel stores dates as numbers, the next section illustrates
how to use a set of functions to format dates so they appear as dates instead of as
numbers. Next, the chapter discusses how to use three different types of condi-
tional logic to filter for specific rows from a single worksheet and write them to a
CSV output file. Then the chapter presents two different ways to filter for specific
columns and write them to the output file. After covering how to read and parse
a single worksheet, the chapter moves on to discuss how to read and process all
worksheets in a workbook and a subset of worksheets in a workbook. The exam-
ples in these sections show how to filter for specific rows and columns in the
worksheets. After discussing how to read and parse any number of worksheets in

xviii

| Preface

a single workbook, the chapter moves on to review how to read and process mul-
tiple workbooks. The examples in this section include presenting summary infor-
mation about each of the workbooks, concatenating data from the workbooks,
and calculating basic statistics for each of the workbooks. The chapter ends with
a couple of examples of less common procedures, including selecting a set of
contiguous rows and adding a header row to the dataset.

Chapter 4, Databases
Here, we'll cover how to carry out basic database operations in Python. The
chapter starts with examples that use Python’s built-in sqlite3 module so that
you don’t have to install any additional software. The examples illustrate how to
carry out some of the most common database operations, including creating a
database and table, loading data in a CSV input file into a database table, updat-
ing records in a table using a CSV input file, and querying a table. When you use
the sqlite3 module, the database connection details are slightly different from
the ones you would use to connect to other database systems like MySQL, Post-
greSQL, and Oracle. To show this difference, the second half of the chapter dem-
onstrates how to interact with a MySQL database system. If you don’t already
have MySQL on your computer, the first step is to download and install MySQL.
From there, the examples mirror the sqlite3 examples, including creating a
database and table, loading data in a CSV input file into a database table, updat-
ing records in a table using a CSV input file, querying a table, and writing query
results to a CSV output file. Together, the examples in the two halves of this
chapter provide a solid foundation for carrying out common database operations

in Python.

Chapter 5, Applications

This chapter contains three examples that demonstrate how to combine techni-
ques presented in earlier chapters to tackle three different problems that are rep-
resentative of some common data processing and analysis tasks. The first
application covers how to find specific records in a large collection of Excel and
CSV files. As you can imagine, it’s a lot more efficient and fun to have a computer
search for the records you need than it is to search for them yourself. Opening,
searching in, and closing dozens of files isn’t fun, and the task becomes more and
moré challenging as the number of files increases. Because the problem involves
searching through CSV and Excel files, this example utilizes a lot of the material
covered in Chapters 2 and 3.

The second application covers how to group or “bin” data into unique categories
and calculate statistics for each of the categories. The specific example is parsing
a CSV file of customer service package purchases that shows when customers
paid for particular service packages (i.e., Bronze, Silver, or Gold), organizing the
data into unique customer names and packages, and adding up the amount of
time each customer spent in each package. The example uses two building

Preface | xix

blocks, creating a function and storing data in a dictionary, which are introduced
in Chapter 1 but aren’t used in Chapters 2, 3, and 4. It also introduces another
new technique: keeping track of the previous row you processed and the row
you're currently processing, in order to calculate a statistic based on values in the
two rows. These two techniques—grouping or binning data with a dictionary
and keeping track of the current row and the previous row—are very powerful
capabilities that enable you to handle many common analysis tasks that involve
events over time.

The third application covers how to parse a text file, group or bin data into cate-
gories, and calculate statistics for the categories. The specific example is parsing a
MySQL error log file, organizing the data into unique dates and error messages,
and counting the number of times each error message appeared on each date.
The example reviews how to parse a text file, a technique that briefly appears in
Chapter 1. The example also shows how to store information separately in both a
list and a dictionary in order to create the header row and the data rows for the
output file. This is a reminder that you can parse text files with basic string oper-
ations and another good example of how to use a nested dictionary to group or
bin data into unique categories.

Chapter 6, Figures and Plots

In this chapter, you'll learn how to create common statistical graphs and plots in
Python with four plotting libraries: matplotlib, pandas, ggplot, and seaborn.
The chapter begins with matplotlib because it’s a long-standing package with
lots of documentation (in fact, pandas and seaborn are built on top of matplot
lib). The matplotlib section illustrates how to create histograms and bar, line,
scatter, and box plots. The pandas section discusses some of the ways pandas
simplifies the syntax you need to create these plots and illustrates how to create
them with pandas. The ggplot section notes the library’s historical relationship
with R and the Grammar of Graphics and illustrates how to use ggplot to build
some common statistical plots. Finally, the seaborn section discusses how to cre-
ate standard statistical plots as well as plots that would be more cumbersome to
code in matplotlib.

Chapter 7, Descriptive Statistics and Modeling

xx | Preface

Here, we'll look at how to produce standard summary statistics and estimate
regression and classification models with the pandas and statsmodels packages.
pandas has functions for calculating measures of central tendency (e.g., mean,
median, and mode), as well as for calculating dispersion (e.g., variance and stan-
dard deviation). It also has functions for grouping data, which makes it easy to
calculate these statistics for different groups of data. The statsmodels package
has functions for estimating many types of regression and classification models.
The chapter illustrates how to build multivariate linear regression and logistic

classification models based on data in pandas DataFrames and then use the mod-
els to predict output values for new input data.

Chapter 8, Scheduling Scripts to Run Automatically

This chapter covers how to schedule your scripts to run automatically on a rou-
tine basis on both Windows and macOS. Until this chapter, we ran the scripts
manually on the command line. Running a script manually on the command line
is convenient when you're debugging the script or running it on an ad hoc basis.
However, it can be a nuisance if your script needs to run on a routine basis (e.g.,
daily, weekly, monthly, or quarterly), or if you need to run lots of scripts on a
routine basis. On Windows, you create scheduled tasks to run scripts automati-
cally on a routine basis. On macOS, you create cron jobs, which perform the
same actions. This chapter includes several screenshots to show you how to cre-
ate and run scheduled tasks and cron jobs. By scheduling your scripts to run on a
routine basis, you don't ever forget to run a script and you can scale beyond
what’s possible when you’re running scripts manually on the command line.

Chapter 9, Where to Go from Here

The final chapter covers some additional built-in and add-in Python modules
and functions that are important for data processing and analysis tasks, as well as
some additional data structures that will enable you to efficiently handle a variety
of complex programming problems you may run into as you move beyond the
topics covered in this book. Built-ins are bundled into the Python installation, so
they are immediately available to you when you install Python. The built-in mod-
ules discussed in this chapter include collections, random, statistics, iter
tools, and operator. The built-in functions include enumerate, filter, reduce,
and zip. Add-in modules don’t come with the Python installation, so you have to
download and install them separately. The add-in modules discussed in this
chapter include NumPy, SciPy, and Scikit-Learn. We also take a look at some
additional data structures that can help you store, process, or analyze your data
more quickly and efficiently, such as stacks, queues, trees, and graphs.

Conventions Used in This Book

The follgwing typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords. Also used for module and package names,

Preface | xxi

