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Primary production of magnesium

R.NEELAMEGGHAM, IND LLC, USA

DOI: 10.1533/9780857097293.1

Abstract: This chapter reviews the production technology for a variety of
magnesium processes developed over the past 150 years on a commercial
scale. It discusses why processes vary considerably in the case of
magnesium, unlike the case of aluminum production.

Key words: magnesium, light-weight structural metal, molten chloride
electrolytic process, thermal reduction, Pidgeon process, electro-thermal.

1.1 Introduction

Magnesium ion is the most abundant structural metal ion in the ocean; it is
the fifth most abundant element in the hydrosphere (3.1 x 10" tons). In the
earth’s crust (lithosphere) magnesium is considered to be the eighth most
abundant element. If we consider the topmost 3.8 km, magnesium is the
third most abundant ‘structural metallic element’. It should be noted that
the average depth of the ocean is 3.8 km — this is the hydrosphere, where
magnesium is the only extractable structural metal. This makes magnesium
a unique structural element, which can be extracted from either the hydro-
sphere or the lithosphere. Aluminum is sparse in the ocean, and is extracted
from the lithosphere only.

As we all know, manmade materials are made by processes using the raw
materials available, or which can be acquired at a low cost while convert-
ing them to a value-added material. Irrespective of the source of the raw
material, additional energy matter is required to effect the conversion of the
mineral into metal. The nature and cost of the energy and energy materials
have been important factors in the choice of the process development of
magnesium.

Since magnesium is available from the lithosphere and the hydrosphere,
various routes are available for extraction into metal. This chapter is written
so as to take us through the history of commercial processes in the nineteenth
and twentieth centuries, before discussing the chemistry of process evolu-
tion, steps involved in production methods, and major equipment needed
for different processes. Following this, future possibilities are discussed.



2 Fundamentals of magnesium alloy metallurgy

It took over 18 years of laboratory and pilot research, with personal
attention given by Herbert H. Dow between 1896 and 1915, before a com-
mercial line for producing magnesium came on line. It took another 16
years before reducing the cost of a pound of magnesium from 5 dollars
to about 30 cents by the early 1930s. The process was further refined over
the years in reducing operating costs (Campbell and Hatton, 1951). Dow
Magnesium had a production of over 100 000 tons per year in its peak years
during its 80 plus years of operation before being shut down in 1997.

The same period saw the development of magnesium for structural
applications, both in the USA as well as in Germany. Dow Chemical is
credited with introducing Dow-Metal pistons for the automotive sector
in the 1920s, while the Germans developed a magnesium alloy engine for
Volkswagen in the 1930s, helped by I.G. Farbenindustrie’s magnesium
process. Herbert H. Dow also pioneered the introduction of magnesium
into the construction of aircraft in the early 1920s (Campbell and Hatton,
1951), even though this pioneering effort was not able to compete with
aluminum — which is 1.5 times heavier than magnesium. We still continue
to revisit this subject time and again, even to the present day, in educating
the public about the benefits of magnesium alloys as a structural metal
and the fact that magnesium can be safely used (Gwynne, 2010). With the
advent of higher strength magnesium alloys, magnesium composites can
compete with fiber reinforced composites in alternative energy generation
such as wind power, etc.

Unlike for other metals, the processes used in the production of mag-
nesium have gone through several historic changes — almost following the
changes in the economic dominance history on a global scale — whether it
be the world wars, or the cold war through the 1980s, or the emergence of
the global economy in the 1990s, and through the recent commodity rise
and fall during 2006-9. In 1935, John A. Gann, Chief Metallurgist of The
Dow Chemical Co., noted the following ‘... our light metals occur only in
the form of compounds so stable that their discovery, isolation, commercial
production, and use were forced to await some of the modern advances in
chemistry and engineering. Under such conditions, the evolution of a new
industry is often a romance in which scientific and industrial difficulties and
near failures add to the thrill of success’ (Gann, 1935). The truth of this
statement has been proved time and again in the production processes, even
in recent times, and in the further development and uses of magnesium.

All magnesium metal production processes go through the following unit
process steps (see Fig. 1.1):

i. Raw material upgrading
ii. Removal of unwanted and undesirable impurities



Primary production of magnesium 3

Raw material preparation and upgrading
[Concentration of magnesium in the raw material]

¥
Removal of unwanted and undesirable impurities

[for the extraction process — e.g. sulfates, boron,
moisture, etc.]

v

Removal of impurities undesirable in the finished metal
[e.g. nickel, manganese]

!

Converting the purified raw material into metal and
- separation from other component products
[e.g. carbothermic, metallothermic and/or electrowinning]

!

Melting and refining the metal, making alloys
[Casting into ingots or billets, or powders made from magnesium]

1.7 General flow sheet for magnesium production.

iii. Removal of impurities undesirable in the finished metal
iv. Converting the purified raw material into metal and separation from
other component products — along with processing and or reuse of other
raw material components
v. Melting, refining and casting metal and/or alloys
vi. Granular magnesium and alloys.

1.2 Raw materials and production methods

Most of the metallic elements are usually extracted or reduced from their
respective oxides, or oxide compounds. The lithospheric compounds from
which magnesium is extracted are: dolomite (CaCO,MgCO;), magne-
site (MgCO,;), periclase (magnesium oxide) (MgO), hydro-magnesite
(3MgCO;-Mg(OH),-3H,0), brucite (MgO-H,0), and silicates of magnesium
(olivine(Mg,Fe),SiO,, serpentine 3MgO-2Si0,-2H,0 with partial iron sub-
stitution of magnesium, fosterite, biotite micas, etc.). The lithospheric miner-
als magnesium sulfate (epsomite- MgSO,-7H,0), kieserite (MgSO,-H,0),
langbeinite (K,SO,-2MgSO,), and kainite (KCI-MgSO,-:3H,0), carnallite
(KCI-MgCl,6H,0) are of hydrospheric origin found in evaporites.

