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CHAPTER 1

One-Photon Absorption Theory

It is known that there is a kind of electromagnetic (EM) interaction between
light and matter, which determines the light absorption and the emission.
Conjugated organic molecules have attracted considerable attention in the last
decades due to their remarkable optoelectronic propertiest™®, and their
structural malleability allows tunable optical properties, which can be
exploited for different applications, such as optoelectronic and photonic

devices' ™'V

. The time-independent perturbation theory is considered as a way
to deal with the above problem, and there is a case in which we want to study
how systems respond to the imposed perturbations*'*. Firstly, we assume

that the Hamiltonian H of the system can be written in the form:
H=H+av ' (1-1)

where, H, is the Hamiltonian of the unperturbed system, and AV is a
perturbation term applied to the system. Since H, is unperturbed, odinger

equation is satisfied:

N 0
Ayl = ifr%‘% (1-2)

The wave functions ¢ are related to the time-dependent unperturbed wave-
functions, as shown in form of ¢ = ¢,exp( — itE,/#%); while the whole

system wave-functions ¢ (t) can be expressed as a linear combination of
the ¢, .

= D\C.(Dg (1-3)

The time-dependent odinger equation containing the perturbation term of

EM interaction is expressed as

<PIO+/1V)¢=iﬁ%ﬂté (1-4)
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Inserting Eq. (1-3) into Eq. (1-4) gives

ANC g | V| gy =i 598

a—t” (1-5)

Given the dipole interaction between a system and an electric field can be
viewed as a very small quantity in comparison with the Hamiltonian without
perturbation, the wave function of the system has only a small change;
therefore, the coefficient C, was defined as the C, = C© + AC" + A2C% + .-,
where Ci” and C}” were expansion coefficients of first- and second- order

perturbations, respectively. And

dc )
== (1-6)
dc(])
R = DICOWE | V| ¥ (1-7)
dc(Z)
B = 2 CPm | V] ) (1-8)

Upon one electron is excited from initial state i, expanding coefficient
Cc®=1. So

dC:”
dt

C = (Vi/ T wp) (1 —elen) (1-10)
where wn=(E;— E; )/ T
For one- photon absorption(OPA) or 1-photon absorption(1PA),also called

ik =(w |V |w]) (1-9)

single-photon absorption, transition probability per unit time from i state to f
state is then given by

_ler |t _ (lVﬁ
t ﬁwﬁ

where V; is the perturbation matrix element. Considering the long

) .
W, ) (2 — 2coswyit ) = 27;" ’V./'i

ZS(E/_Ei) (1‘11)

interaction time between a system and an optical field, when t— + o .
B(w,;)=%,lj_12—1-l%w (1-12)
For calculating transition probability, each composite site, say initial state
| I), is characterized by |e;» n, iw.n;, fw,); |F)=|e;+(n, — Dhw, ), say final
state. Furthermore, expanding the vector potential in terms of the creation
and annihilation operator can be written as:

o — e (2mh \'? ., | . )
V= 2‘_,@ PIE <ka3) T (1-13)
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rL
The OPA oscillator strength of an electronic transition from the ground state
(0) to the final state (f) can be obtained by

2
0 W =29 VSV 5 ¢ | 8w — ) (1-14)
i

8x% m. '
fof=%ez—hvu, | oy |2 (1-15)

where, m, is the electron mass, e is the electron charge, h is Planck’s

constant, vy = Eq;/h is the frequency in s~

corresponding to the transition

energy (E,;) between the two states, and the transition dipole moments are
given by

wor =<0 | er | 7 (1-16)

The computed oscillator strength is related to the experimental integrated

intensity by
fo, = 4.32 % 10-9J & (5)dE (1-17)

where, € is the extinction coefficient in unit L » mol™', and v is the frequency

in cm™'. Since the integration limits in Eq. (1-3) are generally not known, a
single Gaussian (or Lorentzian) function is often used to represent an
experimental spectral band, which gives rise to an approximate measure of the

corresponding band intensity. Using a Gaussian line-shape
for = 4.32X107° € |6 @7’ d7 = 4,32 X 10V € (1-18)

The # width parameter relates to the full width ( W) at half maximum
(€ mx/2) by W =2 (In2)"2 9, and the cross section (in cm’) at the band
maximum relates to € ., by o = 3.83 X107 € ., Thus, € .., OF o 0f a

transition can be readily approximated, provided its bandwidth is known.
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CHAPTER 2

Charge Transfer and Electron-Hole Coherence in OPA

Photoinduced charge transfer (CT) from donor to acceptor is a primary step in
photophysical, photochemical as well as photobiological processes'™*. The CT
process can be intermolecular, in which an electron is transferred from
electron-donating species (D) to electron-accepting species (A), producing the
radical cation of donor and the radical anion of acceptor, or intramolecular
CT, involving charge redistribution in the excited molecule which produces a
very large excited state dipole moment. It is well known that photophysical
properties of the organic molecules are determined predominantly by the low
energy excited states. Knowledge of nature of excited states, and interplay of
inter-and intra- molecular mechanism in the CT process, are becoming very
important to develop the novel optoelectronic devices.

Quantum chemistry provides practical approaches for studies on excited
states. Upon OPA, the singlet excited states | S,) are represented by vectors
C\!, based on configurations of unoccupied and occupied molecular orbitals a
and i, respectively. The molecular orbitals are in turn given by linear

combinations of atomic orbitals (LCAOs) x and v with coefficients ci*° and

ck*Y In order to characterize the excited state by observables we define two
matricest®™
(n) = = E C.. W(C‘ECAO LCAO C:_;‘UAOCGCAO)
*\/—a&unocc
teox (2-1)
P;,:') e E Cn . CLCAOCtCAO _ ChCAOCLCAO)
aeunocL

i € oce

which are (anti)symmetric for exchange of the atomic orbitals and normalized as

X e P = X | v = (2-2)

pev v
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In the collective electron oscillator (CEQ) model™ the excited state |S,) is
described by a harmonic oscillator with oscillating coordinate Q)" cos( w,t) and
momentum P sin ( w,t) for the transition frequency w,. For visual
characterization of the excited states we use two different representations of

the matrices Q" and P! .

1. Real-space representation

In real space the oscillating CEO coordinate and momentum are given as"® "’

Q. (ror'st) = D4R $4°(rcoswat)
(2-3)
DI CrIPL$° (r')sin(w,t)

Hy

The diagonal slice for r = r’ results in
{Q,.(r,r; 1) = 2P, (r)cos(wt)
P,(ryr;t) =0
The amplitude of the former is given by the so-called transition density (TD):

1 AO () 4 AO
E: v (NQY ¢, (r) (2-5)
V2 ,‘.v¢ #

The transition density contains information about the spatial location of the

I

Pn(ryr’;t)

(2-4)

p,,o(r) —

excitation™ and is directly related to the transition dipole
po Cr) = eer,,o(r)dar (2-6)

Furthermore, it is of particular relevance for excitonic interaction at shorter

distances"" . Besides the transition density, the charge difference density
(CDD)
Dpm (1) = 2i 23422 (HQP P $2°(r) (2-7)
povik

is another useful quantity for real-space characterization of excitons. It
represents the difference of electron distribution between the excited state
|S.) and the ground state | S;). In the present work, both transition and
charge difference densities are represented by isosurfaces based on a 3D grid of

approximately 100 000 cubes.
2. Site representation

For site representations of the CEO coordinate and momentum, we define
them as:
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&= lgw[r, PR = [P (2-8)
HEA HeE A
vEB vEB
respectively’® "', This means that the matrices Q| and P\ are merged for

atomic orbitals # and v belonging to atomic sites A and B, respectively. Thus

PY* gives the atomic sites A and B where electron and hole oscillate from and

to, while Q%¥* is a measure of the delocalization of the exciton as a whole.

Note that for Frenkel excitons the occupation of Q%%* and PY3” is limited. to

pairs of atomic centers A and B belonging to the same monomeric unit.
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CHAPTER 3

Application of OPA

3.1 Biology

3.1.1 Retinal proteins (rhodopsins)

Rhodopsins are located in cell membrane and eye retina, which naturally exist
in protonated Schiff-base form and can convert EM energy into chemical
one'”'. The absorption of visible light that strikes eyes can arouse in the
molecule an ultrafast response. As a central issue in photobiology.,
understanding the intrinsic ultrafast response mechanism is a challenging
work"**) . Because most experiments'*® were performed in liquid phases till the
recent papers”™, it is hard to decide if the ultrafast response is an intrinsic
property of this class molecules or a consequence of an interaction between the
molecule and environment-”* . Theoretically, Anfinrud"*' and co-workers have
suggested a three-state (S;, S, and S,) model to explain the ultrafast photophysics

process in bacteriorhodopsin. Olivucci*'”!