The hydrosphere — oceans, and terminal lakes — has magnesium as the
second most abundant metallic cation in the salinity. Sodium, present in
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a larger quantity, usually provides the ionic balance for the chloride ion
in saline waters; sulfate is needed to provide ionic balance of magnesium
along with chloride ions. Magnesium minerals found from the evaporites
in the chloride form include carnallite (KCIl-MgCl,-6H,0) and bischofite
(MgCl,-6H,0). Many of these were identified initially in Stassfurt, Germany
in the mid-nineteenth century. Most of the process variations have been
caused by the choice of raw material, whether it is oxide or a chloride type
material, as we will see in the forthcoming discussions.

1.2.1 Nineteenth century magnesium
production processes

In 1808, Humphry Davy took moistened magnesium sulfate and electro-
lyzed it onto a mercury cathode. He also converted red hot magnesium
oxide with potassium vapor, collecting the magnesium into mercury. Both
processes produced magnesium amalgam, from which he made the metal by
distilling out the mercury. In 1828, Bussy reduced magnesium chloride with
potassium metal in a glass tube; when the potassium chloride was washed
out, small globules of magnesium were present.

Faraday in 1833 electrolyzed impure magnesium chloride in a molten
state to get magnesium metal; but it took two more decades before Robert
Bunsen made a commercial quantity in a small laboratory cell using molten
anhydrous magnesium chloride. He noted the need to dehydrate the mag-
nesium chloride for improving the electrolysis by avoiding sludge forma-
tion. Bunsen demonstrated in 1852 that it is easier to dehydrate magnesium
chloride in a potassium chloride bath — this later led to the use of naturally
occurring carnallite as a source for making magnesium. Commercial pro-
duction of magnesium on a larger scale was initiated in 1886 — about the
same time as the beginnings of the Hall-Heroult cell for aluminum.

Since oxide magnesium ores, such as MgO, are found in high grade (90%
plus purity), attempts were made to use this as feed material using a molten
fluoride melt — similar to the Hall-Heroult cell during the late nineteenth
century. But the high melting point of magnesium fluoride above 950°C,
along with the low solubility of magnesium oxide even in these fluorides,
and the high vapor pressures of magnesium at these temperatures, made the
growth of these processes uneconomical and difficult.

Molten dehydrated carnallite (KCI-MgCl,) was electrolyzed to magne-
sium metal in 1886 by the Aluminium und Magnesium Fabrik, Germany.
This was further developed by Chemische Fabrik Griesheim-Elektron
starting in 1896 — this became I.G. Farbenindustrie in the twentieth century.
Molten carnallite electrolysis still continues in the twenty-first century, with
various improvements made in the twentieth century.
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1.2.2 Commercial magnesium production processes
of the twentieth century

Several in-depth articles, as well as books, are available on the commercial
production technologies of magnesium. These references are highlighted,
avoiding duplication of detail on the processes currently used.

In 1938, Haughton and Prytherch noted that the extraction of magnesium
followed three processes — electrolysis of fused chlorides, electrolysis of the
oxide in solution of molten fluorides, and direct reduction of the oxide by car-
bon in an arc furnace with a hydrogen atmosphere followed by re-distillation
in inert atmosphere. World War II brought the silico-thermic reduction of
oxides to the fore. At this time, the production of magnesium was one third
that of aluminum worldwide (Haughton and Prytherch, 1938).

Unlike aluminum, the demand for magnesium took a precipitous drop
following World War I1, causing the variation of production technology pro-
cesses. Carbo-thermic and fluoride-melt electrolytic processes exited com-
mercial production. Silico-thermic processes took a backseat, until the mid
1990s, to the electrolytic conversion of magnesium chlorides.

China entered the global economy in the early 1990s, interested in devel-
oping uses for its apparently very low-cost ferro-silicon. China, a non-market
economy, thus revived magnesium oxide conversion by the silico-thermal
method into a dominant process of the first decade of the twenty-first
century.

Some of the early history of processes in the first half of the twentieth
century is given in articles or chapters in books (Emeley, 1967; Ball, 1956;
Beck, 1939; Schambra, 1945). At the time of writing (2010), the production
of magnesium has narrowed to two main processes — one from lithospheric
magnesium mineral dolomite by the thermal process, and the other from
hydrospheric magnesium chloride. It is now felt that the abundance of mag-
nesium resources, the evolution of non-fossil alternative energy, the real-
ization of a global market economy (where costs of raw materials are a
significant issue), along with the development of new uses for magnesium
and its alloys, can alter this dominance by two main processes during the
next 70 years.

Evans gives a concise summary of the evolution of commercial processes
in the light metals aluminum, magnesium and lithium over the last five
decades (Evans, 2007). Habashi presented a history of magnesium in a 2006
symposium (Magnesium technology in the Global Age) held in Montreal
(Habashi, 2006). Production technologies of magnesium, a chapter by, Eli
Aghion and Gilad Golub, discusses present day electrolytic as well as ther-
mal reduction processes (Aghion and Golub, 2006). An in-depth history of
magnesium by Robert E. Brown discusses the production of magnesium