and co-workers proposed another two-state
(S and S;) model and studied the related isomerization pathways on the S, and S,
states in solution phase''''and concluded that S, and S, are nearly degenerate

b2l et al.

states, which is similar to the conclusion drawn by Yamamoto
Moreover, the S;-S, level spacing is sensitive to the external perturbations and
the measurements in different conditions™**'*"*!, and the addition of solutions
makes the situation more complicated. Therefore, the S, and S, excited states’
behavior in the vacuum and unperturbed conditions are very important for
extracting the ultrafast response mechanism hidden in the veil.

As a specific example of retinal protein, the photoisomerization from 11-cis
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protonated Schiff base (PSB11) to its all trans protonated Schiff base (PSBT)
isomer (see Fig. 3-1 for their structures) is one of the fastest chemical
reactions observed so far'”'". Some experimental'*® and theoretical''"'"!
studies have been reported in different solutions for understanding such a
phenomenon. As a result of low target densities, few experiments were done
in the gas phase. However, information related to this photoisomerization
process without external perturbations is crucial for elucidating the
mechanism, since it can provide us a simpler picture about the photophysical
and photochemical processes than ones in solution phase®*'. In this work, the
T,, f and # values of the PSB11 and PSBT for S, and S, excited states were
calculated by time-dependent density functional theory (TD-DFT) methods in
vacuum and compared with the experimental detected values”’. The
experimentally observed phenomenon that the S, # value is much smaller than
the S, one was interpreted by a 3D representation of transition densities. The
different optical behaviors (linear and nonlinear optical responds) of the
excited states were investigated by considering different strengths of external

electric fields.

(b) PSBI11

Figure 3-1 The schematic structure of (a) PSBT and (b) PSBII retinal

chromophores without H atoms together with the coordinate systems
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The PSB11 ground state geometry was optimized by the B3LYP method with
6-31G-(d), 6-31 + G(d) and 6-311 ++ G (d) basis sets. The results indicated
that the size of the basis sets hardly affect the geometric parameters. Then
PSBT ground-state geometry was just optimized by B3LYP/6-31G (d) and
B3LYP/ 6-31 + G (d). which also showed that the basis set size hardly
influences the optimization results. Hereafter. the property calculations of
PSB11 and PSBT were performed under their B3LYP/6-31G-(d) optimized
ground-state geometries. The subsequent B3LYP/6-31G(d) and B3LYP/6-31 +
G(d) frequency analyses indicated that the optimized geometries are the total
minima on the potential energy surface of PSB11 and PSBT, respectively.

Table 3-1 shows S, and S, vertical excitation energies and oscillator
strengths. The T, and f values of the PSBT and PSBI11 for S, and S, states
were calculated by TD-B3LYP, TD-BPW91 and TDSVWN along with 6-31G
(d), 6-31+ G(d) and 6-311 ++ G(d) basis sets, respectively. The calculated
results were compared with the experimental detected values. For both PSBT
and PSB11, the basis set size has very little affect on the calculated T, and f
values. However. the different functionals of the TD-DFT method do affect
the calculated T, and f values. For the PSBT S, and S, states, the TD-B3LYP,
TD-BPW91 and TD-SVWN with 6-31G(d) basis set calculated T, (f) values to
be 536.1(1.561)nm and 393. 7(0.669)nm. 590.5(0.835)nm, 451.9(0.891)
nm, 592.3(1.003) nm and 451.1(1.058) nm, respectively.

Table 3-1 TD-B3LYP and TDA calculated transition energies (in nm) of the first two excited

states of PSBT and PSB11. compared with the corresponding experimental values

PSBT PSBI11
Method
S( S-_» Sa S,|
Exp. 620 385 610 390
536.1 393.7 539.5 396.8
TD-B3LYP/6-31G(d)
(1.561) (0.669) (1.228) (0.577)
543.1 397.3 546.6 400.0
TD-B3LYP/6-31+G(d) —
(1.580) (0.647) (1.295) (0.564)
043.9 398.1 548.1 401.3
TD-B3LYP/6311++G(d)
(1.579) (0.646) (1.291) (0.561)
590.5 451.9 590.5 451.9
TD-BPW91/6-31G(d)
(0.835) (0.891) (0.835) (0.891)




